gtk/gdk/win32/gdkkeys-win32-impl.c

549 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (c) 2021 Philip Zander
* Copyright (c) 2018 Microsoft
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/* NOTE: When compiling the 32-bit version of the library, in addition to being
* compiled as a regular source file, this file is also included by
* gdkkeys-win32-impl-wow64.c to generate an alternate version of the code
* intended for running on a 64-bit kernel. Because of the way keyboard layout
* DLLs work on Windows, we have to generate two versions and decide at runtime
* which code path to execute. You can read more about the specifics below, in
* the section about KBD_LONG_POINTER. */
#include "gdkkeys-win32.h"
#ifndef GDK_WIN32_COMPILE_FOR_WOW64
#define GDK_WIN32_COMPILE_FOR_WOW64 0
#endif
/* This is our equivalent of the KBD_LONG_POINTER macro in Microsoft's kbd.h.
*
* A KBD_LONG_POINTER represents a pointer native to the *host*.
* I.e. 32 bits on 32-bit Windows and 64 bits on 64-bit Windows.
*
* This is *not* the same as the the bitness of the application, since it is
* possible to execute 32-bit binaries on either a 32-bit *or* a 64-bit host.
* On a 64-bit host, KBD_LONG_PTR will be 64-bits, even if the application
* itself is 32-bit. (Whereas on a 32-bit host, it will be 32-bit.)
*
* For clarity, here is an overview of the bit-size of KBD_LONG_POINTER on all
* possible host & app combinations:
*
* Host 32 64
* App +-----------
* 32 | 32 64
* 64 | - 64
*
* In the official MS headers, KBD_LONG_POINTER is implemented via a macro
* which expands to the attribute `__ptr64` if the keyboard driver is
* compiled for a 64 bit host. Unfortunately, `__ptr64` is only
* supported by MSVC. We use a union here as a workaround.
*
* For all KBD_LONG_POINTERs, we define an alias starting with "KLP".
* Our naming schema (inspired by the Windows headers) is thus the following:
* - FOO: The type FOO itself
* - PFOO: Regular pointer to the type FOO
* - KLPFOO: Keyboard Long Pointer to the type FOO
*/
#if GDK_WIN32_COMPILE_FOR_WOW64
#define DEFINE_KBD_LONG_POINTER(type) \
typedef union { \
P##type ptr; \
UINT64 _align; \
} KLP##type
#else
#define DEFINE_KBD_LONG_POINTER(type) \
typedef union { \
P##type ptr; \
} KLP##type
#endif
DEFINE_KBD_LONG_POINTER (USHORT);
DEFINE_KBD_LONG_POINTER (VOID);
/* Driver definitions
* See
* https://github.com/microsoft/windows-rs/blob/0.28.0/crates/deps/sys/src/Windows/Win32/UI/Input/KeyboardAndMouse/mod.rs
*
* For more information on how these structures work, see also:
* https://github.com/microsoft/Windows-driver-samples/tree/f0adcda012820b1cd44a8b3a1953baf478029738/input/layout
*/
typedef struct
{
BYTE Vk;
BYTE ModBits;
} VK_TO_BIT, *PVK_TO_BIT;
DEFINE_KBD_LONG_POINTER (VK_TO_BIT);
typedef struct
{
KLPVK_TO_BIT pVkToBit;
WORD wMaxModBits;
BYTE ModNumber[1];
} MODIFIERS, *PMODIFIERS;
DEFINE_KBD_LONG_POINTER (MODIFIERS);
typedef struct
{
BYTE Vsc;
USHORT Vk;
} VSC_VK, *PVSC_VK;
DEFINE_KBD_LONG_POINTER (VSC_VK);
typedef struct
{
BYTE Vk;
BYTE Vsc;
} VK_VSC, *PVK_VSC;
DEFINE_KBD_LONG_POINTER (VK_VSC);
typedef struct
{
BYTE VirtualKey;
BYTE Attributes;
WCHAR wch[1];
} VK_TO_WCHARS, *PVK_TO_WCHARS;
DEFINE_KBD_LONG_POINTER (VK_TO_WCHARS);
typedef struct
{
KLPVK_TO_WCHARS pVkToWchars;
BYTE nModifications;
BYTE cbSize;
} VK_TO_WCHAR_TABLE, *PVK_TO_WCHAR_TABLE;
DEFINE_KBD_LONG_POINTER (VK_TO_WCHAR_TABLE);
typedef struct
{
DWORD dwBoth;
WCHAR wchComposed;
USHORT uFlags;
} DEADKEY, *PDEADKEY;
DEFINE_KBD_LONG_POINTER (DEADKEY);
typedef struct
{
KLPMODIFIERS pCharModifiers;
KLPVK_TO_WCHAR_TABLE pVkToWcharTable;
KLPDEADKEY pDeadKey;
KLPVOID pKeyNames;
KLPVOID pKeyNamesExt;
KLPVOID pKeyNamesDead;
KLPUSHORT pusVSCtoVK;
BYTE bMaxVSCtoVK;
KLPVSC_VK pVSCtoVK_E0;
KLPVSC_VK pVSCtoVK_E1;
DWORD fLocaleFlags;
BYTE nLgMaxd;
BYTE cbLgEntry;
KLPVOID pLigature;
} KBDTABLES, *PKBDTABLES;
DEFINE_KBD_LONG_POINTER (KBDTABLES);
/* End of declarations */
static BYTE
keystate_to_modbits (GdkWin32KeymapLayoutInfo *info,
const BYTE keystate[256])
{
PKBDTABLES tables = (PKBDTABLES) info->tables;
PVK_TO_BIT vk_to_bit;
BYTE result = 0;
int i;
g_return_val_if_fail (tables != NULL, 0);
vk_to_bit = tables->pCharModifiers.ptr->pVkToBit.ptr;
for (i = 0; vk_to_bit[i].Vk != 0; ++i)
if (keystate[vk_to_bit[i].Vk] & 0x80)
result |= vk_to_bit[i].ModBits;
return result;
}
static BYTE
modbits_to_level (GdkWin32KeymapLayoutInfo *info,
BYTE modbits)
{
PKBDTABLES tables = (PKBDTABLES) info->tables;
PMODIFIERS modifiers;
g_return_val_if_fail (tables != NULL, 0);
modifiers = tables->pCharModifiers.ptr;
if (modbits > modifiers->wMaxModBits)
return 0;
return modifiers->ModNumber[modbits];
}
#define POPCOUNT(b) (!!(b & 0x01) + !!(b & 0x02) + !!(b & 0x04) + !!(b & 0x08) + \
!!(b & 0x10) + !!(b & 0x20) + !!(b & 0x40) + !!(b & 0x80))
/*
* vk_to_char_fuzzy:
*
* For a given key and modifier state, return the best-fit character and the
* modifiers used to produce it. Note that not all modifiers need to be used,
* because some modifier combination aren't actually mapped in the keyboard
* layout (for example the Ctrl key typically has no effect, unless used in
* combination with Alt). Such modifiers will not be consumed.
*
* 'Best-fit' means 'consume as many modifiers as possibe'.
*
* For example (assuming a neutral lock state):
*
* - a -> 'a', consumed_mod_bits: []
* - Shift + a -> 'A', consumed_mod_bits: [Shift]
* - Ctrl + a -> 'a', consumed_mod_bits: []
* - Ctrl + Shift + a -> 'A', consumed_mod_bits: [Shift]
*
* If capslock is active, the result could be:
*
* - a -> 'A', consumed_mod_bits: [Shift]
* - Shift + a -> 'a', consumed_mod_bits: []
* - Ctrl + a -> 'a', consumed_mod_bits: []
* - Ctrl + Shift + a -> 'A', consumed_mod_bits: [Shift]
*
* The held down modifiers are supplied in `mod_bits` as a bitmask of KBDSHIFT,
* KBDCTRL, KBDALT etc.
*
* The toggled modifiers are supplied in `lock_state` as a bitmask of CAPLOK and KANALOK.
*
* If the key combination results in a dead key, `is_dead` will be set to TRUE,
* otherwise it will be set to FALSE.
*/
static WCHAR
vk_to_char_fuzzy (GdkWin32KeymapLayoutInfo *info,
BYTE mod_bits,
BYTE lock_bits,
BYTE *consumed_mod_bits,
gboolean *is_dead,
BYTE vk)
{
PKBDTABLES tables = (PKBDTABLES) info->tables;
PVK_TO_WCHAR_TABLE wch_tables;
PVK_TO_WCHAR_TABLE wch_table;
PVK_TO_WCHARS entry;
int table_index;
int entry_index;
int n_levels;
int entry_size;
/* Initialize with defaults */
if (consumed_mod_bits)
*consumed_mod_bits = 0;
if (is_dead)
*is_dead = FALSE;
g_return_val_if_fail (tables != NULL, WCH_NONE);
wch_tables = tables->pVkToWcharTable.ptr;
table_index = info->vk_lookup_table[vk].table;
entry_index = info->vk_lookup_table[vk].index;
if (table_index == -1 || entry_index == -1)
return WCH_NONE;
wch_table = &wch_tables[table_index];
n_levels = wch_table->nModifications;
entry_size = wch_table->cbSize;
entry = (PVK_TO_WCHARS) ((PBYTE) wch_table->pVkToWchars.ptr
+ entry_size*entry_index);
if (entry->VirtualKey == vk)
{
WCHAR best_char = WCH_NONE;
BYTE best_modifiers = 0;
int best_score = -1;
gboolean best_is_dead = FALSE;
int level;
/* Take toggled keys into account. For example, capslock normally inverts the
* state of KBDSHIFT (with some exceptions). */
/* Key supporting capslock */
if ((entry->Attributes & CAPLOK) &&
/* Ignore capslock if any modifiers other than shift are pressed.
* E.g. on the German layout, CapsLock + AltGr + q is the same as
* AltGr + q ('@'), but NOT the same as Shift + AltGr + q (not mapped). */
!(mod_bits & ~KBDSHIFT) &&
(lock_bits & CAPLOK))
mod_bits ^= KBDSHIFT;
/* Key supporting combination of capslock + altgr */
if ((entry->Attributes & CAPLOKALTGR) &&
(mod_bits & KBDALTGR) &&
(lock_bits & CAPLOK))
mod_bits ^= KBDSHIFT;
/* In the Swiss German layout, CapsLock + key is different from Shift + key
* for some keys. For such keys, Capslock toggles the KBDCTRL bit. */
if ((entry->Attributes & SGCAPS) &&
(lock_bits & CAPLOK))
mod_bits ^= KBDCTRL;
/* I'm not totally sure how kanalok behaves, for now I assume that there
* aren't any special cases. */
if ((entry->Attributes & KANALOK) &&
(lock_bits & KANALOK))
mod_bits ^= KBDKANA;
/* We try to find the entry with the most matching modifiers */
for (level = 0; level < n_levels; ++level)
{
BYTE candidate_modbits = info->level_to_modbits[level];
gboolean candidate_is_dead = FALSE;
WCHAR c;
int score;
if (candidate_modbits & ~mod_bits)
continue;
c = entry->wch[level];
if (c == WCH_DEAD)
{
/* Next entry contains the undead keys */
PVK_TO_WCHARS next_entry;
next_entry = (PVK_TO_WCHARS) ((PBYTE) wch_table->pVkToWchars.ptr
+ entry_size * (entry_index + 1));
c = next_entry->wch[level];
candidate_is_dead = TRUE;
}
if (c == WCH_DEAD || c == WCH_LGTR || c == WCH_NONE)
continue;
score = POPCOUNT (candidate_modbits & mod_bits);
if (score > best_score)
{
best_score = score;
best_char = c;
best_modifiers = candidate_modbits;
best_is_dead = candidate_is_dead;
}
}
if (consumed_mod_bits)
*consumed_mod_bits = best_modifiers;
if (is_dead)
*is_dead = best_is_dead;
return best_char;
}
return WCH_NONE;
}
static void
init_vk_lookup_table (GdkWin32KeymapLayoutInfo *info)
{
PKBDTABLES tables = (PKBDTABLES) info->tables;
PVK_TO_WCHAR_TABLE wch_tables;
PMODIFIERS modifiers;
int i, vk, table_idx;
g_return_if_fail (tables != NULL);
wch_tables = tables->pVkToWcharTable.ptr;
/* Initialize empty table */
memset (info->vk_lookup_table, -1, sizeof (info->vk_lookup_table));
/* Initialize level -> modbits lookup table */
memset (info->level_to_modbits, 0, sizeof(info->level_to_modbits));
info->max_level = 0;
modifiers = tables->pCharModifiers.ptr;
for (i = 0; i <= modifiers->wMaxModBits; ++i)
{
if (modifiers->ModNumber[i] != SHFT_INVALID &&
modifiers->ModNumber[i] != 0 /* Workaround for buggy layouts*/)
{
if (modifiers->ModNumber[i] > info->max_level)
info->max_level = modifiers->ModNumber[i];
info->level_to_modbits[modifiers->ModNumber[i]] = i;
}
}
info->max_modbit_value = modifiers->wMaxModBits;
/* For convenience, we add 256 identity-mapped entries corresponding to the VKs.
* This allows us to return a pointer to them from the `gdk_keysym_to_key_entry`
* function.
*/
for (vk = 0; vk < 256; ++vk)
{
GdkWin32KeymapKeyEntry key_entry = {0};
key_entry.vk = vk;
key_entry.mod_bits = 0;
key_entry.next = -1;
g_array_append_val (info->key_entries, key_entry);
}
/* Special entry for ISO_Left_Tab */
{
GdkWin32KeymapKeyEntry key_entry = {0};
key_entry.vk = VK_TAB;
key_entry.mod_bits = KBDSHIFT;
key_entry.next = -1;
g_array_append_val (info->key_entries, key_entry);
}
/* Initialize generic vk <-> char tables */
for (table_idx = 0; ; ++table_idx)
{
PVK_TO_WCHAR_TABLE wch_table = &wch_tables[table_idx];
int entry_size;
int n_levels;
int entry_idx;
if (wch_table->pVkToWchars.ptr == NULL)
break;
entry_size = wch_table->cbSize;
n_levels = wch_table->nModifications;
for (entry_idx = 0; ; ++entry_idx)
{
PVK_TO_WCHARS entry;
int level;
entry = (PVK_TO_WCHARS) ((PBYTE) wch_table->pVkToWchars.ptr
+ entry_size * entry_idx);
if (entry->VirtualKey == 0)
break;
/* Lookup table to find entry for a VK in O(1). */
info->vk_lookup_table[entry->VirtualKey].table = table_idx;
info->vk_lookup_table[entry->VirtualKey].index = entry_idx;
/* Create reverse lookup entries to find a VK+modifier combinations
* that results in a given character. */
for (level = 0; level < n_levels; ++level)
{
GdkWin32KeymapKeyEntry key_entry = {0};
WCHAR c = entry->wch[level];
int inserted_idx;
gintptr next_idx;
key_entry.vk = entry->VirtualKey;
key_entry.mod_bits = info->level_to_modbits[level];
/* There can be multiple combinations that produce the same character.
* We store all of them in a linked list.
* Check if we already have an entry for the character, so we can chain
* them together. */
if (g_hash_table_lookup_extended (info->reverse_lookup_table,
GINT_TO_POINTER (c),
NULL, (gpointer*)&next_idx))
{
key_entry.next = next_idx;
}
else
{
key_entry.next = -1;
}
/* We store the KeyEntry in an array. In the hash table we only store
* the index. */
g_array_append_val (info->key_entries, key_entry);
inserted_idx = info->key_entries->len - 1;
g_hash_table_insert (info->reverse_lookup_table,
GINT_TO_POINTER (c),
GINT_TO_POINTER (inserted_idx));
}
}
}
}
static gboolean
load_layout_dll (const char *dll,
GdkWin32KeymapLayoutInfo *info)
{
typedef KLPKBDTABLES (*KbdLayerDescriptor)(VOID);
HMODULE lib;
KbdLayerDescriptor func;
KLPKBDTABLES tables;
g_return_val_if_fail (dll != NULL, FALSE);
lib = LoadLibraryA (dll);
if (lib == NULL)
goto fail1;
func = (KbdLayerDescriptor) GetProcAddress (lib, "KbdLayerDescriptor");
if (func == NULL)
goto fail2;
tables = func();
info->lib = lib;
info->tables = (PKBDTABLES) tables.ptr;
return TRUE;
fail2:
FreeLibrary (lib);
fail1:
return FALSE;
}
#if GDK_WIN32_COMPILE_FOR_WOW64
#define GDK_WIN32_KEYMAP_IMPL_NAME gdkwin32_keymap_impl_wow64
#else
#define GDK_WIN32_KEYMAP_IMPL_NAME gdkwin32_keymap_impl
#endif
const GdkWin32KeymapImpl GDK_WIN32_KEYMAP_IMPL_NAME =
{
load_layout_dll,
init_vk_lookup_table,
keystate_to_modbits,
modbits_to_level,
vk_to_char_fuzzy
};