gtk/gsk/gskcurve.c

1534 lines
46 KiB
C
Raw Normal View History

/*
* Copyright © 2020 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
*/
#include "config.h"
#include "gskcurveprivate.h"
#include "gskboundingboxprivate.h"
/* GskCurve collects all the functionality we need for Bézier segments */
#define MIN_PROGRESS (1/1024.f)
typedef struct _GskCurveClass GskCurveClass;
struct _GskCurveClass
{
void (* init) (GskCurve *curve,
gskpathop op);
void (* init_foreach) (GskCurve *curve,
GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts);
void (* print) (const GskCurve *curve,
GString *string);
gskpathop (* pathop) (const GskCurve *curve);
const graphene_point_t * (* get_start_point) (const GskCurve *curve);
const graphene_point_t * (* get_end_point) (const GskCurve *curve);
void (* get_start_tangent) (const GskCurve *curve,
graphene_vec2_t *tangent);
void (* get_end_tangent) (const GskCurve *curve,
graphene_vec2_t *tangent);
void (* get_point) (const GskCurve *curve,
float t,
graphene_point_t *pos);
void (* get_tangent) (const GskCurve *curve,
float t,
graphene_vec2_t *tangent);
void (* reverse) (const GskCurve *curve,
GskCurve *reverse);
float (* get_curvature) (const GskCurve *curve,
float t);
void (* split) (const GskCurve *curve,
float progress,
GskCurve *result1,
GskCurve *result2);
void (* segment) (const GskCurve *curve,
float start,
float end,
GskCurve *segment);
gboolean (* decompose) (const GskCurve *curve,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data);
gboolean (* decompose_curve) (const GskCurve *curve,
GskPathForeachFlags flags,
float tolerance,
GskCurveAddCurveFunc add_curve_func,
gpointer user_data);
void (* get_bounds) (const GskCurve *curve,
GskBoundingBox *bounds);
void (* get_tight_bounds) (const GskCurve *curve,
GskBoundingBox *bounds);
};
/* {{{ Utilities */
static void
get_tangent (const graphene_point_t *p0,
const graphene_point_t *p1,
graphene_vec2_t *t)
{
graphene_vec2_init (t, p1->x - p0->x, p1->y - p0->y);
graphene_vec2_normalize (t, t);
}
/* Replace a line by an equivalent quad,
* and a quad by an equivalent cubic.
*/
static void
gsk_curve_elevate (const GskCurve *curve,
GskCurve *elevated)
{
if (curve->op == GSK_PATH_LINE)
{
graphene_point_t p[3];
p[0] = curve->line.points[0];
graphene_point_interpolate (&curve->line.points[0],
&curve->line.points[1],
0.5,
&p[1]);
p[2] = curve->line.points[1];
gsk_curve_init (elevated, gsk_pathop_encode (GSK_PATH_QUAD, p));
}
else if (curve->op == GSK_PATH_QUAD)
{
graphene_point_t p[4];
p[0] = curve->quad.points[0];
graphene_point_interpolate (&curve->quad.points[0],
&curve->quad.points[1],
2/3.,
&p[1]);
graphene_point_interpolate (&curve->quad.points[2],
&curve->quad.points[1],
2/3.,
&p[2]);
p[3] = curve->quad.points[2];
gsk_curve_init (elevated, gsk_pathop_encode (GSK_PATH_CUBIC, p));
}
else
g_assert_not_reached ();
}
/* }}} */
/* {{{ Line */
static void
gsk_line_curve_init_from_points (GskLineCurve *self,
GskPathOperation op,
const graphene_point_t *start,
const graphene_point_t *end)
{
self->op = op;
self->points[0] = *start;
self->points[1] = *end;
}
static void
gsk_line_curve_init (GskCurve *curve,
gskpathop op)
{
GskLineCurve *self = &curve->line;
const graphene_point_t *pts = gsk_pathop_points (op);
gsk_line_curve_init_from_points (self, gsk_pathop_op (op), &pts[0], &pts[1]);
}
static void
gsk_line_curve_init_foreach (GskCurve *curve,
GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts)
{
GskLineCurve *self = &curve->line;
g_assert (n_pts == 2);
gsk_line_curve_init_from_points (self, op, &pts[0], &pts[1]);
}
static void
gsk_line_curve_print (const GskCurve *curve,
GString *string)
{
g_string_append_printf (string,
"M %g %g L %g %g",
curve->line.points[0].x, curve->line.points[0].y,
curve->line.points[1].x, curve->line.points[1].y);
}
static gskpathop
gsk_line_curve_pathop (const GskCurve *curve)
{
const GskLineCurve *self = &curve->line;
return gsk_pathop_encode (self->op, self->points);
}
static const graphene_point_t *
gsk_line_curve_get_start_point (const GskCurve *curve)
{
const GskLineCurve *self = &curve->line;
return &self->points[0];
}
static const graphene_point_t *
gsk_line_curve_get_end_point (const GskCurve *curve)
{
const GskLineCurve *self = &curve->line;
return &self->points[1];
}
static void
gsk_line_curve_get_start_end_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
const GskLineCurve *self = &curve->line;
get_tangent (&self->points[0], &self->points[1], tangent);
}
static void
gsk_line_curve_get_point (const GskCurve *curve,
float t,
graphene_point_t *pos)
{
const GskLineCurve *self = &curve->line;
graphene_point_interpolate (&self->points[0], &self->points[1], t, pos);
}
static void
gsk_line_curve_get_tangent (const GskCurve *curve,
float t,
graphene_vec2_t *tangent)
{
const GskLineCurve *self = &curve->line;
get_tangent (&self->points[0], &self->points[1], tangent);
}
static float
gsk_line_curve_get_curvature (const GskCurve *curve,
float t)
{
return 0;
}
static void
gsk_line_curve_reverse (const GskCurve *curve,
GskCurve *reverse)
{
const GskLineCurve *self = &curve->line;
reverse->op = GSK_PATH_LINE;
reverse->line.points[0] = self->points[1];
reverse->line.points[1] = self->points[0];
}
static void
gsk_line_curve_split (const GskCurve *curve,
float progress,
GskCurve *start,
GskCurve *end)
{
const GskLineCurve *self = &curve->line;
graphene_point_t point;
graphene_point_interpolate (&self->points[0], &self->points[1], progress, &point);
if (start)
gsk_line_curve_init_from_points (&start->line, GSK_PATH_LINE, &self->points[0], &point);
if (end)
gsk_line_curve_init_from_points (&end->line, GSK_PATH_LINE, &point, &self->points[1]);
}
static void
gsk_line_curve_segment (const GskCurve *curve,
float start,
float end,
GskCurve *segment)
{
const GskLineCurve *self = &curve->line;
graphene_point_t start_point, end_point;
graphene_point_interpolate (&self->points[0], &self->points[1], start, &start_point);
graphene_point_interpolate (&self->points[0], &self->points[1], end, &end_point);
gsk_line_curve_init_from_points (&segment->line, GSK_PATH_LINE, &start_point, &end_point);
}
static gboolean
gsk_line_curve_decompose (const GskCurve *curve,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data)
{
const GskLineCurve *self = &curve->line;
return add_line_func (&self->points[0], &self->points[1], 0.0f, 1.0f, GSK_CURVE_LINE_REASON_STRAIGHT, user_data);
}
static gboolean
gsk_line_curve_decompose_curve (const GskCurve *curve,
GskPathForeachFlags flags,
float tolerance,
GskCurveAddCurveFunc add_curve_func,
gpointer user_data)
{
const GskLineCurve *self = &curve->line;
return add_curve_func (GSK_PATH_LINE, self->points, 2, user_data);
}
static void
gsk_line_curve_get_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
const GskLineCurve *self = &curve->line;
const graphene_point_t *pts = self->points;
gsk_bounding_box_init (bounds, &pts[0], &pts[1]);
}
static const GskCurveClass GSK_LINE_CURVE_CLASS = {
gsk_line_curve_init,
gsk_line_curve_init_foreach,
gsk_line_curve_print,
gsk_line_curve_pathop,
gsk_line_curve_get_start_point,
gsk_line_curve_get_end_point,
gsk_line_curve_get_start_end_tangent,
gsk_line_curve_get_start_end_tangent,
gsk_line_curve_get_point,
gsk_line_curve_get_tangent,
gsk_line_curve_reverse,
gsk_line_curve_get_curvature,
gsk_line_curve_split,
gsk_line_curve_segment,
gsk_line_curve_decompose,
gsk_line_curve_decompose_curve,
gsk_line_curve_get_bounds,
gsk_line_curve_get_bounds,
};
/* }}} */
/* {{{ Quadratic */
static void
gsk_quad_curve_ensure_coefficients (const GskQuadCurve *curve)
{
GskQuadCurve *self = (GskQuadCurve *) curve;
const graphene_point_t *pts = self->points;
if (self->has_coefficients)
return;
self->coeffs[2] = pts[0];
self->coeffs[1] = GRAPHENE_POINT_INIT (2 * (pts[1].x - pts[0].x),
2 * (pts[1].y - pts[0].y));
self->coeffs[0] = GRAPHENE_POINT_INIT (pts[2].x - 2 * pts[1].x + pts[0].x,
pts[2].y - 2 * pts[1].y + pts[0].y);
self->has_coefficients = TRUE;
}
static void
gsk_quad_curve_init_from_points (GskQuadCurve *self,
const graphene_point_t pts[3])
{
self->op = GSK_PATH_QUAD;
self->has_coefficients = FALSE;
memcpy (self->points, pts, sizeof (graphene_point_t) * 3);
}
static void
gsk_quad_curve_init (GskCurve *curve,
gskpathop op)
{
GskQuadCurve *self = &curve->quad;
gsk_quad_curve_init_from_points (self, gsk_pathop_points (op));
}
static void
gsk_quad_curve_init_foreach (GskCurve *curve,
GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts)
{
GskQuadCurve *self = &curve->quad;
g_assert (n_pts == 3);
gsk_quad_curve_init_from_points (self, pts);
}
static void
gsk_quad_curve_print (const GskCurve *curve,
GString *string)
{
g_string_append_printf (string,
"M %g %g Q %g %g %g %g",
curve->quad.points[0].x, curve->quad.points[0].y,
curve->quad.points[1].x, curve->cubic.points[1].y,
curve->quad.points[2].x, curve->cubic.points[2].y);
}
static gskpathop
gsk_quad_curve_pathop (const GskCurve *curve)
{
const GskQuadCurve *self = &curve->quad;
return gsk_pathop_encode (self->op, self->points);
}
static const graphene_point_t *
gsk_quad_curve_get_start_point (const GskCurve *curve)
{
const GskQuadCurve *self = &curve->quad;
return &self->points[0];
}
static const graphene_point_t *
gsk_quad_curve_get_end_point (const GskCurve *curve)
{
const GskQuadCurve *self = &curve->quad;
return &self->points[2];
}
static void
gsk_quad_curve_get_start_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
const GskQuadCurve *self = &curve->quad;
get_tangent (&self->points[0], &self->points[1], tangent);
}
static void
gsk_quad_curve_get_end_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
const GskQuadCurve *self = &curve->quad;
get_tangent (&self->points[1], &self->points[2], tangent);
}
static void
gsk_quad_curve_get_point (const GskCurve *curve,
float t,
graphene_point_t *pos)
{
GskQuadCurve *self = (GskQuadCurve *) &curve->quad;
const graphene_point_t *c = self->coeffs;
gsk_quad_curve_ensure_coefficients (self);
*pos = GRAPHENE_POINT_INIT ((c[0].x * t + c[1].x) * t + c[2].x,
(c[0].y * t + c[1].y) * t + c[2].y);
}
static void
gsk_quad_curve_get_tangent (const GskCurve *curve,
float t,
graphene_vec2_t *tangent)
{
GskQuadCurve *self = (GskQuadCurve *) &curve->quad;
const graphene_point_t *c = self->coeffs;
gsk_quad_curve_ensure_coefficients (self);
graphene_vec2_init (tangent,
2.0f * c[0].x * t + c[1].x,
2.0f * c[0].y * t + c[1].y);
graphene_vec2_normalize (tangent, tangent);
}
static float gsk_cubic_curve_get_curvature (const GskCurve *curve,
float t);
static float
gsk_quad_curve_get_curvature (const GskCurve *curve,
float t)
{
return gsk_cubic_curve_get_curvature (curve, t);
}
static void
gsk_quad_curve_reverse (const GskCurve *curve,
GskCurve *reverse)
{
const GskCubicCurve *self = &curve->cubic;
reverse->op = GSK_PATH_QUAD;
reverse->cubic.points[0] = self->points[2];
reverse->cubic.points[1] = self->points[1];
reverse->cubic.points[2] = self->points[0];
reverse->cubic.has_coefficients = FALSE;
}
static void
gsk_quad_curve_split (const GskCurve *curve,
float progress,
GskCurve *start,
GskCurve *end)
{
GskQuadCurve *self = (GskQuadCurve *) &curve->quad;
const graphene_point_t *pts = self->points;
graphene_point_t ab, bc;
graphene_point_t final;
graphene_point_interpolate (&pts[0], &pts[1], progress, &ab);
graphene_point_interpolate (&pts[1], &pts[2], progress, &bc);
graphene_point_interpolate (&ab, &bc, progress, &final);
if (start)
gsk_quad_curve_init_from_points (&start->quad, (graphene_point_t[3]) { pts[0], ab, final });
if (end)
gsk_quad_curve_init_from_points (&end->quad, (graphene_point_t[3]) { final, bc, pts[2] });
}
static void
gsk_quad_curve_segment (const GskCurve *curve,
float start,
float end,
GskCurve *segment)
{
GskCurve tmp;
gsk_quad_curve_split (curve, start, NULL, &tmp);
gsk_quad_curve_split (&tmp, (end - start) / (1.0f - start), segment, NULL);
}
/* taken from Skia, including the very descriptive name */
static gboolean
gsk_quad_curve_too_curvy (const GskQuadCurve *self,
float tolerance)
{
const graphene_point_t *pts = self->points;
float dx, dy;
dx = fabs (pts[1].x / 2 - (pts[0].x + pts[2].x) / 4);
dy = fabs (pts[1].y / 2 - (pts[0].y + pts[2].y) / 4);
return MAX (dx, dy) > tolerance;
}
static gboolean
gsk_quad_curve_decompose_step (const GskCurve *curve,
float start_progress,
float end_progress,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data)
{
const GskQuadCurve *self = &curve->quad;
GskCurve left, right;
float mid_progress;
if (!gsk_quad_curve_too_curvy (self, tolerance))
return add_line_func (&self->points[0], &self->points[2], start_progress, end_progress, GSK_CURVE_LINE_REASON_STRAIGHT, user_data);
if (end_progress - start_progress <= MIN_PROGRESS)
return add_line_func (&self->points[0], &self->points[2], start_progress, end_progress, GSK_CURVE_LINE_REASON_SHORT, user_data);
gsk_quad_curve_split ((const GskCurve *) self, 0.5, &left, &right);
mid_progress = (start_progress + end_progress) / 2;
return gsk_quad_curve_decompose_step (&left, start_progress, mid_progress, tolerance, add_line_func, user_data)
&& gsk_quad_curve_decompose_step (&right, mid_progress, end_progress, tolerance, add_line_func, user_data);
}
static gboolean
gsk_quad_curve_decompose (const GskCurve *curve,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data)
{
return gsk_quad_curve_decompose_step (curve, 0.0, 1.0, tolerance, add_line_func, user_data);
}
typedef struct
{
GskCurveAddCurveFunc add_curve;
gpointer user_data;
} AddLineData;
static gboolean
gsk_curve_add_line_cb (const graphene_point_t *from,
const graphene_point_t *to,
float from_progress,
float to_progress,
GskCurveLineReason reason,
gpointer user_data)
{
AddLineData *data = user_data;
graphene_point_t p[2] = { *from, *to };
return data->add_curve (GSK_PATH_LINE, p, 2, data->user_data);
}
static gboolean
gsk_quad_curve_decompose_curve (const GskCurve *curve,
GskPathForeachFlags flags,
float tolerance,
GskCurveAddCurveFunc add_curve_func,
gpointer user_data)
{
const GskQuadCurve *self = &curve->quad;
if (flags & GSK_PATH_FOREACH_ALLOW_QUAD)
return add_curve_func (GSK_PATH_QUAD, self->points, 3, user_data);
else if (flags & GSK_PATH_FOREACH_ALLOW_CUBIC)
{
GskCurve c;
gsk_curve_elevate (curve, &c);
return add_curve_func (GSK_PATH_CUBIC, c.cubic.points, 4, user_data);
}
else
{
return gsk_quad_curve_decompose (curve,
tolerance,
gsk_curve_add_line_cb,
&(AddLineData) { add_curve_func, user_data });
}
}
static void
gsk_quad_curve_get_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
const GskQuadCurve *self = &curve->quad;
const graphene_point_t *pts = self->points;
gsk_bounding_box_init (bounds, &pts[0], &pts[2]);
gsk_bounding_box_expand (bounds, &pts[1]);
}
/* Solve P' = 0 where P is
* P = (1-t)^2*pa + 2*t*(1-t)*pb + t^2*pc
*/
static int
get_quadratic_extrema (float pa, float pb, float pc, float t[1])
{
float d = pa - 2 * pb + pc;
if (fabs (d) > 0.0001)
{
t[0] = (pa - pb) / d;
return 1;
}
return 0;
}
static void
gsk_quad_curve_get_tight_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
const GskQuadCurve *self = &curve->quad;
const graphene_point_t *pts = self->points;
float t[4];
int n;
gsk_bounding_box_init (bounds, &pts[0], &pts[2]);
n = 0;
n += get_quadratic_extrema (pts[0].x, pts[1].x, pts[2].x, &t[n]);
n += get_quadratic_extrema (pts[0].y, pts[1].y, pts[2].y, &t[n]);
for (int i = 0; i < n; i++)
{
graphene_point_t p;
gsk_quad_curve_get_point (curve, t[i], &p);
gsk_bounding_box_expand (bounds, &p);
}
}
static const GskCurveClass GSK_QUAD_CURVE_CLASS = {
gsk_quad_curve_init,
gsk_quad_curve_init_foreach,
gsk_quad_curve_print,
gsk_quad_curve_pathop,
gsk_quad_curve_get_start_point,
gsk_quad_curve_get_end_point,
gsk_quad_curve_get_start_tangent,
gsk_quad_curve_get_end_tangent,
gsk_quad_curve_get_point,
gsk_quad_curve_get_tangent,
gsk_quad_curve_reverse,
gsk_quad_curve_get_curvature,
gsk_quad_curve_split,
gsk_quad_curve_segment,
gsk_quad_curve_decompose,
gsk_quad_curve_decompose_curve,
gsk_quad_curve_get_bounds,
gsk_quad_curve_get_tight_bounds,
};
/* }}} */
/* {{{ Cubic */
static void
gsk_cubic_curve_ensure_coefficients (const GskCubicCurve *curve)
{
GskCubicCurve *self = (GskCubicCurve *) curve;
const graphene_point_t *pts = &self->points[0];
if (self->has_coefficients)
return;
self->coeffs[0] = GRAPHENE_POINT_INIT (pts[3].x - 3.0f * pts[2].x + 3.0f * pts[1].x - pts[0].x,
pts[3].y - 3.0f * pts[2].y + 3.0f * pts[1].y - pts[0].y);
self->coeffs[1] = GRAPHENE_POINT_INIT (3.0f * pts[2].x - 6.0f * pts[1].x + 3.0f * pts[0].x,
3.0f * pts[2].y - 6.0f * pts[1].y + 3.0f * pts[0].y);
self->coeffs[2] = GRAPHENE_POINT_INIT (3.0f * pts[1].x - 3.0f * pts[0].x,
3.0f * pts[1].y - 3.0f * pts[0].y);
self->coeffs[3] = pts[0];
self->has_coefficients = TRUE;
}
static void
gsk_cubic_curve_init_from_points (GskCubicCurve *self,
const graphene_point_t pts[4])
{
self->op = GSK_PATH_CUBIC;
self->has_coefficients = FALSE;
memcpy (self->points, pts, sizeof (graphene_point_t) * 4);
}
static void
gsk_cubic_curve_init (GskCurve *curve,
gskpathop op)
{
GskCubicCurve *self = &curve->cubic;
gsk_cubic_curve_init_from_points (self, gsk_pathop_points (op));
}
static void
gsk_cubic_curve_init_foreach (GskCurve *curve,
GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts)
{
GskCubicCurve *self = &curve->cubic;
g_assert (n_pts == 4);
gsk_cubic_curve_init_from_points (self, pts);
}
static void
gsk_cubic_curve_print (const GskCurve *curve,
GString *string)
{
g_string_append_printf (string,
"M %f %f C %f %f %f %f %f %f",
curve->cubic.points[0].x, curve->cubic.points[0].y,
curve->cubic.points[1].x, curve->cubic.points[1].y,
curve->cubic.points[2].x, curve->cubic.points[2].y,
curve->cubic.points[3].x, curve->cubic.points[3].y);
}
static gskpathop
gsk_cubic_curve_pathop (const GskCurve *curve)
{
const GskCubicCurve *self = &curve->cubic;
return gsk_pathop_encode (self->op, self->points);
}
static const graphene_point_t *
gsk_cubic_curve_get_start_point (const GskCurve *curve)
{
const GskCubicCurve *self = &curve->cubic;
return &self->points[0];
}
static const graphene_point_t *
gsk_cubic_curve_get_end_point (const GskCurve *curve)
{
const GskCubicCurve *self = &curve->cubic;
return &self->points[3];
}
static void
gsk_cubic_curve_get_start_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
const GskCubicCurve *self = &curve->cubic;
if (graphene_point_near (&self->points[0], &self->points[1], 0.0001))
{
if (graphene_point_near (&self->points[0], &self->points[2], 0.0001))
get_tangent (&self->points[0], &self->points[3], tangent);
else
get_tangent (&self->points[0], &self->points[2], tangent);
}
else
get_tangent (&self->points[0], &self->points[1], tangent);
}
static void
gsk_cubic_curve_get_end_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
const GskCubicCurve *self = &curve->cubic;
if (graphene_point_near (&self->points[2], &self->points[3], 0.0001))
{
if (graphene_point_near (&self->points[1], &self->points[3], 0.0001))
get_tangent (&self->points[0], &self->points[3], tangent);
else
get_tangent (&self->points[1], &self->points[3], tangent);
}
else
get_tangent (&self->points[2], &self->points[3], tangent);
}
static void
gsk_cubic_curve_get_point (const GskCurve *curve,
float t,
graphene_point_t *pos)
{
const GskCubicCurve *self = &curve->cubic;
const graphene_point_t *c = self->coeffs;
gsk_cubic_curve_ensure_coefficients (self);
*pos = GRAPHENE_POINT_INIT (((c[0].x * t + c[1].x) * t +c[2].x) * t + c[3].x,
((c[0].y * t + c[1].y) * t +c[2].y) * t + c[3].y);
}
static void
gsk_cubic_curve_get_tangent (const GskCurve *curve,
float t,
graphene_vec2_t *tangent)
{
const GskCubicCurve *self = &curve->cubic;
const graphene_point_t *c = self->coeffs;
gsk_cubic_curve_ensure_coefficients (self);
graphene_vec2_init (tangent,
(3.0f * c[0].x * t + 2.0f * c[1].x) * t + c[2].x,
(3.0f * c[0].y * t + 2.0f * c[1].y) * t + c[2].y);
graphene_vec2_normalize (tangent, tangent);
}
static void
gsk_cubic_curve_reverse (const GskCurve *curve,
GskCurve *reverse)
{
const GskCubicCurve *self = &curve->cubic;
reverse->op = GSK_PATH_CUBIC;
reverse->cubic.points[0] = self->points[3];
reverse->cubic.points[1] = self->points[2];
reverse->cubic.points[2] = self->points[1];
reverse->cubic.points[3] = self->points[0];
reverse->cubic.has_coefficients = FALSE;
}
static void
gsk_curve_get_derivative (const GskCurve *curve,
GskCurve *deriv)
{
switch (curve->op)
{
case GSK_PATH_LINE:
{
const GskLineCurve *self = &curve->line;
graphene_point_t p;
p.x = self->points[1].x - self->points[0].x;
p.y = self->points[1].y - self->points[0].y;
gsk_line_curve_init_from_points (&deriv->line, GSK_PATH_LINE, &p, &p);
}
break;
case GSK_PATH_QUAD:
{
const GskQuadCurve *self = &curve->quad;
graphene_point_t p[2];
p[0].x = 2.f * (self->points[1].x - self->points[0].x);
p[0].y = 2.f * (self->points[1].y - self->points[0].y);
p[1].x = 2.f * (self->points[2].x - self->points[1].x);
p[1].y = 2.f * (self->points[2].y - self->points[1].y);
gsk_line_curve_init_from_points (&deriv->line, GSK_PATH_LINE, &p[0], &p[1]);
}
break;
case GSK_PATH_CUBIC:
{
const GskCubicCurve *self = &curve->cubic;
graphene_point_t p[3];
p[0].x = 3.f * (self->points[1].x - self->points[0].x);
p[0].y = 3.f * (self->points[1].y - self->points[0].y);
p[1].x = 3.f * (self->points[2].x - self->points[1].x);
p[1].y = 3.f * (self->points[2].y - self->points[1].y);
p[2].x = 3.f * (self->points[3].x - self->points[2].x);
p[2].y = 3.f * (self->points[3].y - self->points[2].y);
gsk_quad_curve_init_from_points (&deriv->quad, p);
}
break;
case GSK_PATH_MOVE:
case GSK_PATH_CLOSE:
default:
g_assert_not_reached ();
}
}
static inline float
cross (const graphene_vec2_t *v1,
const graphene_vec2_t *v2)
{
return graphene_vec2_get_x (v1) * graphene_vec2_get_y (v2)
- graphene_vec2_get_y (v1) * graphene_vec2_get_x (v2);
}
static inline float
pow3 (float w)
{
return w * w * w;
}
static float
gsk_cubic_curve_get_curvature (const GskCurve *curve,
float t)
{
GskCurve c1, c2;
graphene_point_t p, pp;
graphene_vec2_t d, dd;
float num, denom;
gsk_curve_get_derivative (curve, &c1);
gsk_curve_get_derivative (&c1, &c2);
gsk_curve_get_point (&c1, t, &p);
gsk_curve_get_point (&c2, t, &pp);
graphene_vec2_init (&d, p.x, p.y);
graphene_vec2_init (&dd, pp.x, pp.y);
num = cross (&d, &dd);
if (num == 0)
return 0;
denom = pow3 (graphene_vec2_length (&d));
if (denom == 0)
return 0;
return num / denom;
}
static void
gsk_cubic_curve_split (const GskCurve *curve,
float progress,
GskCurve *start,
GskCurve *end)
{
const GskCubicCurve *self = &curve->cubic;
const graphene_point_t *pts = self->points;
graphene_point_t ab, bc, cd;
graphene_point_t abbc, bccd;
graphene_point_t final;
graphene_point_interpolate (&pts[0], &pts[1], progress, &ab);
graphene_point_interpolate (&pts[1], &pts[2], progress, &bc);
graphene_point_interpolate (&pts[2], &pts[3], progress, &cd);
graphene_point_interpolate (&ab, &bc, progress, &abbc);
graphene_point_interpolate (&bc, &cd, progress, &bccd);
graphene_point_interpolate (&abbc, &bccd, progress, &final);
if (start)
gsk_cubic_curve_init_from_points (&start->cubic, (graphene_point_t[4]) { pts[0], ab, abbc, final });
if (end)
gsk_cubic_curve_init_from_points (&end->cubic, (graphene_point_t[4]) { final, bccd, cd, pts[3] });
}
static void
gsk_cubic_curve_segment (const GskCurve *curve,
float start,
float end,
GskCurve *segment)
{
GskCurve tmp;
gsk_cubic_curve_split (curve, start, NULL, &tmp);
gsk_cubic_curve_split (&tmp, (end - start) / (1.0f - start), segment, NULL);
}
/* taken from Skia, including the very descriptive name */
static gboolean
gsk_cubic_curve_too_curvy (const GskCubicCurve *self,
float tolerance)
{
const graphene_point_t *pts = self->points;
graphene_point_t p;
graphene_point_interpolate (&pts[0], &pts[3], 1.0f / 3, &p);
if (MAX (ABS (p.x - pts[1].x), ABS (p.y - pts[1].y)) > tolerance)
return TRUE;
graphene_point_interpolate (&pts[0], &pts[3], 2.0f / 3, &p);
if (MAX (ABS (p.x - pts[2].x), ABS (p.y - pts[2].y)) > tolerance)
return TRUE;
return FALSE;
}
static gboolean
gsk_cubic_curve_decompose_step (const GskCurve *curve,
float start_progress,
float end_progress,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data)
{
const GskCubicCurve *self = &curve->cubic;
GskCurve left, right;
float mid_progress;
if (!gsk_cubic_curve_too_curvy (self, tolerance))
return add_line_func (&self->points[0], &self->points[3], start_progress, end_progress, GSK_CURVE_LINE_REASON_STRAIGHT, user_data);
if (end_progress - start_progress <= MIN_PROGRESS)
return add_line_func (&self->points[0], &self->points[3], start_progress, end_progress, GSK_CURVE_LINE_REASON_SHORT, user_data);
gsk_cubic_curve_split ((const GskCurve *) self, 0.5, &left, &right);
mid_progress = (start_progress + end_progress) / 2;
return gsk_cubic_curve_decompose_step (&left, start_progress, mid_progress, tolerance, add_line_func, user_data)
&& gsk_cubic_curve_decompose_step (&right, mid_progress, end_progress, tolerance, add_line_func, user_data);
}
static gboolean
gsk_cubic_curve_decompose (const GskCurve *curve,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data)
{
return gsk_cubic_curve_decompose_step (curve, 0.0, 1.0, tolerance, add_line_func, user_data);
}
static gboolean
gsk_cubic_curve_decompose_curve (const GskCurve *curve,
GskPathForeachFlags flags,
float tolerance,
GskCurveAddCurveFunc add_curve_func,
gpointer user_data)
{
const GskCubicCurve *self = &curve->cubic;
if (flags & GSK_PATH_FOREACH_ALLOW_CUBIC)
return add_curve_func (GSK_PATH_CUBIC, self->points, 4, user_data);
/* FIXME: Quadratic (or conic?) approximation */
return gsk_cubic_curve_decompose (curve,
tolerance,
gsk_curve_add_line_cb,
&(AddLineData) { add_curve_func, user_data });
}
static void
gsk_cubic_curve_get_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
const GskCubicCurve *self = &curve->cubic;
const graphene_point_t *pts = self->points;
gsk_bounding_box_init (bounds, &pts[0], &pts[3]);
gsk_bounding_box_expand (bounds, &pts[1]);
gsk_bounding_box_expand (bounds, &pts[2]);
}
static inline gboolean
acceptable (float t)
{
return 0 <= t && t <= 1;
}
/* Solve P' = 0 where P is
* P = (1-t)^3*pa + 3*t*(1-t)^2*pb + 3*t^2*(1-t)*pc + t^3*pd
*/
static int
get_cubic_extrema (float pa, float pb, float pc, float pd, float t[2])
{
float a, b, c;
float d, tt;
int n = 0;
a = 3 * (pd - 3*pc + 3*pb - pa);
b = 6 * (pc - 2*pb + pa);
c = 3 * (pb - pa);
if (fabs (a) > 0.0001)
{
if (b*b > 4*a*c)
{
d = sqrt (b*b - 4*a*c);
tt = (-b + d)/(2*a);
if (acceptable (tt))
t[n++] = tt;
tt = (-b - d)/(2*a);
if (acceptable (tt))
t[n++] = tt;
}
else
{
tt = -b / (2*a);
if (acceptable (tt))
t[n++] = tt;
}
}
else if (fabs (b) > 0.0001)
{
tt = -c / b;
if (acceptable (tt))
t[n++] = tt;
}
return n;
}
static void
gsk_cubic_curve_get_tight_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
const GskCubicCurve *self = &curve->cubic;
const graphene_point_t *pts = self->points;
float t[4];
int n;
gsk_bounding_box_init (bounds, &pts[0], &pts[3]);
n = 0;
n += get_cubic_extrema (pts[0].x, pts[1].x, pts[2].x, pts[3].x, &t[n]);
n += get_cubic_extrema (pts[0].y, pts[1].y, pts[2].y, pts[3].y, &t[n]);
for (int i = 0; i < n; i++)
{
graphene_point_t p;
gsk_cubic_curve_get_point (curve, t[i], &p);
gsk_bounding_box_expand (bounds, &p);
}
}
static const GskCurveClass GSK_CUBIC_CURVE_CLASS = {
gsk_cubic_curve_init,
gsk_cubic_curve_init_foreach,
gsk_cubic_curve_print,
gsk_cubic_curve_pathop,
gsk_cubic_curve_get_start_point,
gsk_cubic_curve_get_end_point,
gsk_cubic_curve_get_start_tangent,
gsk_cubic_curve_get_end_tangent,
gsk_cubic_curve_get_point,
gsk_cubic_curve_get_tangent,
gsk_cubic_curve_reverse,
gsk_cubic_curve_get_curvature,
gsk_cubic_curve_split,
gsk_cubic_curve_segment,
gsk_cubic_curve_decompose,
gsk_cubic_curve_decompose_curve,
gsk_cubic_curve_get_bounds,
gsk_cubic_curve_get_tight_bounds,
};
/* }}} */
/* {{{ API */
static const GskCurveClass *
get_class (GskPathOperation op)
{
const GskCurveClass *klasses[] = {
[GSK_PATH_CLOSE] = &GSK_LINE_CURVE_CLASS,
[GSK_PATH_LINE] = &GSK_LINE_CURVE_CLASS,
[GSK_PATH_QUAD] = &GSK_QUAD_CURVE_CLASS,
[GSK_PATH_CUBIC] = &GSK_CUBIC_CURVE_CLASS,
};
g_assert (op < G_N_ELEMENTS (klasses) && klasses[op] != NULL);
return klasses[op];
}
void
gsk_curve_init (GskCurve *curve,
gskpathop op)
{
memset (curve, 0, sizeof (GskCurve));
get_class (gsk_pathop_op (op))->init (curve, op);
}
void
gsk_curve_init_foreach (GskCurve *curve,
GskPathOperation op,
const graphene_point_t *pts,
gsize n_pts)
{
memset (curve, 0, sizeof (GskCurve));
get_class (op)->init_foreach (curve, op, pts, n_pts);
}
void
gsk_curve_print (const GskCurve *curve,
GString *string)
{
get_class (curve->op)->print (curve, string);
}
char *
gsk_curve_to_string (const GskCurve *curve)
{
GString *s = g_string_new ("");
gsk_curve_print (curve, s);
return g_string_free (s, FALSE);
}
gskpathop
gsk_curve_pathop (const GskCurve *curve)
{
return get_class (curve->op)->pathop (curve);
}
const graphene_point_t *
gsk_curve_get_start_point (const GskCurve *curve)
{
return get_class (curve->op)->get_start_point (curve);
}
const graphene_point_t *
gsk_curve_get_end_point (const GskCurve *curve)
{
return get_class (curve->op)->get_end_point (curve);
}
void
gsk_curve_get_start_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
get_class (curve->op)->get_start_tangent (curve, tangent);
}
void
gsk_curve_get_end_tangent (const GskCurve *curve,
graphene_vec2_t *tangent)
{
get_class (curve->op)->get_end_tangent (curve, tangent);
}
void
gsk_curve_get_point (const GskCurve *curve,
float progress,
graphene_point_t *pos)
{
get_class (curve->op)->get_point (curve, progress, pos);
}
void
gsk_curve_get_tangent (const GskCurve *curve,
float progress,
graphene_vec2_t *tangent)
{
get_class (curve->op)->get_tangent (curve, progress, tangent);
}
float
gsk_curve_get_curvature (const GskCurve *curve,
float t,
graphene_point_t *center)
{
float k;
k = get_class (curve->op)->get_curvature (curve, t);
if (center != NULL && k != 0)
{
graphene_point_t p;
graphene_vec2_t tangent;
float r;
r = 1/k;
gsk_curve_get_point (curve, t, &p);
gsk_curve_get_tangent (curve, t, &tangent);
center->x = p.x - r * graphene_vec2_get_y (&tangent);
center->y = p.y + r * graphene_vec2_get_x (&tangent);
}
return k;
}
void
gsk_curve_reverse (const GskCurve *curve,
GskCurve *reverse)
{
get_class (curve->op)->reverse (curve, reverse);
}
void
gsk_curve_split (const GskCurve *curve,
float progress,
GskCurve *start,
GskCurve *end)
{
get_class (curve->op)->split (curve, progress, start, end);
}
void
gsk_curve_segment (const GskCurve *curve,
float start,
float end,
GskCurve *segment)
{
if (start <= 0 && end >= 1)
{
*segment = *curve;
return;
}
get_class (curve->op)->segment (curve, start, end, segment);
}
gboolean
gsk_curve_decompose (const GskCurve *curve,
float tolerance,
GskCurveAddLineFunc add_line_func,
gpointer user_data)
{
return get_class (curve->op)->decompose (curve, tolerance, add_line_func, user_data);
}
gboolean
gsk_curve_decompose_curve (const GskCurve *curve,
GskPathForeachFlags flags,
float tolerance,
GskCurveAddCurveFunc add_curve_func,
gpointer user_data)
{
return get_class (curve->op)->decompose_curve (curve, flags, tolerance, add_curve_func, user_data);
}
void
gsk_curve_get_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
get_class (curve->op)->get_bounds (curve, bounds);
}
void
gsk_curve_get_tight_bounds (const GskCurve *curve,
GskBoundingBox *bounds)
{
get_class (curve->op)->get_tight_bounds (curve, bounds);
}
static inline int
line_get_crossing (const graphene_point_t *p,
const graphene_point_t *p1,
const graphene_point_t *p2)
{
if (p1->y <= p->y)
{
if (p2->y > p->y)
{
if ((p2->x - p1->x) * (p->y - p1->y) - (p->x - p1->x) * (p2->y - p1->y) > 0)
return 1;
}
}
else if (p2->y <= p->y)
{
if ((p2->x - p1->x) * (p->y - p1->y) - (p->x - p1->x) * (p2->y - p1->y) < 0)
return -1;
}
return 0;
}
int
gsk_curve_get_crossing (const GskCurve *curve,
const graphene_point_t *point)
{
GskBoundingBox bounds;
GskCurve c1, c2;
if (curve->op == GSK_PATH_LINE || curve->op == GSK_PATH_CLOSE)
return line_get_crossing (point, gsk_curve_get_start_point (curve), gsk_curve_get_end_point (curve));
gsk_curve_get_bounds (curve, &bounds);
if (bounds.max.y < point->y || bounds.min.y > point->y || bounds.max.x < point->x)
return 0;
if (bounds.min.x > point->x)
return line_get_crossing (point, gsk_curve_get_start_point (curve), gsk_curve_get_end_point (curve));
if (graphene_point_distance (&bounds.min, &bounds.max, NULL, NULL) < 0.001)
return line_get_crossing (point, gsk_curve_get_start_point (curve), gsk_curve_get_end_point (curve));
gsk_curve_split (curve, 0.5, &c1, &c2);
return gsk_curve_get_crossing (&c1, point) + gsk_curve_get_crossing (&c2, point);
}
static gboolean
project_point_onto_line (const GskCurve *curve,
const graphene_point_t *point,
float threshold,
float *out_distance,
float *out_t)
{
const graphene_point_t *a = gsk_curve_get_start_point (curve);
const graphene_point_t *b = gsk_curve_get_end_point (curve);
graphene_vec2_t n, ap;
graphene_point_t p;
if (graphene_point_equal (a, b))
{
*out_t = 0;
*out_distance = graphene_point_distance (point, a, NULL, NULL);
}
else
{
graphene_vec2_init (&n, b->x - a->x, b->y - a->y);
graphene_vec2_init (&ap, point->x - a->x, point->y - a->y);
*out_t = graphene_vec2_dot (&n, &ap) / graphene_vec2_dot (&n, &n);
*out_t = CLAMP (*out_t, 0, 1);
graphene_point_interpolate (a, b, *out_t, &p);
*out_distance = graphene_point_distance (point, &p, NULL, NULL);
}
return *out_distance <= threshold;
}
static float
get_segment_bounding_sphere (const GskCurve *curve,
float t1,
float t2,
graphene_point_t *center)
{
GskCurve c;
GskBoundingBox bounds;
gsk_curve_segment (curve, t1, t2, &c);
gsk_curve_get_tight_bounds (&c, &bounds);
graphene_point_interpolate (&bounds.min, &bounds.max, 0.5, center);
return graphene_point_distance (center, &bounds.min, NULL, NULL);
}
static gboolean
find_closest_point (const GskCurve *curve,
const graphene_point_t *point,
float threshold,
float t1,
float t2,
float *out_distance,
float *out_t)
{
graphene_point_t center;
float radius;
float t, d, nt;
radius = get_segment_bounding_sphere (curve, t1, t2, &center);
if (graphene_point_distance (&center, point, NULL, NULL) > threshold + radius)
return FALSE;
d = INFINITY;
t = (t1 + t2) / 2;
if (radius < 1)
{
graphene_point_t p;
gsk_curve_get_point (curve, t, &p);
d = graphene_point_distance (point, &p, NULL, NULL);
nt = t;
}
else
{
float dd, tt;
dd = INFINITY;
nt = 0;
if (find_closest_point (curve, point, threshold, t1, t, &dd, &tt))
{
d = dd;
nt = tt;
}
if (find_closest_point (curve, point, MIN (dd, threshold), t, t2, &dd, &tt))
{
d = dd;
nt = tt;
}
}
if (d < threshold)
{
*out_distance = d;
*out_t = nt;
return TRUE;
}
else
{
*out_distance = INFINITY;
*out_t = 0;
return FALSE;
}
}
gboolean
gsk_curve_get_closest_point (const GskCurve *curve,
const graphene_point_t *point,
float threshold,
float *out_dist,
float *out_t)
{
if (curve->op == GSK_PATH_LINE || curve->op == GSK_PATH_CLOSE)
return project_point_onto_line (curve, point, threshold, out_dist, out_t);
else
return find_closest_point (curve, point, threshold, 0, 1, out_dist, out_t);
}
/* }}} */
/* vim:set foldmethod=marker expandtab: */