gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
/* gskngltexturelibraryprivate.h
|
|
|
|
*
|
|
|
|
* Copyright 2020 Christian Hergert <chergert@redhat.com>
|
|
|
|
*
|
|
|
|
* This file is free software; you can redistribute it and/or modify it under
|
|
|
|
* the terms of the GNU Lesser General Public License as published by the Free
|
|
|
|
* Software Foundation; either version 2.1 of the License, or (at your option)
|
|
|
|
* any later version.
|
|
|
|
*
|
|
|
|
* This file is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
|
|
* License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: LGPL-2.1-or-later
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __GSK_NGL_TEXTURE_LIBRARY_PRIVATE_H__
|
|
|
|
#define __GSK_NGL_TEXTURE_LIBRARY_PRIVATE_H__
|
|
|
|
|
|
|
|
#include "gskngltypesprivate.h"
|
|
|
|
#include "gskngltexturepoolprivate.h"
|
|
|
|
|
2021-08-21 02:50:41 +00:00
|
|
|
#include "stb_rect_pack.h"
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
G_BEGIN_DECLS
|
|
|
|
|
|
|
|
#define GSK_TYPE_GL_TEXTURE_LIBRARY (gsk_ngl_texture_library_get_type ())
|
|
|
|
#define GSK_NGL_TEXTURE_LIBRARY(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), GSK_TYPE_GL_TEXTURE_LIBRARY, GskNglTextureLibrary))
|
|
|
|
#define GSK_IS_NGL_TEXTURE_LIBRARY(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), GSK_TYPE_GL_TEXTURE_LIBRARY))
|
|
|
|
#define GSK_NGL_TEXTURE_LIBRARY_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), GSK_TYPE_GL_TEXTURE_LIBRARY, GskNglTextureLibraryClass))
|
|
|
|
#define GSK_IS_NGL_TEXTURE_LIBRARY_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), GSK_TYPE_GL_TEXTURE_LIBRARY))
|
|
|
|
#define GSK_NGL_TEXTURE_LIBRARY_GET_CLASS(obj) (G_TYPE_INSTANCE_GET_CLASS ((obj), GSK_TYPE_GL_TEXTURE_LIBRARY, GskNglTextureLibraryClass))
|
|
|
|
|
|
|
|
typedef struct _GskNglTextureAtlas
|
|
|
|
{
|
|
|
|
struct stbrp_context context;
|
|
|
|
struct stbrp_node *nodes;
|
|
|
|
|
|
|
|
int width;
|
|
|
|
int height;
|
|
|
|
|
|
|
|
guint texture_id;
|
|
|
|
|
|
|
|
/* Pixels of rects that have been used at some point,
|
|
|
|
* But are now unused.
|
|
|
|
*/
|
|
|
|
int unused_pixels;
|
|
|
|
|
|
|
|
void *user_data;
|
|
|
|
} GskNglTextureAtlas;
|
|
|
|
|
|
|
|
typedef struct _GskNglTextureAtlasEntry
|
|
|
|
{
|
|
|
|
/* A backreference to either the atlas or texture containing
|
|
|
|
* the contents of the atlas entry. For larger items, no atlas
|
|
|
|
* is used and instead a direct texture.
|
|
|
|
*/
|
|
|
|
union {
|
|
|
|
GskNglTextureAtlas *atlas;
|
|
|
|
GskNglTexture *texture;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* The area within the atlas translated to 0..1 bounds */
|
|
|
|
struct {
|
|
|
|
float x;
|
|
|
|
float y;
|
|
|
|
float x2;
|
|
|
|
float y2;
|
|
|
|
} area;
|
|
|
|
|
|
|
|
/* Number of pixels in the entry, used to calculate usage
|
|
|
|
* of an atlas while processing.
|
|
|
|
*/
|
|
|
|
guint n_pixels : 29;
|
|
|
|
|
|
|
|
/* If entry has marked pixels as used in the atlas this frame */
|
|
|
|
guint used : 1;
|
|
|
|
|
|
|
|
/* If entry was accessed this frame */
|
|
|
|
guint accessed : 1;
|
|
|
|
|
|
|
|
/* When true, backref is an atlas, otherwise texture */
|
|
|
|
guint is_atlased : 1;
|
|
|
|
} GskNglTextureAtlasEntry;
|
|
|
|
|
|
|
|
typedef struct _GskNglTextureLibrary
|
|
|
|
{
|
|
|
|
GObject parent_instance;
|
|
|
|
GskNglDriver *driver;
|
|
|
|
GHashTable *hash_table;
|
|
|
|
guint max_entry_size;
|
|
|
|
} GskNglTextureLibrary;
|
|
|
|
|
|
|
|
typedef struct _GskNglTextureLibraryClass
|
|
|
|
{
|
|
|
|
GObjectClass parent_class;
|
|
|
|
|
2021-03-19 00:53:37 +00:00
|
|
|
void (*begin_frame) (GskNglTextureLibrary *library,
|
|
|
|
gint64 frame_id,
|
|
|
|
GPtrArray *removed_atlases);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
} GskNglTextureLibraryClass;
|
|
|
|
|
|
|
|
G_DEFINE_AUTOPTR_CLEANUP_FUNC (GskNglTextureLibrary, g_object_unref)
|
|
|
|
|
|
|
|
GType gsk_ngl_texture_library_get_type (void) G_GNUC_CONST;
|
|
|
|
void gsk_ngl_texture_library_set_funcs (GskNglTextureLibrary *self,
|
|
|
|
GHashFunc hash_func,
|
|
|
|
GEqualFunc equal_func,
|
|
|
|
GDestroyNotify key_destroy,
|
|
|
|
GDestroyNotify value_destroy);
|
2021-03-19 00:53:37 +00:00
|
|
|
void gsk_ngl_texture_library_begin_frame (GskNglTextureLibrary *self,
|
|
|
|
gint64 frame_id,
|
|
|
|
GPtrArray *removed_atlases);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
gpointer gsk_ngl_texture_library_pack (GskNglTextureLibrary *self,
|
|
|
|
gpointer key,
|
|
|
|
gsize valuelen,
|
|
|
|
guint width,
|
|
|
|
guint height,
|
|
|
|
int padding,
|
|
|
|
guint *out_packed_x,
|
|
|
|
guint *out_packed_y);
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
gsk_ngl_texture_atlas_mark_unused (GskNglTextureAtlas *self,
|
|
|
|
int n_pixels)
|
|
|
|
{
|
2021-03-19 00:53:37 +00:00
|
|
|
g_assert (n_pixels >= 0);
|
|
|
|
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
self->unused_pixels += n_pixels;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
2021-03-19 00:53:37 +00:00
|
|
|
gsk_ngl_texture_atlas_entry_mark_used (GskNglTextureAtlasEntry *entry)
|
|
|
|
{
|
|
|
|
if (entry->used == TRUE || entry->is_atlased == FALSE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
entry->atlas->unused_pixels -= entry->n_pixels;
|
|
|
|
entry->used = TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
gsk_ngl_texture_atlas_entry_mark_unused (GskNglTextureAtlasEntry *entry)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-03-19 00:53:37 +00:00
|
|
|
if (entry->used == FALSE || entry->is_atlased == FALSE)
|
|
|
|
return;
|
|
|
|
|
|
|
|
entry->atlas->unused_pixels += entry->n_pixels;
|
|
|
|
entry->used = FALSE;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline gboolean
|
|
|
|
gsk_ngl_texture_library_lookup (GskNglTextureLibrary *self,
|
|
|
|
gconstpointer key,
|
|
|
|
GskNglTextureAtlasEntry **out_entry)
|
|
|
|
{
|
|
|
|
GskNglTextureAtlasEntry *entry = g_hash_table_lookup (self->hash_table, key);
|
|
|
|
|
|
|
|
if G_LIKELY (entry != NULL && entry->accessed && entry->used)
|
|
|
|
{
|
|
|
|
*out_entry = entry;
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (entry != NULL)
|
|
|
|
{
|
2021-03-19 00:53:37 +00:00
|
|
|
gsk_ngl_texture_atlas_entry_mark_used (entry);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
entry->accessed = TRUE;
|
|
|
|
*out_entry = entry;
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline guint
|
|
|
|
GSK_NGL_TEXTURE_ATLAS_ENTRY_TEXTURE (gconstpointer d)
|
|
|
|
{
|
|
|
|
const GskNglTextureAtlasEntry *e = d;
|
|
|
|
|
|
|
|
return e->is_atlased ? e->atlas->texture_id
|
|
|
|
: e->texture ? e->texture->texture_id : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline double
|
|
|
|
gsk_ngl_texture_atlas_get_unused_ratio (const GskNglTextureAtlas *self)
|
|
|
|
{
|
|
|
|
if (self->unused_pixels > 0)
|
|
|
|
return (double)(self->unused_pixels) / (double)(self->width * self->height);
|
|
|
|
return 0.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline gboolean
|
|
|
|
gsk_ngl_texture_library_can_cache (GskNglTextureLibrary *self,
|
|
|
|
int width,
|
|
|
|
int height)
|
|
|
|
{
|
|
|
|
g_assert (self->max_entry_size > 0);
|
|
|
|
return width <= self->max_entry_size && height <= self->max_entry_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
G_END_DECLS
|
|
|
|
|
|
|
|
#endif /* __GSK_NGL_TEXTURE_LIBRARY_PRIVATE_H__ */
|