mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2024-11-09 10:20:07 +00:00
gtk-demo: Add some comments
Add some comments to the math in the transforms demo.
This commit is contained in:
parent
8b38d1895c
commit
8c8baa9aa6
@ -63,11 +63,15 @@ unit_to (graphene_point3d_t *p1,
|
||||
graphene_matrix_multiply (&s, &u, m);
|
||||
}
|
||||
|
||||
/* Make a 4x4 matrix that maps
|
||||
/* Compute a 4x4 matrix m that maps
|
||||
* p1 -> q1
|
||||
* p2 -> q2
|
||||
* p3 -> q3
|
||||
* p4 -> q4
|
||||
*
|
||||
* This is not in general possible, because projective
|
||||
* transforms preserve coplanarity. But in the cases we
|
||||
* care about here, both sets of points are always coplanar.
|
||||
*/
|
||||
void
|
||||
perspective_3d (graphene_point3d_t *p1,
|
||||
|
@ -11,6 +11,20 @@
|
||||
|
||||
#define MAX_ITERATION_COUNT 30
|
||||
|
||||
/* Perform Householder reduction to bidiagonal form
|
||||
*
|
||||
* Input: Matrix A of size nrows x ncols
|
||||
*
|
||||
* Output: Matrices and vectors such that
|
||||
* A = U*Bidiag(diagonal, superdiagonal)*Vt
|
||||
*
|
||||
* All matrices are allocated by the caller
|
||||
*
|
||||
* Sizes:
|
||||
* A, U: nrows x ncols
|
||||
* diagonal, superdiagonal: ncols
|
||||
* V: ncols x ncols
|
||||
*/
|
||||
static void
|
||||
householder_reduction (double *A,
|
||||
int nrows,
|
||||
@ -160,6 +174,20 @@ householder_reduction (double *A,
|
||||
}
|
||||
}
|
||||
|
||||
/* Perform Givens reduction
|
||||
*
|
||||
* Input: Matrices such that
|
||||
* A = U*Bidiag(diagonal,superdiagonal)*Vt
|
||||
*
|
||||
* Output: The same, with superdiagonal = 0
|
||||
*
|
||||
* All matrices are allocated by the caller
|
||||
*
|
||||
* Sizes:
|
||||
* U: nrows x ncols
|
||||
* diagonal, superdiagonal: ncols
|
||||
* V: ncols x ncols
|
||||
*/
|
||||
static int
|
||||
givens_reduction (int nrows,
|
||||
int ncols,
|
||||
@ -298,6 +326,11 @@ givens_reduction (int nrows,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Given a singular value decomposition
|
||||
* of an nrows x ncols matrix A = U*Diag(S)*Vt,
|
||||
* sort the values of S by decreasing value,
|
||||
* permuting V to match.
|
||||
*/
|
||||
static void
|
||||
sort_singular_values (int nrows,
|
||||
int ncols,
|
||||
@ -339,6 +372,16 @@ sort_singular_values (int nrows,
|
||||
}
|
||||
}
|
||||
|
||||
/* Compute a singular value decomposition of A,
|
||||
* A = U*Diag(S)*Vt
|
||||
*
|
||||
* All matrices are allocated by the caller
|
||||
*
|
||||
* Sizes:
|
||||
* A, U: nrows x ncols
|
||||
* S: ncols
|
||||
* V: ncols x ncols
|
||||
*/
|
||||
int
|
||||
singular_value_decomposition (double *A,
|
||||
int nrows,
|
||||
@ -364,6 +407,18 @@ singular_value_decomposition (double *A,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Given a singular value decomposition of A = U*Diag(S)*Vt,
|
||||
* compute the best approximation x to A*x = B.
|
||||
*
|
||||
* All matrices are allocated by the caller
|
||||
*
|
||||
* Sizes:
|
||||
* U: nrows x ncols
|
||||
* S: ncols
|
||||
* V: ncols x ncols
|
||||
* B, x: ncols
|
||||
*/
|
||||
void
|
||||
singular_value_decomposition_solve (double *U,
|
||||
double *S,
|
||||
|
Loading…
Reference in New Issue
Block a user