Fix and uncomment non-MMX version.

Thu Jan  3 19:31:58 2002  Owen Taylor  <otaylor@redhat.com>

	* pixops/pixops.c (scale_line_22_33): Fix and uncomment
	non-MMX version.

	* pixops/pixops.c (pixops_composite_nearest): Remove a
	division.

	* pixops/pixops.c (pixops_composite): Add some docs
	about the parameters.

	* pixops/README: Add notes about the correct algorithms
	for alpha compositing and how to implement them quickly.
This commit is contained in:
Owen Taylor 2002-01-04 00:34:06 +00:00 committed by Owen Taylor
parent 317ba5b267
commit c96a394cc2
4 changed files with 143 additions and 24 deletions

View File

@ -1,3 +1,17 @@
Thu Jan 3 19:31:58 2002 Owen Taylor <otaylor@redhat.com>
* pixops/pixops.c (scale_line_22_33): Fix and uncomment
non-MMX version.
* pixops/pixops.c (pixops_composite_nearest): Remove a
division.
* pixops/pixops.c (pixops_composite): Add some docs
about the parameters.
* pixops/README: Add notes about the correct algorithms
for alpha compositing and how to implement them quickly.
2001-12-29 Tor Lillqvist <tml@iki.fi>
* Makefile.am (EXTRA_DIST): Add makefile.msc.

View File

@ -33,6 +33,61 @@ for a number of the most common special cases:
compositing from RGBA to RGBx
compositing against a color from RGBA and storing in a RGBx buffer
Alpha compositing 8 bit RGBAa onto RGB is defined in terms of
rounding the exact result (real values in [0,1]):
cc = ca * aa + (1 - aa) * Cb
Cc = ROUND [255. * (Ca/255. * Aa/255. + (1 - Aa/255.) * Cb/255.)]
We can comp
ROUND(i / 255.) can be computed exactly for i in [0,255*255] as:
t = i + 0x80; result = (t + (t >> 8)) >> 8; [ call this as To8(i) ]
So,
t = Ca * Aa + (255 - Aa) * Cb + 0x80;
Cc = (t + (t >> 8)) >> 8;
Alpha compositing 8 bit RaGaBaAa onto RbGbBbAa is a little harder, for
non-premultiplied alpha. The premultiplied result is simple:
ac = aa + (1 - aa) * ab
cc = ca + (1 - aa) * cb
Which can be computed in integers terms as:
Cc = Ca + To8 ((255 - Aa) * Cb)
Ac = Aa + To8 ((255 - Aa) * Ab)
For non-premultiplied alpha, we need divide the color components by
the alpha:
+- (ca * aa + (1 - aa) * ab * cb)) / ac; aa != 0
cc = |
+- cb; aa == 0
To calculate this as in integer, we note the alternate form:
cc = cb + aa * (ca - cb) / ac
[ 'cc = ca + (ac - aa) * (cb - ca) / ac' can also be useful numerically,
but isn't important here ]
We can express this as integers as:
Ac_tmp = Aa * 255 + (255 - Aa) * Ab;
+- Cb + (255 * Aa * (Ca - Cb) + Ac_tmp / 2) / Ac_tmp ; Ca > Cb
Cc = |
+- Cb - (255 * Aa * (Cb - Ca) + Ac_tmp / 2) / Ac_tmp ; ca <= Cb
Or, playing bit tricks to avoid the conditional
Cc = Cb + (255 * Aa * (Ca - Cb) + (((Ca - Cb) >> 8) ^ (Ac_tmp / 2)) ) / Ac_tmp
TODO
====
@ -57,13 +112,13 @@ TODO
the _nearest() variants do it right, most of the other code
is wrong to some degree or another.
For instance, in composite line, we have:
For instance, in composite_line_22_4a4(), we have:
dest[0] = ((0xff0000 - a) * dest[0] + r) >> 24;
if a is 0, then we have:
if a is 0 (implies r == 0), then we have:
(0xff0000 * dest[0] + r) >> 24
(0xff0000 * dest[0]) >> 24
which gives results which are 1 to low:

View File

@ -202,10 +202,14 @@ pixops_composite_nearest (guchar *dest_buf,
else
{
unsigned int a1 = 0xff - a0;
dest[0] = (a0 * p[0] + a1 * dest[0]) / 0xff;
dest[1] = (a0 * p[1] + a1 * dest[1]) / 0xff;
dest[2] = (a0 * p[2] + a1 * dest[2]) / 0xff;
unsigned int tmp;
tmp = a0 * p[0] + a1 * dest[0] + 0x80;
dest[0] = (tmp + (tmp >> 8)) >> 8;
tmp = a0 * p[1] + a1 * dest[1] + 0x80;
dest[1] = (tmp + (tmp >> 8)) >> 8;
tmp = a0 * p[2] + a1 * dest[2] + 0x80;
dest[2] = (tmp + (tmp >> 8)) >> 8;
}
break;
}
@ -388,7 +392,7 @@ composite_line (int *weights, int n_x, int n_y,
int *pixel_weights;
pixel_weights = weights + ((x >> (SCALE_SHIFT - SUBSAMPLE_BITS)) & SUBSAMPLE_MASK) * n_x * n_y;
for (i=0; i<n_y; i++)
{
guchar *q = src[i] + x_scaled * src_channels;
@ -837,10 +841,9 @@ scale_line_22_33_mmx_stub (int *weights, int n_x, int n_y,
}
#endif /* USE_MMX */
#ifdef SCALE_LINE_22_33_USED /* This dead code would need changes if we wanted to use it */
static guchar *
scale_line_22_33 (int *weights, int n_x, int n_y,
guchar *dest, guchar *dest_end, int dest_channels, int dest_has_alpha,
guchar *dest, int dest_x, guchar *dest_end, int dest_channels, int dest_has_alpha,
guchar **src, int src_channels, gboolean src_has_alpha,
int x_init, int x_step, int src_width,
int check_size, guint32 color1, guint32 color2)
@ -860,8 +863,8 @@ scale_line_22_33 (int *weights, int n_x, int n_y,
q0 = src0 + x_scaled * 3;
q1 = src1 + x_scaled * 3;
pixel_weights = (int *)((char *)weights + ((x >> (SCALE_SHIFT - SUBSAMPLE_BITS - 4)) & (SUBSAMPLE_MASK << 4)));
pixel_weights = weights + ((x >> (SCALE_SHIFT - SUBSAMPLE_BITS)) & SUBSAMPLE_MASK) * 4;
w1 = pixel_weights[0];
w2 = pixel_weights[1];
w3 = pixel_weights[2];
@ -883,9 +886,9 @@ scale_line_22_33 (int *weights, int n_x, int n_y,
g += w4 * q1[5];
b += w4 * q1[6];
dest[0] = r >> 16;
dest[1] = g >> 16;
dest[2] = b >> 16;
dest[0] = (r + 0x8000) >> 16;
dest[1] = (g + 0x8000) >> 16;
dest[2] = (b + 0x8000) >> 16;
dest += 3;
@ -894,7 +897,6 @@ scale_line_22_33 (int *weights, int n_x, int n_y,
return dest;
}
#endif /* SCALE_LINE_22_33_USED */
static void
process_pixel (int *weights, int n_x, int n_y,
@ -1227,7 +1229,7 @@ bilinear_make_fast_weights (PixopsFilter *filter, double x_scale, double y_scale
for (i = 0; i < n_y; i++)
for (j = 0; j < n_x; j++)
*(pixel_weights + n_x * i + j) = 65536 * x_weights[j] * x_scale * y_weights[i] * y_scale * overall_alpha;
*(pixel_weights + n_x * i + j) = 65536 * x_weights[j] * x_scale * y_weights[i] * y_scale * overall_alpha + 0.5;
}
g_free (x_weights);
@ -1412,6 +1414,30 @@ pixops_composite_color (guchar *dest_buf,
g_free (filter.weights);
}
/**
* pixops_composite:
* @dest_buf: pointer to location to store result
* @render_x0: x0 of region of scaled source to store into @dest_buf
* @render_y0: y0 of region of scaled source to store into @dest_buf
* @render_x1: x1 of region of scaled source to store into @dest_buf
* @render_y1: x1 of region of scaled source to store into @dest_buf
* @dest_rowstride: rowstride of @dest_buf
* @dest_channels: number of channels in @dest_buf
* @dest_has_alpha: whether @dest_buf has alpha
* @src_buf: pointer to source pixels
* @src_width: width of source (used for clipping)
* @src_height: height of source (used for clipping)
* @src_rowstride: rowstride of source
* @src_channels: number of channels in @src_buf
* @src_has_alpha: whether @src_buf has alpha
* @scale_x: amount to scale source by in X direction
* @scale_y: amount to scale source by in Y direction
* @interp_type: type of enumeration
* @overall_alpha: overall alpha factor to multiply source by
*
* Scale source buffer by scale_x / scale_y, then composite a given rectangle
* of the result into the destination buffer.
**/
void
pixops_composite (guchar *dest_buf,
int render_x0,
@ -1550,12 +1576,16 @@ pixops_scale (guchar *dest_buf,
break;
}
if (filter.n_x == 2 && filter.n_y == 2 && dest_channels == 3 && src_channels == 3)
{
#ifdef USE_MMX
if (filter.n_x == 2 && filter.n_y == 2 &&
found_mmx && dest_channels == 3 && src_channels == 3)
line_func = scale_line_22_33_mmx_stub;
if (found_mmx)
line_func = scale_line_22_33_mmx_stub;
else
#endif
line_func = scale_line_22_33;
}
else
#endif
line_func = scale_line;
pixops_process (dest_buf, render_x0, render_y0, render_x1, render_y1,

View File

@ -55,6 +55,12 @@ _pixops_scale_line_22_33_mmx:
cmpl %esi,28(%ebp)
je .out
/* For the body of this loop, %mm01, %mm1, %mm2, %mm3 hold the 4 adjoining
* points we are interpolating between, as:
*
* 000000BB00GG00RR
*/
/* Load initial values into %mm1, %mm3 */
leal (%edx,%edx,2),%edx # Multiply by 3
@ -82,11 +88,16 @@ _pixops_scale_line_22_33_mmx:
jmp .newx
.p2align 4,,7
.loop:
/* int x_index = (x & 0xf000) >> 12 */
/* short *pixel_weights = weights + ((x >> (SCALE_SHIFT - SUBSAMPLE_BITS)) & SUBSAMPLE_MASK) * n_x * n_y
* 16 4 0xf 2 2
*/
movl %ebx,%eax
andl $0xf000,%eax
shrl $7,%eax
/* At this point, %edi holds weights. Load the 4 weights into %mm4,%mm5,%mm6,%mm7, multiply and
* accumulate.
*/
movq (%edi,%eax),%mm4
pmullw %mm0,%mm4
movq 8(%edi,%eax),%mm5
@ -99,7 +110,17 @@ _pixops_scale_line_22_33_mmx:
paddw %mm6, %mm7
paddw %mm5, %mm7
/* %mm7 holds the accumulated sum. Compute (C + 0x80) / 256
*/
pxor %mm4, %mm4
movl $8421504, %eax # 0x00808080
movd %eax, %mm6
punpcklbw %mm4, %mm6
paddw %mm6, %mm7
psrlw $8, %mm7
/* Pack into %eax and store result
*/
packuswb %mm7, %mm7
movd %mm7, %eax
@ -113,7 +134,7 @@ _pixops_scale_line_22_33_mmx:
/* x += x_step; */
addl 24(%ebp),%ebx
/* x_scale = x >> 16; */
/* x_scaled = x >> 16; */
movl %ebx,%edx
sarl $16,%edx
@ -131,7 +152,6 @@ _pixops_scale_line_22_33_mmx:
leal (%edx,%edx,2),%edx # Multiply by 3
movl 16(%ebp),%edi
pxor %mm4, %mm4
movzbl 2(%edi,%edx),%ecx
shll $16,%ecx
movzwl (%edi,%edx),%eax