Drop the screen argument from gdk_dnd_find_window_for_screen
and rename the function to gdk_dnd_find_window. The screen
argument does not add anything here since the drag context
is already tied to the display. Update all backends, and
update all callers.
Implement GdkDisplay->get_setting() using the existing
_gdk_win32_screen_get_setting() and get rid of GdkScreen->get_setting()
as a result, to follow the changes in GDK.
Also, since we don't emit settings events in the Windows GDK backend,
but we acquire settings to print using GDK_SETTING, drop all references
related to GDK_SETTING since that is now removed. Update the debug
strings that are print out as a result
(gdk_screen_get_setting->gdk_display_get_setting).
https://bugzilla.gnome.org/show_bug.cgi?id=773299
We are not emitting these events anymore, so lets remove them
from the api. The GdkSettingAction enum is moved to xsettings-client.c
where its only use remains.
This commit adds gdk_display_get_setting and a ::setting-changed
signal, which will replace the settings event we use now. Note
that I've done away with the GdkSettingAction argument that the
event has, since we are not using it at all.
The code that checks for the proper size of the our swapchain
was not taking window scale fully into account. With this change,
setting the window scale to 2 in the inspector causes the window
to grow and rendering to be scaled up as expected, with Vulkan,
in the same way it already is with cairo.
Epoxy 1.4 has new ad hoc API that we can use to check whether GLX is
available on the current system.
If we didn't use this API, we'd have to manually dlopen libGL (or its
equivalent on different OSes) and check if it had GLX symbols; since
Epoxy already does all of this internally, we can simply ask it instead.
https://bugzilla.gnome.org/show_bug.cgi?id=775279
According to the documentation, gdk_monitor_get_geometry() reports the
monitor geometry in ”application pixels”, not in ”device pixels”,
meaning that the actual device resolution needs to be scaled down by the
scale factor of the output.
x11 backend does that downscaling, whereas Wayland backend did not,
causing a discrepancy depending on the backend used.
https://bugzilla.gnome.org/show_bug.cgi?id=783995
If the compositor prefers server-side decorations and the client doesn't
customize the title bar, we disable client-side decorations and let the
compositor know. Otherwise, we continue to use client-side decorations.
Signed-off-by: Drew DeVault <sir@cmpwn.com>
https://bugzilla.gnome.org/show_bug.cgi?id=781909
Under Wayland, an xdg_surface.configure with size 0x0 means it's up to
the client to set its size.
When transitioning from maximized state to un-maximized, the Wayland
compositor will send such an 0x0 configure so that the client can
restore its original size.
However, the original size was already constrained, so re-applying
size constrains can lead to a smaller size when using size increments.
Avoid this caveat by not applying size constrains when we are restoring
the original size.
https://bugzilla.gnome.org/show_bug.cgi?id=777072
We were unnecessarily spewing warnings when blank cursors
were getting a new scale set. Standardize on "none" as the
name for blank cursors, and avoid the warning.
https://bugzilla.gnome.org/show_bug.cgi?id=775217
Some clients (e.g. gnome-online-accounts) quickly unmap and map
a window. With some backends the backend surface will be replaced
causing the application to crash because the GL context is still
using the old surface. Clearing the GL context when a window is
withdrawn fixes this.
https://bugzilla.gnome.org/show_bug.cgi?id=789141