Add a new W32 backend-specific message filtering mechanism.
Works roughly the same way old event filtering did, but without
events (events are GDK/X11 concept that never really made sense
on W32), so there's no functionality for 'altering' events being
emitted. If an event needs to be emitted in response to a message
do it yourself.
Implemented like this, it should give better performance than
if we were to use GLib signals for this, since W32 sends a LOT
of messages (unlike X11, which doesn't send events as often)
all the time, and invoking the signal machinery on *each* message
would probably be bad.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Rename GdkWin32Selection to GdkWin32Clipdrop, since GdkSelection
is mostly gone, and the word "selection" does not reflect the
functionality of this object too well.
Clipboard is now handled by a separate thread, most of the code for
it now lives in gdkclipdrop-win32.c, gdkclipboard-win32.c just uses
clipdrop as a backend.
The DnD source part is also put into a thread.
The DnD target part does not spin the main loop, it just
emits a GDK event and returns a default value if it doesn't get a reply
by the time the event is processed.
Both clipboard and DnD use a new GOutputStream subclass to get data
from GTK and put it into a HGLOBAL.
GdkWin32DragContext is split into GdkWin32DragContext and GdkWin32DropContext,
anticipating a similar change that slated to happen to GdkDragContext.
OLE2 DnD protocol is now used by default, set GDK_WIN32_OLE2_DND envvar to 0
to make GDK use the old LOCAL and DROPFILES protocols.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
This is an automatic rename of various things related
to the window->surface rename.
Public symbols changed by this is:
GDK_MODE_WINDOW
gdk_device_get_window_at_position
gdk_device_get_window_at_position_double
gdk_device_get_last_event_window
gdk_display_get_monitor_at_window
gdk_drag_context_get_source_window
gdk_drag_context_get_dest_window
gdk_drag_context_get_drag_window
gdk_draw_context_get_window
gdk_drawing_context_get_window
gdk_gl_context_get_window
gdk_synthesize_window_state
gdk_surface_get_window_type
gdk_x11_display_set_window_scale
gsk_renderer_new_for_window
gsk_renderer_get_window
gtk_text_view_buffer_to_window_coords
gtk_tree_view_convert_widget_to_bin_window_coords
gtk_tree_view_convert_tree_to_bin_window_coords
The commands that generated this are:
git sed -f g "GDK window" "GDK surface"
git sed -f g window_impl surface_impl
(cd gdk; git sed -f g impl_window impl_surface)
git sed -f g WINDOW_IMPL SURFACE_IMPL
git sed -f g GDK_MODE_WINDOW GDK_MODE_SURFACE
git sed -f g gdk_draw_context_get_window gdk_draw_context_get_surface
git sed -f g gdk_drawing_context_get_window gdk_drawing_context_get_surface
git sed -f g gdk_gl_context_get_window gdk_gl_context_get_surface
git sed -f g gsk_renderer_get_window gsk_renderer_get_surface
git sed -f g gsk_renderer_new_for_window gsk_renderer_new_for_surface
(cd gdk; git sed -f g window_type surface_type)
git sed -f g gdk_surface_get_window_type gdk_surface_get_surface_type
git sed -f g window_at_position surface_at_position
git sed -f g event_window event_surface
git sed -f g window_coord surface_coord
git sed -f g window_state surface_state
git sed -f g window_cursor surface_cursor
git sed -f g window_scale surface_scale
git sed -f g window_events surface_events
git sed -f g monitor_at_window monitor_at_surface
git sed -f g window_under_pointer surface_under_pointer
(cd gdk; git sed -f g for_window for_surface)
git sed -f g window_anchor surface_anchor
git sed -f g WINDOW_IS_TOPLEVEL SURFACE_IS_TOPLEVEL
git sed -f g native_window native_surface
git sed -f g source_window source_surface
git sed -f g dest_window dest_surface
git sed -f g drag_window drag_surface
git sed -f g input_window input_surface
git checkout NEWS* po-properties po docs/reference/gtk/migrating-3to4.xml
This renames the GdkWindow class and related classes (impl, backend
subclasses) to surface. Additionally it renames related types:
GdkWindowAttr, GdkWindowPaint, GdkWindowWindowClass, GdkWindowType,
GdkWindowTypeHint, GdkWindowHints, GdkWindowState, GdkWindowEdge
This is an automatic conversion using the below commands:
git sed -f g GdkWindowWindowClass GdkSurfaceSurfaceClass
git sed -f g GdkWindow GdkSurface
git sed -f g "gdk_window\([ _\(\),;]\|$\)" "gdk_surface\1" # Avoid hitting gdk_windowing
git sed -f g "GDK_WINDOW\([ _\(]\|$\)" "GDK_SURFACE\1" # Avoid hitting GDK_WINDOWING
git sed "GDK_\([A-Z]*\)IS_WINDOW\([_ (]\|$\)" "GDK_\1IS_SURFACE\2"
git sed GDK_TYPE_WINDOW GDK_TYPE_SURFACE
git sed -f g GdkPointerWindowInfo GdkPointerSurfaceInfo
git sed -f g "BROADWAY_WINDOW" "BROADWAY_SURFACE"
git sed -f g "broadway_window" "broadway_surface"
git sed -f g "BroadwayWindow" "BroadwaySurface"
git sed -f g "WAYLAND_WINDOW" "WAYLAND_SURFACE"
git sed -f g "wayland_window" "wayland_surface"
git sed -f g "WaylandWindow" "WaylandSurface"
git sed -f g "X11_WINDOW" "X11_SURFACE"
git sed -f g "x11_window" "x11_surface"
git sed -f g "X11Window" "X11Surface"
git sed -f g "WIN32_WINDOW" "WIN32_SURFACE"
git sed -f g "win32_window" "win32_surface"
git sed -f g "Win32Window" "Win32Surface"
git sed -f g "QUARTZ_WINDOW" "QUARTZ_SURFACE"
git sed -f g "quartz_window" "quartz_surface"
git sed -f g "QuartzWindow" "QuartzSurface"
git checkout NEWS* po-properties
The GDK_POINTER_MOTION_HINT_MASK enumeration value is gone, but we're
still keeping around the "is_hint" field in GdkEventMotion, even though
every backend sets it to `false` — except for the core X11 device
manager.
GDK has a lock to mark critical sections inside the backends.
Additionally, code that would re-enter into the GTK main loop was
supposed to hold the lock.
Back in the Good Old Days™ this was guaranteed to kind of work only on
the X11 backend, and would cause a neat explosion on any other GDK
backend.
During GTK+ 3.x we deprecated the API to enter and leave the critical
sections, and now we can remove all the internal uses of the lock, since
external API that uses GTK+ 4.x won't be able to hold the GDK lock.
https://bugzilla.gnome.org/show_bug.cgi?id=793124
We need to know the target atom value to know when we need to
do something with side-effects (since side-effects are expressed via
special target values). Previously, the code side-stepped that by looking
at the data type (which was rather unique for the one side-effect
target that we supported, signalled by the TARGETS target),
but for the DELETE target that seems to be no longer an option, hence the new
field to carry this information past the convert_selection() routine.
This prevents GDK from throwing a warning when trying to convert
a DELETE target, which has no format or data objects set.
The side-effects for the DELETE target happen earlier, in GTK layer.
By the point it gets to change_property(), it's a no-op.
https://bugzilla.gnome.org/show_bug.cgi?id=786509
Handle WM_CANCELMODE and do nothing in response to it when DnD is
active. Otherwise pass it to DefWindowProc, which will call ReleaseCapture()
on our behalf.
This prevents us from losing mouse capture when alt-tabbing during DnD
(this includes the feature of Windows Explorer where dragging stuff over
a window button in the taskbar causes that window to receive focus, i.e.
keyboardless alt-tabbing).
https://bugzilla.gnome.org/show_bug.cgi?id=786509
Massive changes to OLE2 DnD protocol, which was completely broken before:
* Keep GdkDragContext and OLE2 objects separate (don't ref/unref them
together, don't necessarily create them together).
* Keep IDataObject formats in the object itself, not in a global variable.
* Fix getdata() to look up the request target in its format list, not in the
global hash table
* Create target GdkDragContext on each drag_enter, destroy it on drag_leave,
whereas IDropTarget is created when a window becomes a drag destination
and is re-used indefinitely.
* Query the source IDataObject for its supported types, cache them in the
target (!) context. This is how GTK+ works, honestly.
* Remember current_src_object when we initiate a drag, to be able
to detect later on that the data object is ours and use a
shortcut when querying targets
* Make sure GDK_DRAG_MOTION is only sent when something changes
* Support GTK drag cursors
* Ensure that exotic GTK clipboard formats are registered
(but try to avoid registering formats that can't be used between applications).
* Don't enumerate internal formats
* Ensure that DnD indicator window can't accept drags or receive any kind of input
(use WS_EX_TRANSPARENT).
* Remove unneeded indentation in _gdk_win32_dnd_do_dragdrop()
* Fix indentation in gdk_win32_drag_context_drop_finish()
* Remove obsolete comments in _gdk_win32_window_register_dnd()
* Check for DnD in progress when processing WM_KILLFOCUS, don't emit a grab
break event in such cases (this allows alt-tabbing while DnD is in progress,
though there may be lingering issues with focus after dropping...)
* Support Shell ID List -> text/uri-list conversion, now it's possible
to drop files (dragged from Explorer) on GTK+ applications
* Explicitly use RegisterClipboardFormatA() when we know that the string
is not in unicode. Otherwise explicitly use RegisterClipboardFormatW()
with a UTF8->UTF16 converted string
* Fix _gdk_win32_display_get_selection_owner() to correctly bail
when selection owner HWND is NULL (looking up GdkWindow for NULL
HWND always succeeds and returns the root window - not the intended
effect)
* More logging
* Send DROP_FINISHED event after DnD loop ends
* Send STATUS event on feedback
* Move GetKeyboardState() and related code into _gdk_win32_window_drag_begin(),
so that it's closer to the point where last_pt and start_pt are set
* Use & 0x80 to check for the key being pressed. Windows will set low-order bit
to 1 for all mouse buttons to indicate that they are toggled, so simply
checking for the value not being 0 is not enough anymore.
This is probably a new thing in modern W32 that didn't exist before
(OLE2 DnD code is old).
* Fixed (hopefully) and simplified HiDPI parts of the code.
Also adds managed DnD implementation for W32 GDK backend (for both
OLE2 and LOCAL protocols). Mostly a copy of the X11 backend code, but
there are some minor differences:
* doesn't use drag_window field in GdkDragContext,
uses the one in GdkWin32DragContext exclusively
* subtracts hotspot offset from the window coordinates when showing
the dragback animation
* tries to consistently support scaling and caches the scale
in the context
* Some keynav code is removed (places where grabbing/ungrabbing should
happen is marked with TODOs), and the rest is probably inert.
Also significantly changes the way selection (and clipboard) is handled
(as MSDN rightly notes, the handling for DnD and Clipboard
formats is virtually the same, so it makes sense to handle
both with the same code):
* Don't spam GDK_OWNER_CHANGE, send them only when owner
actually changes
* Open clipboard when our process becomes the clipboard owner
(we are doing it anyway, to empty the clipboard and *become* the owner),
and then don't close it until a scheduled selection request event
(with TARGETS target) is received. Process that event by announcing
all of our supported formats (by that time add_targets() should have
been called up the stack, thus the formats are known; just in case,
add_targets() will also schedule a selection request, if one isn't
scheduled already, so that late-coming formats can still be announced).
* Allow clipboard opening for selection_convert() to be delayed if it
fails initially.
* The last two points above should fix all the bugs about GTK+ rising
too much ruckus over OpenClipboard() failures, as owner change
*is allowed* to fail (though not all callers currently handle
that case), and selection_convert() is asynchronous to begin with.
Still, this is somewhat risky, as there's a possibility that the
code will work in unexpected ways and the clipboard will remain open.
There's now logging to track the clipboard being opened and closed,
and a number of failsafes that try to ensure that it isn't kept open
for no reason.
* Added copious notes on the way clipboard works on X11, Windows and GDK-W32,
also removed old comments in DnD implementation, replaced some of them
with the new ones
* A lot of crufty module-global variables are stuffed into a singleton
object, GdkWin32Selection. It's technically possible to make it a
sub-object of the Display object (the way Wayland backend does),
but since Display object on W32 is a singleton anyway... why bother?
* Fixed the send_change_events() a bit (was slightly broken in one of the
previous iterations)
* Ensure that there's no confusion between selection conversion (an artifact
term from X11) and selection transmutation (changing the data to be W32-compatible)
* Put all the transmutation code and format-target-matching code into gdkselection-win32.c,
now this code isn't spread across multiple files.
* Consequently, moved some code away from gdkproperty-win32.c and gdkdnd-win32.c
* Extensive format transmutation checks for OLE2 DnD and clipboard.
We now keep track of which format mappings are for transmutations,
and which aren't (for example, when formats are passed as-is, or when
a registered name is just an alias)
* Put transmutation code into separate functions
* Ensure that drop target keeps a format->target map for supported formats,
this is useful when selection_convert() is called, as it only receives a
single target and no hints on the format from which the data should
be transmuted into this target.
* Add clear_targets() on W32, to de called by GTK
* Use g_set_object() instead of g_ref_object() where it is allowed.
* Fix indentation (and convert tabs to spaces), remove unused variables
(This commit is cherry-picked from the gtk-3-22 branch)
https://bugzilla.gnome.org/show_bug.cgi?id=786509
Instead of using a boolean to indicate a modal operation being in progress,
use a set of flags, and allow these to be set and unset independently.
Specifically, this allows WM_CAPTURECHANGED handler to only act when a drag-move or
drag-resize modal operation is in progress, and ignore DND (which can also cause
WM_CAPTURECHANGED to be posted). This avoids a crash due to assertion failure when
OLE2 DND code tries to end a modal operation that was already ended by the WM_CAPTURECHANGED
handler.
(This commit is cherry-picked from the gtk-3-22 branch)
https://bugzilla.gnome.org/show_bug.cgi?id=786121
Commit 1d0fad3 revealed that there were some assumptions made that were
actually to compensate for the bug fixed by that commit, so we need to
remove those assumptions as they would result in AerSnap to not work
properly on HiDPI screens.
Also re-do how we set the x and y positions of our GdkWindow, so that we
are more consistent across the board when we go between a GDK window
coordinate and a Windows API window cooredinate.
This would also simplify the code a bit.
https://bugzilla.gnome.org/show_bug.cgi?id=785999
Some drivers don't do that (not sure whether that is the correct behaviour
or not). Remember each WT_PROXIMITY with LOWORD(lParam) != 0 that we get,
then look for a WT_CSRCHANGE. If WT_CSRCHANGE doesn't come, but a WT_PACKET
does, assume that this device is the one that sent WT_PROXIMITY.
Also include fallback code to ensure that WT_PACKETs for an enabled device
disable the system pointer, because WT_PROXIMITY handler might have
enabled it by mistake, since it's not possible to know which device left
the proximity (it might have been a disabled device).
https://bugzilla.gnome.org/show_bug.cgi?id=778328
Windows WM handles AeroSnap for normal windows on keydown. We did this
on keyup only because we do not get a keydown message, even if Windows WM
does nothing with a combination. However, in some specific cases it DOES
do something - and we have no way to detect that. Specifically, winkey+downarrow
causes maximized window to be restored by WM, and GDK fails to detect that. Then
GDK gets a keyup message, figures that winkey+downarrow was pressed and released,
and handles the combination - by minimizing the window.
To overcome this, install a low-level keyboard hook (high-level ones have
the same problem as normal message loop - they don't get messages when
Windows WM handles combinations) and use it to detect interesting key combinations
before Windows WM has a chance to block them from being processed.
Once an interesting combination is detected, post a message to the window, which
will be handled in due order.
It should be noted that this code handles key repetitions in a very crude manner.
The downside is that AeroSnap will not work if hook installation function call fails.
Also, this is a global hook, and if the hook procedure does something wrong, bad things
can happen.
https://bugzilla.gnome.org/show_bug.cgi?id=776031
Instead of checking for window state and giving it extra styles that
fit, just give it all styles that it is missing. It turned out that
otherwise it is impossible to, for example, restore a maximized window
via sysmenu. Also, be more flexible towards GDK/WM window state mismatches
and consider the window minimized/maximized if *either* GDK or WM thinks so.
https://bugzilla.gnome.org/show_bug.cgi?id=776485
When primary monitor is smaller than the actual monitor on which the
window is being maximized, the WM will do widnow size adjustments
that will completely screw the window size if we try to make it
smaller than 100% fullscreen (to account for taskbar size, for example).
Fix this by overriding maximized window size during WM_WINDOWPOSCHANGING.
https://bugzilla.gnome.org/show_bug.cgi?id=775808
Like the X11 and Wayland backends, re-work how the cursors are being
handled. So, we use a hash table to cache up the HCURSORS that we
create along the way.
We still need to cache up the icon/cursor themes since this is something
that is not part of Windows but was added on to support icon/cursor themes
such as Adwaita on Windows, but should be in-line with what is going on in
GdkCursor.
Also, remove the _gdk_grab_cursor global variable in gdkprivate-win32.h,
and replace it with another variable in the GdkWin32Display structure,
to make things cleaner in the process.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Move the leftovers from the removals to use the current APIs, to fix the
build. Also for gdk_device_virtual_set_window_cursor(), only do
something when a valid GdkCursor is passed in here.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Implement GdkDisplay->get_setting() using the existing
_gdk_win32_screen_get_setting() and get rid of GdkScreen->get_setting()
as a result, to follow the changes in GDK.
Also, since we don't emit settings events in the Windows GDK backend,
but we acquire settings to print using GDK_SETTING, drop all references
related to GDK_SETTING since that is now removed. Update the debug
strings that are print out as a result
(gdk_screen_get_setting->gdk_display_get_setting).
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Those should be interpreted by widget-local gestures, not guessed at a
high level with no notions of the specific context. Users will want
GtkGestureMultiPress to replace these events.
Fix the build after the branch wip/alexl/simplify-gdkwindow was merged, as
there are some changes that broke things in the Windows backend, namely:
-gdk_win32_input_shape_combine_region() should not be removed at this
point (though it is a stub--otherwise GDK/Win32 will crash)
-Some more code need to be removed due to the removal of items in the
above-mentioned merged branch
Also, like the X11 backend, do not allow the creation of native child
windows, and stop checking for subsequent child windows
(GDK_WINDOW_CHILD), so that we can clean things up a bit.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
This enables HiDPI support for GTK+ on Windows, so that the
fonts and window look better on HiDPI displays. Notes for the current
work:
-The DPI awareness enabling can be disabled if and only if an application
manifest is not embedded in the app to enable DPI awareness AND a user
compatibility setting is not set to limit DPI awareness for the app, via
the envvar GDK_WIN32_DISABLE_HIDPI. The app manifest/user setting for
DPI awareness will always win against the envvar, and so the HiDPI items
will be always setup in such scenarios, unless DPI awareness is disabled.
-Both automatic detection for the scaling factor and setting the scale
factor using the GDK_SCALE envvar are supported, where the envvar takes
precedence, which will therefore disable automatic scaling when
resolution changes.
-We now default to a per-system DPI awareness model, which means that we
do not handle WM_DPICHANGED, unless one sets the
GDK_WIN32_PER_MONITOR_HIDPI envvar, where notes for it are in the
following point.
-Automatic scaling during WM_DISPLAYCHANGE is handled (DPI setting change of
current monitor) is now supported. WM_DPICHANGED is handled as well,
except that the window positioning during the change of scaling still
needs to be refined, a change in GDK itself may be required for this.
-I am unable to test the wintab items because I don't have such devices
around.
https://bugzilla.gnome.org/show_bug.cgi?id=768081
Commit d249e77 (API: screen: Remove gdk_screen_is_composited()) attempted
to update the GDK-Win32 for the removal of the API, but some parts were
missed. This updates the code so that things continue to build and run.
https://bugzilla.gnome.org/show_bug.cgi?id=773299
Switch code to use gdk_display_is_composited() instead.
The new code also doesn't use a vfunc to query the property but rather
requires the backend to call set_composited()/set_rgba() to change the
value.
The GLib main loop blocks on MsgWaitForMultipleObjectsEx to
determine if there are any incoming messages while also allowing
for background tasks to run. If all available messages are not
processed after MsgWaitForMultipleObjectsEx has signaled that
there are available, CPU usage will skyrocket.
From my limited understanding (by inspection of profiling
under Visual Studio):
Key is pressed - MsgWaitForMultipleObjectsEx unblocks, and
sends message to GDK's event handler. Some event is now queued.
g_poll unblocks, calls the g_event_dispatch which finally
resolves to gdk_event_dispatch. This then calls
_gdk_win32_display_queue_events, but since a message is already
queued, it fails to call PeekMessage and returns immediately.
At the next iteration, g_poll again calls MsgWaitForMultipleObjectsEx
which queues yet another event and returns almost immediately, since
there are events available which haven't been processed by PeekMessage.
The dispatch function is then called and the process repeats.
https://bugzilla.gnome.org/show_bug.cgi?id=771568
This changes the group/level semantic.
Previously W32 backend used "group 0/1" to denote "AltGr OFF/ON"
and "level 0/1" to denote "Shift is OFF/ON".
Now "group" means "keyboard layout" and there can be up to 255 groups,
while AltGr and Shift are combined into a single level enum that
takes values between 0 and 4.
Unlike X, W32 doesn't do effective group overriding, meaning that
it will never tell the caller that a different group was actually
used (even for universal keys, such as Enter), because key symbol
table is completely fabricated and there's no point in trying to
save a few of kilobytes of RAM by not duplicating universal key
records for all groups.
Also contains many whitespace changes (tab elimination, fixed
indentation) and cleanup (axed a few global variables, these are
now accessed via the default keymap).
https://bugzilla.gnome.org/show_bug.cgi?id=768722
Windows save in hardware_keycode an information which is not so low
level and some application require the hardware scancode.
As Windows provides this information save it in GdkEventPrivate
and provide a function to get this information.
For no Windows system the function return the hardware_keycode instead.
Signed-off-by: Frediano Ziglio <fziglio@redhat.com>
https://bugzilla.gnome.org/show_bug.cgi?id=765259
Implements gdk_win32_window_set_shadow_width().
Uses shadow width/height to adjust max tracking size, allowing
windows to be drag-resized to cover the whole desktop.
Also uses SM_C*VIRTUALSCREEN instead of SM_C*MAXTRACK.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
It works exactly like AeroSnap.
Except for shift+win+left/right, which is left for AeroSnap
to handle (AeroSnap takes action before we get the message,
so there's no way for us to override it).
The only thing that doesn't work is shift+win+left/right on
a maximized window, for reasons unknown at the moment.
This only implements winkey+stuff behaviour of AeroSnap,
not the drag-to-the-edge-and-something-funny-happens one.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
If a layered window was hidden and is made visible, erase its
contents before showing it. GDK will schedule a redraw, but until
then we generally don't want to show old contents.
https://bugzilla.gnome.org/show_bug.cgi?id=763783
This is achieved by sending undocumented message WM_SYSMENU
to the window.
Before doing that, the window is given WS_SYSMENU style
(to enable window menu) and some combination of
WS_MAXIMIZEBOX (for "Mazimize" item)
WS_MINIMIZEBOX (for "Minimize" item)
WS_SIZEBOX (for "Size" item)
depending on which operations are currently permissible.
WM_SYSMENU is processed by DefWindowProc(), which results
in showing the window menu. We remove extra styles
at the first opportunity (WM_INITMENU message), as they
alter the way our window is rendered.
https://bugzilla.gnome.org/show_bug.cgi?id=763851
This removes the event_poll_fd global variable and the (ab)use of
get_default_display. It is also more consistent with other backends.
Also store display
* Explicitly grab the device, setting appropriate cursor on it.
* Fix gdk_device_virtual_set_window_cursor() to just set the
cursor, without trying to check that mouse is over the given
window. Also prevent it from immediately resetting cursor.
* Alse take into account things that happen in other parts of
GDK - don't look for replacement cursor, GDK already did that,
and don't create a default arrow cursor instead of NULL,
GDK-W32 already did that up the stack as well.
Warn about inappropriate cursor == NULL argument instead.
https://bugzilla.gnome.org/show_bug.cgi?id=762711
Toplevels are now true layered windows that are moved,
resized and repainted via UpdateLayeredWindow() API call.
This achieves transparency without any extra effort,
and prevents window size and window contents desychronization
(bug 761629).
This also changes the way CSD windows are detected. We now
use window decorations to detect CSDiness of a window,
and to decide whether a window should be layered (CSD windows should
be) or not.
Decorations are now stored in the window implementation,
not as a quark-based property of the window-as-gobject.
https://bugzilla.gnome.org/show_bug.cgi?id=748872
Normally works only on CSD windows, non-CSD windows continue
to use WM modal loop for drag-resizing and drag-moving. However,
if it is activated on non-CSD windows, it does work.
Has the advantage of being completely immune to AeroSnap.
AeroSnap only worked partially on CSD windows, with the only part
that worked being "don't let users drag window titlebar outside of
the desktop". Now AeroSnap doesn't work on windows moved by
this code at all, which is good, since they currently don't work
well with it due to the way shadows are drawn.
It's possible to also re-implement AeroSnap (or something similar),
but that is a story for another commit.
This code was originally intended to fix the problem of window
size and window contents desynchronization, but failed to achieve
that result in the end. Nevertheless, it serves as a foundation for
other changes to the way window resizing works.
https://bugzilla.gnome.org/show_bug.cgi?id=761629
1) MSDN says that the coordinates of the maximized window
must be specified as if the window was on the primary display,
even if nearest display where it ends up is not the primary display.
So instead of using nearest display work area verbatim,
use it only to account for taskbar size, while using
primary display top-left corner (0:0) as the reference point.
2) MSDN says that max tracking size is a system property, we
should just call GetSystemMetrics() and use that.
https://bugzilla.gnome.org/show_bug.cgi?id=762629
This prevents normal application windows (and other kinds of windows)
from being moved up in Z-order to be above windows that have the
always-on-top bit set. Doing so would make the previously-normal windows
in question also always-on-top implicitly.
Windows that are already always-on-top will be restacked on top of other
always-on-top windows too.
https://bugzilla.gnome.org/show_bug.cgi?id=746745
Instead of handling WM_DISPLAYCHANGE on every GdkWindow, only handle
it on an ad-hoc hidden window we create when opening the display.
This has two reasons:
1) we want emit the display::size-changed signal even if there are no
gtk windows currently open
2) we want to emit the signal just once and not once for every window
https://bugzilla.gnome.org/show_bug.cgi?id=757324
Windows does not send any release key event for one of the shift keys
when both shift keys were pressed together. This commit solves
the problem by sending the extra release key event for the shift key
which was released as first, when the other shift key is released.
Other modifiers (e.g. Ctrl, Alt) do not have this problem.
https://bugzilla.gnome.org/show_bug.cgi?id=751721
In particular this means that cursors are disposed of by the way of
g_object_unref(), not DestroyCursor (which is documented to not to be
used on certain kinds of cursors, and we can't tell which is which).
It should also alleviate any concerns about destroying cursors that
are still in use by other windows, except for cases where we would
somehow get our hands on a HCURSOR that someone else is using and we
make a GdkCursor out of it and later unref and finalize it while it
is still in use.
It also removes the need to call CopyCursor(), which makes animated
cursors into non-animated ones as a side-effect (supposed to be a bug,
but try explaining that to MS). Now cursors should be animated (if
the are set up as such in the OS).
https://bugzilla.gnome.org/show_bug.cgi?id=697477
Requires Vista and newer.
* Create surfaces with cairo_win32_surface_create_with_format
* Provide an rgba visual that can be distinguished from the system visual
* Make rgba visual the best available visual
* Enable alpha-transparency for all windows that we control
* Check for appropriate cairo capabilities at configure time
(W32 - 1.14.3 newer than 2015-04-14; others - 1.14.0)
* Check for composition support before enabling CSDs
* Re-enable transparency on WM_DWMCOMPOSITIONCHANGED
Windows that were created while composition was enabled and that were CSDed
as a result and will look ugly (thick black borders or no borders at all) once
composition is disabled.
If composition is enabled afterwards, they will return back to normal.
This happens, for example, when RDP session is opened to a desktop where a GTK
application is running. For W7/Vista windows will only re-gain transparency after
the RDP session is closed. For W8 transparency will only be gone momentarily.
Windows that were created while composition was disabled will not be CSDed
automatically and will use SSD (WM decorations), while windows that are CSDed
manually will get a thin square border.
If composition is enabled afterwards, these windows will not change.
This is most noticeable for system menus (popup menus are often generated
on the fly, system menus are created once) and some dialogues (About dialogue,
for example).
https://bugzilla.gnome.org/show_bug.cgi?id=727316
Use screen workarea to *also* set the position of a maximized window,
not just its size. Without this the window position defaults to 0:0
(the topleft corner), which is wrong when taskbar is position along the
top or left edge of the screen.
https://bugzilla.gnome.org/show_bug.cgi?id=746821
Use (cairo) input shape of the window to check whether a point is inside or not
inside the window.
If it is, let the default window procedure do its thing (which seems to be
working all right in all known cases).
If it isn't, override the default window procedure and tell WM what we think.
Don't do any of the above if the window has CSD-incompatible styles (WS_BORDER
or WS_THICKFRAME).
This is a crude kind of substitute for window input shape support (which W32
does not seem to have). Still probably enough to be positive about input shapes
support.
https://bugzilla.gnome.org/show_bug.cgi?id=733679
Get monitor on which the most of the window is located (nearest monitor if
window is not on screen), get its work area (area not occupied by taskbar or
any other bars) and use that for maxsize.
Previous default of 30000 meant that windows maximized onto full screen,
even covering the area where taskbar is.
https://bugzilla.gnome.org/show_bug.cgi?id=726592
If a motion event handler (or other handler running from the flush-events
phase of the frame clock) recursed the main loop then flushing wouldn't
complete until after the recursed main loop returned, and various aspects
of the state would get out of sync.
To fix this, change flushing of the event queue to simply mark events as
ready to flush, and let normal event delivery handle the rest.
https://bugzilla.gnome.org/show_bug.cgi?id=705176
The MINMAXINFO struct was being populated based upon geometry hints when
GDK_HINT_MAX_SIZE flag was enabled, then promptly having its values blown
away with default values.
https://bugzilla.gnome.org/show_bug.cgi?id=711110
When events are paused, we should not return TRUE from prepare() or check().
GTK+ handles this for events that are already in the GTK+ queue, but
we also need suppress checks for events that are in the system queue - if we
return TRUE indicating that there are events in the system queue, then we'll
call dispatch(), and do nothing. The event source will spin, and will never
run the other phases of the paint clock.
(Broadway doesn't have a window system queue separate from the GDK event queue,
but we write the function the same way for consistency.)
https://bugzilla.gnome.org/show_bug.cgi?id=694274
We now have a proper MASTER/SLAVE input device split, where
the masters are virtual core input devices and we add fake hw
slave devices for the system pointer and real slave devices for
wintab devices.
We also set the proper source_device on the events so you can
tell which device sent it and properly decode the axis info.
The synaptics trackpad driver has some weird behaviour on scroll.
It pops up a window over the mouse pointer (looking like a scrollbar).
This has two problems:
* We get extra enter/leave events for the trackpad window
* We get back the trackpad window when we look for the window
under the mouse to deliver the mousewheel message.
So, we add some trackpad specific hacks to avoid this (sigh) based
on the trackpad window window class.
This fixes bug #542777 and was partially based on a patch there
from Peter Clifton.
gdk_flush() should gdk_display_sync() on all open displays.
Both for display_flush and display_sync it seems useful to call
GdiFlush, but we don't have anything extra to do for display_sync,
as there is no inherent roundtrip on win32.
This should close bug #84314
There were still cases where we didn't get a WINDOWPOSCHANGED after
a SetWindowPos() call, like e.g. with a larger minimum size than
the set size (bug #574935)
So, we revert the previous fix and now just always manually emit
a configure notify after the move_resize call. Also, we inhibit
the WINDOWPOSCHANGED configure event during the move_resize operation
to avoid multiple Configures.
There are some cases where we don't get a WINDOWPOSCHANGE such that
we generate a configure event, even if we called gdk_window_move_resize()
or similar. For instance:
* The window is fullscreen
* The window is maximized
* The specified pos/size is the same as the current one
However, as per X11 ConfigureNotify semantics we *always* want one, or
we could run into issue like e.g. bug #537296 where we're waiting for
the CONFIGURE to call gdk_window_thaw_toplevel_updates_libgtk_only().
There is no particular reason to special case this, we want to handle all
sort of normal events. The only special thing we keep is that
as an optimization we pump the message loop extra during a WINPOSCHANGED
in a modal operation as that will cause us to repaint faster.
Also, bump the arbitrary number of mainloop iterations for the timer.
I don't see why we need it at all, but at least doing more than one
iteration if needed should be nice.
When you start a window resize or move via the window menu and
don't actually change anything we're not getting an exitsizemove.
In order to work around this we also look for WM_CAPTURECHANGED.
This moves all the code from WM_SIZE, WM_MOVE, and WM_SHOWWINDOW into
one place, cleans up the code and makes sure we only send a single
configure event even if both size and position changes.
Calling PeekMessage can cause reentrant calls into the window procedure
for sent (as opposed to posted) messages, so its not safe to call
when we're not expecting reentrancy. Instead we call GetQueueStatus
when we're just looking for availible messages.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=552041
The button highlighting in testgtk works again, even with
GDK_NATIVE_WINDOWS. Unfortunately testgtk:menus still does
not work for the forced-native-window-case.
- replace GdkNativeWindow with HWND, remove type casts
- no more GdkDisplayClass::get_drag_protocol but GdkWindowImpl::get_drag_protocol
- remove *_client_message*()
There are sure regressions but basic stuff seems to be working
again after all the API breakage done with comments like
"Win32 and Quartz need to be ported still."
An event filter may add or remove filters itself. This patch does
two things to address this case. The first is to take a temporary
reference to the filter while it is being used. The second is
to wait until after the filter function is run before determining
the next node in the list to process. This guards against
changes to the next node. It also does not run functions
that have been marked as removed. Though I'm not sure if this
case can arise.
https://bugzilla.gnome.org/show_bug.cgi?id=635380
TrackMouseEvent is present in user32.dll in all Windows versions we
support. No need to look it up dynamically. No need to fallback to
_TrackMouseEvent from comctrl32.dll.
Includes fixing all callers to use the cairo region API instead. This is
usually just replacing the function names, the only difference is
gdk_region_get_rectangles() being replaced by
cairo_region_num_rectangles() and cairo_region_get_rectangle() which
required a bit more work.
https://bugzilla.gnome.org/show_bug.cgi?id=613284
WM_KILLFOCUS means that a keyboard grab (not a pointer grab), if any,
has been broken. I don't think this bug has matterd much as gtk
generates a grab-broken-event signal for both keybord and pointer
grabs being broken anyway.
Intermediate commit of work in progress on integrating the old code
for OLE2-based generic drag and drop from Arhaeopteryx Software, from
a long time ago in the GTK+ 1.3 timeframe. Does still not work and is
as before not compiled in unless OLE2_DND is defined in
gdkdnd-win32.c. (Thus, for inter-process DND, still only WM_DROPFILES
style dropping of files on GTK+ apps works.)
Related slight refactoring of other code that shouldn't change how it
works. Add more global variables for run-time constants (once
initialized) representing well-known GdkAtoms and registered Windows
clipboard formats, as they with the generic DND code will be needed in
several source files. Some improved debugging output.
Resurrcetion and adaption of find_window_for_mouse_event(). The window
receiving the WM_MOUSEMOVE, WM_?BUTTONDOWN is not necessarily the one
interested in GDK_(ENTER|MOTION|LEAVE)_NOTIFY
http://bugzilla.gnome.org/show_bug.cgi?id=588373
Also added some more more TODO_CSW and disabled print_event(): it can not
cope with the new _gdk_windowing_got_event() eating/morphing events.