This is the result of experimenting with corner cases when blurring.
The result is a test that tests when the child of a blur node is
clipped out but the blurred child is not, the blurred parts are still
visible.
This immediately broke the cairo renderer, so the fix is included.
These are 2x2 combinations that:
1. Use a texture child node vs a color child node
This should force an offscreen vs straight up use a texture.
2. Switch opacity and color-matrix
Either put the color matrix into the opacity node or put the opacity
into the color matrix.
This is worth testing because renderers often combine opacity into the
color matrix to avoid offscreens.
And they do that because applications often create faded out symbolic
images, which end up as a combination of these nodes.
Add a wayland_gl setup that explicitly uses desktop GL, and rename
wayland_gles to wayland_gles2 (since that is what it does).
In ci, make the fedora-x86_64 runner run tests with wayland_gl
and wayland_gles2, and make the fedora-release runner run test
with wayland and x11.
When passing a directory via G_TEST_SRCDIR, still pay attention
to --verbose, and print out each file thats tests. This lets us
quickly pin down which test fails.
These tests come in two variants.
The first takes .node and .offload file, parses the node file,
and compares the resulting subsurface attachments to expected results.
The second variant takes two .node/.offload file pairs and a .diff
file, parses the node files, compares the resulting subsurface
attachments, and then diffs the nodes, comparing the resulting
area to the region in the .diff file.
Check that the right filter is chosen and that that filter is
implemented correctly.
The test is disabled for Cairo because Cairo (or rather Pixman)
doesn't follow the filtering specifications for GL/Vulkan and in
particular the nearest filter picks a different pixel.
We did have 4 ordering variations of ARGB straight,
but only 3 premultiplied. Add the missing one.
Update all the places where we switch over memory formats.
We always have a display - the default display - so there's no need to
accept NULL.
Plus, we need a display when building the texture, so accepthing NULL
wouldn't even make sense.
Includes update to defaultvalue test.
We need to provide color stops to avoid rounding errors with different
shaders.
That makes the empty linear gradient somewhat less empty, but I think
it's the emptiest we can make it.
These are the dmabuf formats that we can import
into a GL context as an EGLImage, and successfully
download.
We skip the GdkDisplay:dmabuf-formats property
in the default value tests, since the nominal
default value is NULL, but the actual value is
constructed on demand.
When shadows were offset - in particular when offset so the original
source was out of bounds of the result - the drawing code would create a
pattern for it that didn't include enough of it to compose a shadow.
Fix that by not creating those patterns anymore, but instead drawing the
source (potentially multiple times) at the required offsets.
While that does more drawing, it simplifies the shadow node draw code,
and that's the primary goal of the Cairo rendering.
Test included.
Make circle contours use 'foreach coordinates' for
its points. This works here, but not for general
conics. As with the other custom contours, avoid
emitting collapsed conics.
The code now follows gsk_rounded_rect_shrink() and with it the behavior
of the Cairo renderer and Webkit.
The old code did what the GL renderer and Cairo do, but I consider that
wrong.
I did not test Chrome.
Test attached
Cairo and the GL renderer have a different idea of how to handle
transitioning of colors outside the defined range.
Consider these stops:
black 50%, white 50%
What color is at 0%?
Cairo would transition between the last and first stop, ie it'd do a
white-to-black transition and end up at rgb(0.5,0.5,0.5) at 0%.
GL would behave as it would for non-repeating gradients and use black
for the range [0%..50%] and white for [50%..100%].
The web would rescale the range so the first stop would be at 0% and
the last stop would be at 100%, so this gradient would be illegal.
Considering that it's possible for code to transition between the
different behaviors by adding explicit stops at 0%/100%, I could choose
any method.
So I chose the simplest one, which is what the GL renderer does and
which treats repeating and non-repeating gradients the same.
Tests attached.
Without an explicit width, height, and viewBox, there is no single
correct way to render an SVG. In the absense of said information,
librsvg is capable of making a guess by rendering the SVG to a Cairo
surface and then analyzing that surface; however, this process is
merely heuristic.
There are three GTK tests for SVG images that are missing dimensions.
While this is not a violation of the SVG specification, it does
implicitly couple the test to the librsvg rendering heuristic. In this
commit we add that dimension information so that the expected result
is unambiguous.
Add a contour that optimizes some things for
rectangles. Also add rectangle detection to the
path parser, and add tests similar to what we
have for the other special contours.
Check that the start- and endpoint work
as expected and verify that their winding
numbers match the ones of the standard contour,
and are negated when the contour is reversed.
This tests the merging of nested color matrix nodes feature of
GtkSnapshot, which was broken before commit 082fdfdb24.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
This takes a render node tree and "replays" it by using the GtkSnapshot
machinery. We don't necesserily expect to get back an exactly equal
render node tree back, since GtkSnapshot applies various small
optimizations where possible, but the original and the replayed nodes
should render to identical textures.
Signed-off-by: Sergey Bugaev <bugaevc@gmail.com>
We don't need to have the derivative as a curve,
it is enough for us to compute values of the
derivative at a given t, which we can also do
for conics.
Arcs were appealing, but they have a fatal flaw: we can't
split our arcs without changing the ellipse they trace.
That could be fixed by adding an extra parameter, but then
it is no longer any better than conics.
So switch back to conics, which have the advantage that they
are used elsewhere.
Add a new curve type for elliptical arcs
and use it for rounded rectangles and circles.
We use the 'E' command to represent elliptical
arcs in serialized paths.
FLT_EPSILON is the distance between 1.0 and the next distinct floating
point number, and doesn't necessarily have anything to do with the
precision we can expect from a series of floating-point calculations.
Experimentally, 1e-6 is achievable, even on platforms with unusual
floating point implementations like i387.
Resolves: https://gitlab.gnome.org/GNOME/gtk/-/issues/6051
Bug-Debian: https://bugs.debian.org/1050076
Signed-off-by: Simon McVittie <smcv@debian.org>