It may happen when turning a client side window into a native window
that the window, or some of its children with the same native parent
have extension events enabled, and thus have an input window enabled
for the native parent which needs to change as the window is made
native.
We fix this by temporarily disabling extension events on all the affected
windows while we create the native window, and then reenable them afterwards.
This fixes: https://bugzilla.redhat.com/show_bug.cgi?id=544624
All kinds of lines (lines, segments, arcs, etc) need to take into
account the line properties (width, miter limit, joins, caps, etc)
to get proper damage extents.
This is not really possible to do, but we can make it likely to work
with some ad-hoc estimates.
Fixes bug 603904.
The fix in 786b589d95 for the
"Cannot click buttons more than once without moving the mouse cursor"
did not correctly handle setups with multiple screens in one display.
We need to handle the case where the first XQueryPointer returns
a different root window than the default one.
This fixes bug 597386 (agaion)
We don't really need to filter these out, it was just a leftover
safety check to not override the GDK_POINTER_MOTION_MASK.
Furthermore when we changed behaviour to not always select for native
pointer motion it is actually wrong. We'll still get normal motion
events for the toplevel which we will emulate as button motion on the
child, but the button motion mask will not be inherited by implicit
grabs which makes us not get any motion events during grabs.
This fixes bug 601473
Bypassed with #if 0 because it is an awful hack and not really
acceptable from a privacy point of view for instance. It prevents
Firefox from deleting temporary files containing images being dragged,
so they stay on disk. Bug #561973.
GdkNativeWindow cast is needed in 64-bit Windows so gpointer data
is converted to a (64-bit) native window handle.
GPOINTER_TO_UINT() is used in other platforms.
Either g_type_register_static_simple (used by G_DEFINE_TYPE_EXTENDED)
and G_IMPLEMENT_INTERFACE use automatic variables for GTypeInfo and
GInterfaceInfo structs, while tutorials and source code often use
static variables. This commit consistently adopts the former method.
https://bugzilla.gnome.org/show_bug.cgi?id=600158
When we just invalidate some area from the app we don't need to clear
windows with no exposure mask, because that wouldn't have happened pre-csw
anyway. Additionally we can avoid such clearing for native windows in cases
where the xserver already did the clearing like on exposes or when resizing
toplevels.
This means we don't fully redraw a GtkSocket when it resizes, thus
avoiding flicker in gnome-mplayer as reported in this bug:
https://bugzilla.gnome.org/show_bug.cgi?id=598050
Backends that support native window background setting (and that clears
new window areas to this color/pixmap) should set this to true.
Currently only X11 supports this.
When moving or scrolling a window with native children, there is no
need to expose the areas that are copied by the windowing system
as part of moving/resizing the native windows anyway.
Fixed the prototypes of MyEnhancedXkbTranslateKeyCode() and
translate_keysym() to take a gint* because those functions treat
these arguments as an int, so we get around the need to cast.
We have to do this, especially after the screen containing the menubar
has changed. Such more larger changes in monitor geometry will cause
changes to how monitors are laid out in the root window. The position
coordinates of the windows will have to be updated to reflect their
position in the new layout.
The Quartz port now supports arbitrary multiple monitor layouts instead
of only monitors are were laid out horizontally. This builds on the
reworked coordinate translation done in a previous commit.
The root window contains all the monitors attached to a Mac. The
coordinate transformation now both translates the x and y coordinate,
translating it from the Cocoa monitor coordinate space to the GDK
coordinate space. How monitors are laid out in the root window differs
between Cocoa and GDK, which is why it is important to translate based
on the root window to get multi monitor setups to work properly.
We have replaced the old y coordinate transformation function with
new functions that translate both the x and y coordinate.
When creating new toplevels, we have to determine the Cocoa screen on
which the toplevel should appear and translate the coordinates according
to that screen.
This change also fixes event handling in case there is a monitor left
of the screen containing the menu bar. In such a case all coordinates
on the left monitor are negative. Event handling broke, because of
_gdk_quartz_window_find_child() checking bounds. Now that coordinates
are always properly translated to GDK coordinate space, in which negative
coordinates do never occur, the checks here will work properly.
Using this we can update our internal monitor/screen layout state
and emit the GdkScreen::size-changed signal. Work has not
completely finished on this yet, see bug 596238.
Add dummy for _gdk_input_window_crossing (). Set both input_window_destroy
and input_window_crossing pointers in the Impl struct.
Reported by John Ralls.
The root window width and height have already been correctly
initialised in _gdk_root_window_size_init() to cover all monitors, so
don't incorrectly re-initialise using GetSystemMetrics(SM_C[XY]SCREEN)
which only gives the size of the primary monitor anyway. (See MSDN.)
This fixes at least gdk_screen_get_{width,height}() which indirectly
affects at least the positioning of combo box pop-up menus on multiple
monitors.
We need to do a final XQueryWindow to get the coordinates inside the
windows rather than in the parent window.
This fixes bug #597386, "Cannot click buttons more than once...", which
failed due to the grab tracking stuff getting the wrong coordinates as
per the above.
Thanks gcc :
gdkwindow-x11.c:1731: warning: passing argument 3 of
'XReconfigureWMWindow' makes integer from pointer without a cast
/usr/include/X11/Xlib.h:1871: note: expected 'int' but argument is of
type 'struct GdkScreen *'
Signed-off-by: Pascal Terjan <pterjan@mandriva.com>
These event types propagate up the hierarchy anyway, so this means
we avoid setting it unnecessarily. This is especially important
for button press event, since only one client can select for this
on each window, causing X errors if two clients do it.
This detection code is not 100% reliable, but it should fare much better
than the current code, which just compares the device name to a fixed
set of strings. Many applications depend on erasers being recognized
reliably, so we start by checking for a device name containing the
substring 'eraser'.
Signed-off-by: Thomas Jaeger <ThJaeger@gmail.com>
This has two advantages:
1) In many backends, this is faster as we can terminate the window
hierarchy traversal earlier
2) When used in gdkdisplay.c::get_current_toplevel() to get the
current toplevel that has the pointer we now correctly return
a toplevel with the pointer in it where the pointer is inside
some foreign subwindow of a toplevel window.
The second advantage fixes some bugs in client side event generation
when the pointer is inside such a foreign child window.
Based on first patches by Christian Hergert. Change
screen_get_monitor_geometry() so that it translates the layout of the screens
from Cocoa layout to GDK layout. In Cocoa, the screen locations
are specified in Cocoa geometry, as well as that GDK uses a different way
to place individual monitors in the root window. For now only monitors
that are laid out horizontally are supported (see the FIXMEs in the source),
in bug 596238 we will track future work to get things fully right.
Modify _gdk_quartz_window_get_inverted_screen_y() to take the differences
in screen layout between Cocoa and GDK into account. Also this function
is subject to future work.
Explicitly handle resizing by leaving all events in the lower right 15x15
corner to Cocoa, if the window shows a resizing indicator. Some
applications may have widgets allocated in this area. Generally, these
widgets are likely larger than 15x15 so they can still be hit. Often
scroll bars are found in this area and these can also be manipulated by
other means. Since this is the only way of resizing windows on Mac OS X,
it is too important to keep it broken.
When we grab the pointer we need to request more events than what is
specified, otherwise our event emulation stop working and you won't
e.g. get crossing event unless you specified motion event mask.
F-Spot needs this as it draws on a foreign (screensaver) window, which
used to work.
I believe this is safe, because in all typical cases the expose
mask will not be set, so we won't do anything, and its what we used to
do.
Make the quartz backend support the new queued translations. We do this
by keeping our own copy of the region that has been set to need display.
Using this region we can intersect by the given area, translate this and also
set needs display for the resulting area.
When filtering out the events for "window" from the events we got for
our "impl_window", don't forget to adjust the returned number of
events because it might be smaller than what XGetMotionEvents has
returned, and free coords we allocated too much. Also if we filtered
away *all* events, return FALSE and get rid of the allocated history
entirely. Together fixes all sorts of mishehavior when painting in
GIMP, from coords going wild to plain crashes and infinite loops.
On startup, the root window got assigned the size of the main screen.
But, the GdkScreen has the width of all screens/monitors connected to the
machine. Change this so that in _gdk_windowing_window_init, we assign
the width/height of all monitors to the root window width, height.
Should fix bug 594738.
The quartz backend simulates the semantics of XGrabPointer, as a part of
this it checks the event mask of the grab. However, implicit grabs on X
do not go through XGrabPointer and thus the quartz backend should not check
the event mask for these. This fixes various "the UI got stuck" cases.