This is an automatic rename of various things related
to the window->surface rename.
Public symbols changed by this is:
GDK_MODE_WINDOW
gdk_device_get_window_at_position
gdk_device_get_window_at_position_double
gdk_device_get_last_event_window
gdk_display_get_monitor_at_window
gdk_drag_context_get_source_window
gdk_drag_context_get_dest_window
gdk_drag_context_get_drag_window
gdk_draw_context_get_window
gdk_drawing_context_get_window
gdk_gl_context_get_window
gdk_synthesize_window_state
gdk_surface_get_window_type
gdk_x11_display_set_window_scale
gsk_renderer_new_for_window
gsk_renderer_get_window
gtk_text_view_buffer_to_window_coords
gtk_tree_view_convert_widget_to_bin_window_coords
gtk_tree_view_convert_tree_to_bin_window_coords
The commands that generated this are:
git sed -f g "GDK window" "GDK surface"
git sed -f g window_impl surface_impl
(cd gdk; git sed -f g impl_window impl_surface)
git sed -f g WINDOW_IMPL SURFACE_IMPL
git sed -f g GDK_MODE_WINDOW GDK_MODE_SURFACE
git sed -f g gdk_draw_context_get_window gdk_draw_context_get_surface
git sed -f g gdk_drawing_context_get_window gdk_drawing_context_get_surface
git sed -f g gdk_gl_context_get_window gdk_gl_context_get_surface
git sed -f g gsk_renderer_get_window gsk_renderer_get_surface
git sed -f g gsk_renderer_new_for_window gsk_renderer_new_for_surface
(cd gdk; git sed -f g window_type surface_type)
git sed -f g gdk_surface_get_window_type gdk_surface_get_surface_type
git sed -f g window_at_position surface_at_position
git sed -f g event_window event_surface
git sed -f g window_coord surface_coord
git sed -f g window_state surface_state
git sed -f g window_cursor surface_cursor
git sed -f g window_scale surface_scale
git sed -f g window_events surface_events
git sed -f g monitor_at_window monitor_at_surface
git sed -f g window_under_pointer surface_under_pointer
(cd gdk; git sed -f g for_window for_surface)
git sed -f g window_anchor surface_anchor
git sed -f g WINDOW_IS_TOPLEVEL SURFACE_IS_TOPLEVEL
git sed -f g native_window native_surface
git sed -f g source_window source_surface
git sed -f g dest_window dest_surface
git sed -f g drag_window drag_surface
git sed -f g input_window input_surface
git checkout NEWS* po-properties po docs/reference/gtk/migrating-3to4.xml
This renames the GdkWindow class and related classes (impl, backend
subclasses) to surface. Additionally it renames related types:
GdkWindowAttr, GdkWindowPaint, GdkWindowWindowClass, GdkWindowType,
GdkWindowTypeHint, GdkWindowHints, GdkWindowState, GdkWindowEdge
This is an automatic conversion using the below commands:
git sed -f g GdkWindowWindowClass GdkSurfaceSurfaceClass
git sed -f g GdkWindow GdkSurface
git sed -f g "gdk_window\([ _\(\),;]\|$\)" "gdk_surface\1" # Avoid hitting gdk_windowing
git sed -f g "GDK_WINDOW\([ _\(]\|$\)" "GDK_SURFACE\1" # Avoid hitting GDK_WINDOWING
git sed "GDK_\([A-Z]*\)IS_WINDOW\([_ (]\|$\)" "GDK_\1IS_SURFACE\2"
git sed GDK_TYPE_WINDOW GDK_TYPE_SURFACE
git sed -f g GdkPointerWindowInfo GdkPointerSurfaceInfo
git sed -f g "BROADWAY_WINDOW" "BROADWAY_SURFACE"
git sed -f g "broadway_window" "broadway_surface"
git sed -f g "BroadwayWindow" "BroadwaySurface"
git sed -f g "WAYLAND_WINDOW" "WAYLAND_SURFACE"
git sed -f g "wayland_window" "wayland_surface"
git sed -f g "WaylandWindow" "WaylandSurface"
git sed -f g "X11_WINDOW" "X11_SURFACE"
git sed -f g "x11_window" "x11_surface"
git sed -f g "X11Window" "X11Surface"
git sed -f g "WIN32_WINDOW" "WIN32_SURFACE"
git sed -f g "win32_window" "win32_surface"
git sed -f g "Win32Window" "Win32Surface"
git sed -f g "QUARTZ_WINDOW" "QUARTZ_SURFACE"
git sed -f g "quartz_window" "quartz_surface"
git sed -f g "QuartzWindow" "QuartzSurface"
git checkout NEWS* po-properties
Without selections, drags can't have them either.
Also included is removing the selection from GtkSelectionData.
Includes a bunch of crude cleanups to Wayland code that no longer has to
care about selection atoms.
Instead of just passing the GdkContentFormats, we are now passing the
GdkContentProvider to gdk_drag_begin().
This means that GDK itself can now query the data from the provider
directly instead of having to send selection events.
Use this to provide the private API gdk_drag_context_write() that allows
backends to pass an output stream that this data will be written to.
Implement this as the mechanism for providing drag data on Wayland.
And to make this all work, implement a content provider named
GtkDragContent that is implemented by reverting to the old DND
drag-data-get machinery inside GTK, so for widgets everything works just
like before.
Instead, pass the actions as part of gdk_drag_begin() and insist DND is
always managed.
A new side effect is that gdk_drag_begin() can now return %NULL.
I decided to put this in a custom subclass, because then I could keep
the whole gtk primary protocol self-contained.
The other option would have been reusing GdkWaylandClipboard, but that
didn't seem worth it, especially because that code needs to interact
with the DND machinery, while the primary doesn't.
Instead, turn the functions into backend API:
gdk_broadway_display_add_selection_targets()
gdk_broadway_display_clear_selection_targets()
Remove the old per-backend functions, too.
This adds support for the shortcut inhibitor protocol in gdk/wayland
backend.
A shortcut inhibitor request is issued from the gdk wayland backend for
both the older, deprecated API gdk_device_grab() and the new gdk seat
API gdk_seat_grab(), but only if the requested capability is for the
keyboard only.
https://bugzilla.gnome.org/show_bug.cgi?id=783343
Always associate a drag context with a GdkDisplay and use that when
getting a cursor for a given action.
If we don't do this, dragging on a window that doesn't use the default
display will make us use cursors from the wrong display.
https://bugzilla.gnome.org/show_bug.cgi?id=765565
The naming of pointers to GdkWaylandDisplay's were inconsistent.
Running the following commands in gtk+/gdk/wayland illustrate the
inconsistency:
$ grep -r '\<display_wayland\>' *.[ch] | wc -l
195
$ grep -r '\<wayland_display\>' *.[ch] | wc -l
81
This patch renames all occurrences of "wayland_display" to
"display_wayland". This is also consistent with naming in the X11
backend. A couple of whitespace changes were done as well in places
where the rename was already done, that added line breaks to long lines
that stood out.
https://bugzilla.gnome.org/show_bug.cgi?id=765474
The gtk_shell protocol used some half baked unstable protocol semantics
that worked by only allowing binding the exact version of the
interface. This hack is a bit too confusing and it makes it impossible
to do any compatible changes without breaking things.
So, instead rename it to include a number in the interface names. This
way we can add requests and events without causing compatibility issues,
and we can later remove requests and events by bumping the number in
the interface names.
https://bugzilla.gnome.org/show_bug.cgi?id=763001
The gdkprivate-wayland.h header file is included from the top-level gdk
directory; this means that all included files referenced in the header
must be relative to the `gdk` directory, otherwise the build will fail
when the build directory is not equal to the source directory.
This commit fixes a build failure under continuous:
In file included from ../../gdk/gdkdisplaymanager.c:60:0:
../../gdk/wayland/gdkprivate-wayland.h:40:51: fatal error:
gtk-primary-selection-client-protocol.h: No such file or directory
#include "gtk-primary-selection-client-protocol.h"
^
compilation terminated.
Makefile:1155: recipe for target 'libgdk_3_la-gdkdisplaymanager.lo' failed
make[4]: *** [libgdk_3_la-gdkdisplaymanager.lo] Error 1
Implement it using the internal copy of the protocol. Otherwise,
we just deal with it the same than clipboard selection, just mapping
it to the PRIMARY atom instead of the CLIPBOARD one.
https://bugzilla.gnome.org/show_bug.cgi?id=762561
The client and compositor share access to the window
pixel buffers. After the client hands off (commits)
the buffer to the compositor it's not supposed to write
to it again until it's released by the compositor.
The code tries to deal with this contention by allocating
a temporary buffer and using that in the mean time. This
temporary buffer is allocated by a higher layer of the code
when begin_paint returns TRUE. Unfortunately, that layer of
the code has no idea when the buffer is released, so it ends
up blitting the temporary buffer back to the shared buffer
prematurely.
This commit changes begin_paint to always return FALSE.
A future commit will address the contention problem in
a different way.
https://bugzilla.gnome.org/show_bug.cgi?id=761312
This adds support for the new wl_pointer events available in v5.
The wl_pointer.axis_source events can be ignored for the purposes here, the
main reason they exist is so that the combination of axis_source=finger and
axis_stop triggers kinetic scrolling. We don't need to care about the source,
axis_stop is enough for us to tell us when we're scrolling.
The wl_pointer.frame events group events together and is intended as a
mechanism to coalesce events together. This for example allows us to now
send a single GTK scroll event for a diagonal scroll. Previously, the two
wl_pointer.axis events had to be handled separately.
The wl_pointer.axis_discrete event sends mouse wheel clicks where
appropriate, and is translated into up/down/left/right scroll events.
https://bugzilla.gnome.org/show_bug.cgi?id=756729
We no longer need a grabbed seat, instead we'll just use the default
seat if this happens, not without first warning and recommending
gdk_seat_grab() for the operation.
https://bugzilla.gnome.org/show_bug.cgi?id=759309
GdkWaylandDeviceData conceptually gathers the data that belongs to
a seat, so it's been renamed (although the old typedef stays, plenty
of refactoring is due here...).
The methods in GdkSeatClass have also been implemented, the most
remarkable is ::grab, which ensures the grab is performed on all
the relevant "master" devices.
https://bugzilla.gnome.org/show_bug.cgi?id=759309
Add a variant of gdk_drag_begin that takes the start position
in addition to the device. All backend implementation have been
updated to accept (and ignore) the new arguments.
Subsequent commits will make use of the data in some backends.
In Wayland, the hotspot of a DND icon is set using the buffer offset in
wl_buffer.attach. To implement this, add a private API to cause the
next wl_surface.attach to offset the new buffer with a given offset.
Setting a DND icon hotspot sets this offset while also queuing a redraw
of the window to trigger the wl_surface.attach.
https://bugzilla.gnome.org/show_bug.cgi?id=759168
In Wayland, the hotspot of a DND icon is set using the buffer offset in
wl_buffer.attach. To implement this, add a private API to cause the
next wl_surface.attach to offset the new buffer with a given offset.
Setting a DND icon hotspot sets this offset while also queuing a redraw
of the window to trigger the wl_surface.attach.
https://bugzilla.gnome.org/show_bug.cgi?id=759168
This GdkDragContext should be created even if we don't have pointer
capabilities. Make it created on add_seat(), and only set the device
on wl_seat.capabilities, so it can be set to either master pointer.
https://bugzilla.gnome.org/show_bug.cgi?id=741066
We currently only hold the last offer received, which is wrong, as both
are independent and have different life cycles.
This means we have to store per-selection wl_data_offer and targets, and
maintain these as appropriate from the clipboard/DnD specific entry points.
Add two new requests to the gtk_surface interface: set_modal and
unset_modal. The server will currently not do anything special with
input focus, and its up to the client to ignore events on the parent
surface.
This commit bumps the gtk_shell interface version to 2. By connecting to
a Wayland server with another gtk_shell interface version any features
depending on the gtk_shell protocol will not be available.
https://bugzilla.gnome.org/show_bug.cgi?id=745721
Support scaling of cursors created from themes. The default scale is
always 1, but if the pointer cursor surface enters an output with a
higher scale, load the larger version of the cursor theme and use the
image from that theme.
This assumes the theme size is set to one that fits with an output scale
= 1.
https://bugzilla.gnome.org/show_bug.cgi?id=746141
Before this patch, we'd always allocate a full size SHM buffer via
the wl_shm_pool, even though it would never be used. Instead allocate a
logical 1x1 cairo image surface.
https://bugzilla.gnome.org/show_bug.cgi?id=745076
We make user facing gl contexts not attached to a surface if possible,
or attached to dummy surfaces. This means nothing can accidentally
read/write to the toplevel back buffer.
The wl_data_source is retrieved from the selection object for the DnD
selection, and used to initiate a drag. When the drag is finished, a
button release or touch end event is synthesized to finish the DnD
operation after the compositor grab is gone.
https://bugzilla.gnome.org/show_bug.cgi?id=697855
This has been made to work similarly to X11, requests for the data device
contents are notified through GDK_SELECTION_REQUEST events, the data stored
in the GDK_SELECTION property as a reaction to that event is then stored
into the wayland selection implementation, and written to the fd when
requested/available.
https://bugzilla.gnome.org/show_bug.cgi?id=697855
This implementation makes the destination side of selections work
similarly to X11's, gdk_selection_convert() triggers data fetching,
which is notified through GDK_SELECTION_NOTIFY events on arrival,
the buffered data is then available through gdk_selection_property_get().
https://bugzilla.gnome.org/show_bug.cgi?id=697855
_gdk_wayland_device_get_button_press_serial() has been replaced by
_gdk_wayland_device_get_implicit_grab_serial(), which takes a touch/pointer
event and figures out the relevant serial, and
_gdk_wayland_device_get_last_implicit_grab_serial() which returns
the most recent serial.
The button press serial was currently used when operating popping up
xdg_shell/surface popups and window menus, so this is now touch aware, of
some sort.
https://bugzilla.gnome.org/show_bug.cgi?id=734374
Weston releases buffers almost immediately after they're done, which
means that GTK+ doesn't use a temporary surface and instead paints
directly onto the SHM backing store that Weston will use.
Normally, after painting to the temporary surface, GTK+ *replaces*
the existing backing surface with CAIRO_OPERATOR_SOURCE. However,
if we immediately paint to the backing surface, it might have junk
from the last paint in it. So clear out the backing surface whenever
somebody calls begin_paint_region().
Maybe we should just always use the temporary surface like the X11
codepath, since that prevents us from having to do weird things like
this, but oh well.
Add the concept of shell capabilities, which allow the compositor
to advertise support for the app menu and the global menubar,
which are then propagated as GdkSettings.
https://bugzilla.gnome.org/show_bug.cgi?id=707129
We bind to the newer version of the wl_output which supports
the new done and scale events, and if we use this to get the
scale for each monitor (defaulting to 1 if not supported).
The is_modifier field is supposed to be set if the key
would act as a modifier, not if any modifiers are currently
active. To fix this, introduce a private
_gdk_wayland_keymap_key_is_modifier function.
At the same time, make the hardware_keycode field in key
events actually contain the hardware keycode, not a copy
of the keyval.
The global_removal argument is the _name_ of the object.
We were comparing it to the _object id_ of the object.
To fix this, store the name at the time the object is bound.
The GDK model for keymaps expects the keymap object to stay
around and emit a ::keys-changed signal. So, do that. This
should make layout changes work, but it remains untested since
weston does not support layout changes at runtime.
At the same time, plug a memory leak where GdkWaylandKeymap
forgot to free its xkb objects in finalize.
https://bugzilla.gnome.org/show_bug.cgi?id=696339