With the introduction of the use of buffer scaling in ed4fcee4ct we
must request version 3 of the compositor as that is the version of the
surface interface that adds this new functionality. See the following
commit in weston:
commit a85118c1b85df6fbf8f896dca971a5b79a94da71
Author: Jason Ekstrand <jason@jlekstrand.net>
Date: Thu Jun 27 20:17:02 2013 -0500
Use wl_resource_create() for creating resources
This commit sets the version numbers for all added/created objects. The
wl_compositor.create_surface implementation was altered to create a surface
with the same version as the underlying wl_compositor. Since no other
"child interfaces" have version greater than 1, they were all hard-coded to
version 1.
Signed-off-by: Jason Ekstrand <jason@jlekstrand.net>
https://bugzilla.gnome.org/show_bug.cgi?id=703817
Ths allows the retrieval of the wl_surface before the window is shown.
The surface is still created in the original places since the surface
and shell surface is destroyed when the surface is programmatically
hidden.
We've long had double precision mouse coordinates on wayland (e.g.
when rotating a window) but with the new scaling we even have it on
X (and, its also in Xinput2), so convert all the internal mouse/device
position getters to use doubles and add new accessors for the
public APIs that take doubles instead of ints.
This lets use use a scaled Xft/DPI for old apps while not
blowing up the size of scaled windows. Only apps supporting
Gdk/WindowScaleFactor should supprt Gdk/UnscaledDPI.
If you set GDK_SCALE=2 in the environment then all windows will be
scaled by 2. Its not an ideal solution as it doesn't handle
multi-monitors at different scales, and only affects gtk apps.
But it is a good starting points and will help a lot on HiDPI
laptops.
We track the list of outputs each window is on, and set the
scale to the largest scale value of the outputs. Any time the scale
changes we also emit a configure event.
We bind to the newer version of the wl_output which supports
the new done and scale events, and if we use this to get the
scale for each monitor (defaulting to 1 if not supported).
If a cairo_surface for a window has a device scale set we need
to respect this when creating a similar window. I.e. we want
to then automatically create a larger window which inherits
the scale from the original.
We also need to calculate a different device_offset if there
is a device_scale set.
-Don't include unistd.h unconditionally as it's not available in Visual
Studio, but include io.h where necessary.
-Avoid C99isms, and use _chsize_s in place of ftruncate when unistd.h is
not available (as in the case of Visual Studio)
Only look at "impl" windows in gdk_window_process_updates_with_mode()
since these are the only ones we care about. This avoids a lot of
unnecessary calls to g_list_copy() and g_object_ref().
We don't want to recurse into children that are clipped, as that is
wasted work. We handle this by moving the empty check to the top
of the function and only using the clipped region everywhere.
Move the call to gdk_x11_atom_to_xatom_for_display() outside of the
search loop in gdk_x11_screen_supports_net_wm_hint(). In my test case
(running Audacious for about a minute), this reduced the total number of
hash table lookups performed from 370,000 to 230,000.
https://bugzilla.gnome.org/show_bug.cgi?id=702913