Include gdkwin32.h (which includes gdkprivate-win32.h and gdkwin32cursor.h
during the build of GDK-Win32) so that
gdk_win32_icon_to_pixbuf_libgtk_only() and
gdk_win32_pixbuf_to_hicon_libgtk_only() get exported, so that the GTK
DLL can link correctly.
Change the visibility handling to be the same way we do it in
GLib now. We pass -fvisibility=hidden to gcc and decorate public
functions with __attribute__((visibility("default"))).
This commit just does this for GDK, GTK+ will follow later.
This is another step towards making GdkDisplayManager backend-agnostic.
Most of the backends profit from this as their atom implementations
where generic anyway - x11 needed that to allow multiple X displays and
broadway, quartz and wayland don't have the concept of displays.
The X11 backend still did things, so I only #if 0'd some code but did
not actually update anything.
Rather than set the window update region and repaint this region
when we get a WM_PAINT we just directly add it to the update
region. No need to roundtrip via win32.
This lets us also make sure we do this drawing in the same update
cycle. This seems especially important on Win7, because ScrollDC
seems to act kind of weird there, not using bitblt in areas where
it seemingly could, which makes scrolling look really flashy.
http://bugzilla.gnome.org/show_bug-cgi?id=674051
When events are paused, we should not return TRUE from prepare() or check().
GTK+ handles this for events that are already in the GTK+ queue, but
we also need suppress checks for events that are in the system queue - if we
return TRUE indicating that there are events in the system queue, then we'll
call dispatch(), and do nothing. The event source will spin, and will never
run the other phases of the paint clock.
(Broadway doesn't have a window system queue separate from the GDK event queue,
but we write the function the same way for consistency.)
https://bugzilla.gnome.org/show_bug.cgi?id=694274
gdkwindown-win32.c included windows.h directly rather than via gdkwin32.h
which broke the build for me at least. Instead rely on it being included in
gdkwin32.h and things work right.
Deprecate gdk_window_enable_synchronized_configure() and
gdk_window_configure_done() and make them no-ops. Implement the
handling of _NET_WM_SYNC_REQUEST in terms of the frame cycle -
we know that all processing will be finished in the next frame
cycle after the ConfigureNotify is received.
Both flashing a window and setting the window opacity were using
incorrect declarations for function pointers. They were missing the
WINAPI annotation as defined in windows.h. As a result, the stack
could be corrupted when these functions were invoked.
Fixes https://bugzilla.gnome.org/show_bug.cgi?id=689235
(cherry picked from commit 5637ef1f97)
We now have a proper MASTER/SLAVE input device split, where
the masters are virtual core input devices and we add fake hw
slave devices for the system pointer and real slave devices for
wintab devices.
We also set the proper source_device on the events so you can
tell which device sent it and properly decode the axis info.
Move g_return_if_fail() stuff from the backends to the public
functions in gdkscreen.c itself, and some fixes for ugly formatting in
the various gdkscreen-backend.c files.
When calling gtk_window_present(), gdk_win32_window_raise did not
actually raise the window anymore. Replacing BringWindowToTop() with
SetForegroundWindow() fixes this.
During testing, we also discovered that sometimes SetForeGroundWindow()
will (correctly) refuse to raise the window and fail(for example: sometimes
when dragging a different application at the time of a gtk_window_present()
call). To prevent a GdkWarning from being produced, usage of the API_CALL
macro has been removed for this case.
Additional goodies of SetForeGroundWindow:
- it brings the window to the front when the process owning the
window to raise is the foreground process (for example when
gtk_window_present is called from a GtkStatusIcon's activate
signal handler)
- it limits itself to flashing the task bar button associated
with the window if the process owning the window to raise
is *not* the foreground process (for example when gtk_window_present
is called from a g_timeout_add callback function)
https://bugzilla.gnome.org/show_bug.cgi?id=665760
The function returns the part of a monitors area that should be
used for positioning popups, menus, etc. The only non-trivial
implementation atm is in the X backend, all the other backends
just return the full monitor area. The X implementation is
currently suboptimal, since it requires roundtrips to collect
the necessary information. It should be changed to monitor
the properties for changes, when XFixes allows to monitor
individual properties.
https://bugzilla.gnome.org/show_bug.cgi?id=641999
This turns GdkWin32DragContext into a proper GdkDragContext subclass.
Because we now correctly initialize GdkWin32DragContext in
gdk_drag_context_new, we no longer crash immediatly when a DnD
operation is initialized (the find_window, drag_status, ... vfuncs
where all pointing to 0x0 instead of their proper win32 implementations).
We now try to consistently refer to GdkDragContext as "context",
GdkWin32DragContext as "win32_context" and the ole2 related
target_drag_context and source_drag_context as "ctx".
Members of GdkWin32DragContext only used by the ole2 DnD codepaths
are now explicitly marked with a ole2_dnd_ prefix.
We now do proper handling of existing invalid regions, and
we use ScrollDC which allows us to specify the right clip
region rather than just the bounding rect.
Positioning windows at 0,0 post creation failed, because it
was mapped with CW_USEDFAULT, but private->x/y still said 0,
so moving it to 0,0 did nothing. We now always position the
window at the right place, even when not mapped, but we
create it at CW_USEDEFAULT initially and store that position
before moving it to the right place.
This fixes the window sizing test in testgtk and the inital
position for the gimp toolbar.
The synaptics trackpad driver has some weird behaviour on scroll.
It pops up a window over the mouse pointer (looking like a scrollbar).
This has two problems:
* We get extra enter/leave events for the trackpad window
* We get back the trackpad window when we look for the window
under the mouse to deliver the mousewheel message.
So, we add some trackpad specific hacks to avoid this (sigh) based
on the trackpad window window class.
This fixes bug #542777 and was partially based on a patch there
from Peter Clifton.