The zoom/rotate change for quartz does not build on 10.7. This change
adds zoom/rotate support in quartz only for 10.8 and following. The
problems is described here:
https://bugzilla.gnome.org/show_bug.cgi?id=760276 and here
https://trac.macports.org/ticket/51052
NSEventPhaseMayBegin was only introduced in 10.8 although documentation
says it is introduced in 10.7. Tests on 10.7 indicate that the phase
property for the Magnify event is not supported at all on 10.7
On wayland, such axes are per-tool, we must update device capabilities
on the fly as new tools enter proximity, first the slave device so
it matches the current tool, and then the master device so it looks
the same than the current slave device.
Only the management of tablets and tools is added so far. No tablet events
are yet interpreted.
As it's been the tradition in GTK+, erasers are split into their own device,
whereas the rest of the tools are meant to be routed through the
GDK_SOURCE_PEN device. Both pen/eraser devices are slaves to a master
pointer device, separate to wl_pointer's. This is so each tablet can
maintain its own cursor/positioning accounting.
Signed-off-by: Stephen Chandler Paul <thatslyude@gmail.com>
This will enable multiple "pointers" to have separate data here.
Will come out useful when adding support for tablets, as they
will have a separate cursor for all purposes.
Because there are multiple different types of styluses that can be used with
tablets, we have to have some sort of identifier for them attached to the
GdkDeviceTool, especially since knowing the actual tool type for a GdkDeviceTool
is necessary for matching up a GdkDeviceTool with it's appropriate
GdkInputSource in Wayland (eg. matching up a GdkDeviceTool eraser with the
GDK_SOURCE_ERASER GdkInputSource of a wayland tablet).
Signed-off-by: Stephen Chandler Paul <thatslyude@gmail.com>
On the devices and backends that support it, this signal will be emitted
on slave/floating devices whenever the tool they are interacting with
changes. These notifications may also work as a sort of proximity events,
as the tool will be unset when the pen moves too far.
For backends, gdk_device_update_tool() has been included, all that should
be done on their side is just calling this whenever any tool might have
changed.
GdkDeviceTool is an opaque object that can be used to identify a given
tool (eg. pens on tablets) during the app/device lifetime. Tools are only
set on non-master devices, and are owned by these.
The accounting functions are made private, the only public call on
GdkDeviceTool so far is gdk_device_tool_get_serial(), useful to identify
the tool across runs.
This fixes a bug that was introduced by db1b24233e.
The reason why 0:0 coordinates were passed was that SWP_NOREPOSITION was
misinterpreted as SWP_NOMOVE. That is not the case - SWP_NOREPOSITION
prevents owner Z-order change, not the window position change.
gnome-control-center is calling gtk_window_resize() on configure-event
signals which leads to a busy loop.
Avoids such a busy loop by not re-configuring a window with the same
size, unless this is coming from and xdg-shell configure.
bugzilla: https://bugzilla.gnome.org/show_bug.cgi?id=764374
When we invalidate a window we need to also invalidate all child windows
that are native (non-native are automatically invalidated as we track
invalidation once per native window only). This was done in a pretty
inefficient way, recursing over the entire tree.
This makes the invalidation much faster by only looking at the native
children of the native window we're in, filtering out those that
are not a descendant of the client side window we're interested in.
Given that there are very few native subwindows this is much faster.
Currently only one kind of decorative window is in use - the shape
indicator that is shown when snapping windows to the edge of the screen.
When normal toplevel class is used, its window procedure expects certain
motions from GDK (passing user data to CreateWindowEx(), registering
handle in a hash map etc), and might crash if that is not done.
Dumb window doesn't require anything, it can just be.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
Now halfleft/halfright/fullup snaps do hug screen edges as intended.
Documents AeroSnap behaviour when snapped windows are drag-resized
(currently this implementation handles this in a very simplistic way).
Don't believe GTK when it tells us that window shadow is 0, preserve
previous values (but do remember that GTK wants no shadow, in case
we need that).
Fixes a couple of bugs in unsnapping (check offset against the half
of the window; don't put pointer in the middle of the window vertically
if it still fits in the top half).
https://bugzilla.gnome.org/show_bug.cgi?id=763013
Implements gdk_win32_window_set_shadow_width().
Uses shadow width/height to adjust max tracking size, allowing
windows to be drag-resized to cover the whole desktop.
Also uses SM_C*VIRTUALSCREEN instead of SM_C*MAXTRACK.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
Indicator is a bare layered click-through native window,
painted completely by GDK, including animation.
This commit also isolates some of the more spam-ish debug logging
under ifdef.
This commit also changes the system metric used for maximal window
height for the snapping purposes. Turns out, SM_CYMAXTRACK is way
too large, use SM_CYVIRTUALSCREEN instead.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
This implements the part of AeroSnap that snaps windows when you
drag them (while moving or resizing) to the edge of the screen.
It also fixes drag behaviour for snapped and maximized windows
(if such windows are dragged, first they must be unmaximized/unsnapped).
Note that this code does not take into account the shadow width, and
because of that the under-pointer-position-preserving window moves
might not look as such for maximized windows, which lack the shadow
when maximized, but do have the shadow when unmaximized.
This commit also doesn't cover some corner-cases the same way AeroSnap does.
Also, the snapping indicator (which is supposed to be a window shape that
shows where the window will be if the drag op is stopped at its current
point) is not being drawn, all routines responsible for its creation,
moving and drawing are stubs.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
This is what AeroSnap does. If a window is being unsnapped on
a new monitor, check if the work area is large enough for the
window to fit in its normal size. If the window fits, just
reposition it so that the ratio of
left-window-edge-to-screen-edge / right-window-edge-to-screen-edge
remains the same, without scaling the window.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
It works exactly like AeroSnap.
Except for shift+win+left/right, which is left for AeroSnap
to handle (AeroSnap takes action before we get the message,
so there's no way for us to override it).
The only thing that doesn't work is shift+win+left/right on
a maximized window, for reasons unknown at the moment.
This only implements winkey+stuff behaviour of AeroSnap,
not the drag-to-the-edge-and-something-funny-happens one.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
If a layered window was hidden and is made visible, erase its
contents before showing it. GDK will schedule a redraw, but until
then we generally don't want to show old contents.
https://bugzilla.gnome.org/show_bug.cgi?id=763783
This is achieved by sending undocumented message WM_SYSMENU
to the window.
Before doing that, the window is given WS_SYSMENU style
(to enable window menu) and some combination of
WS_MAXIMIZEBOX (for "Mazimize" item)
WS_MINIMIZEBOX (for "Minimize" item)
WS_SIZEBOX (for "Size" item)
depending on which operations are currently permissible.
WM_SYSMENU is processed by DefWindowProc(), which results
in showing the window menu. We remove extra styles
at the first opportunity (WM_INITMENU message), as they
alter the way our window is rendered.
https://bugzilla.gnome.org/show_bug.cgi?id=763851