we were not checking the return gboolean of
gtk_action_muxer_query_action() which was
returning FALSE for the crash case, meaning
it didn't set the passed in GVariant, but
we were still using it as it was non-null.
Fixes#5729
Calling gtk_list_box_remove_all() is a no-op with a bound model; after
the introduction of the remove_all() method in 49e56fc7, we were left
with row widgets after the dispose() call chained up.
We could restore the explicit unparenting inside dispose() instead of
calling remove_all(), but since the bound list model is provided by the
user of GtkListBox, it's more appropriate to unbind it in the dispose()
implementation, to avoid any potential reference cycle (especially in
higher level languages that have no explicit reference acquisition).
We clean up the bound model, and its associated state, if any; and then
we remove all the row widgets that are left.
Basically what GL does, but without any debug or feature flag
to gatekeep it, since the Vulkan backend itself is experimental
already.
Ceil surface sizes, and floor coordinates, to the fractional scale
value.
The rects passed to the clip region are in buffer coordinates, and
must not be scaled. Consider the following scenario: Wayland, with
a 1024x768@2 window. That gives us a 2048x1536 raw image. To setup
the Vulkan render pass code, we'd scale 2048x1536 *again*, to an
unreasonable 4196x3072, which is (1) incorrect and (2) really
incorrect and (3) can lead to crashes at best, full GPU resets
at worst - and a GPU reset is incredibly not fun!
Now that we pass the right clip regions at the right coordinates
at all times, remove the extra scaling from the render pass.
This part of the Vulkan renderer is almost exactly equal to the GL
renderer, and the GL renderer already does that since at least
2a38cecd33. Copy that into the Vulkan renderer.
A nice side effect from this commit is that resizing a window now
actually works again.
Sneak in a trivial cleanup by using a variable to hold the draw
index.
This was a tricky one to figure out, but it's pretty simple to
understand (I hope!).
So, this AMD card I'm using requires buffer memory sizes to be
aligned to 16 bytes. Intel is aligned to 4 bytes I think, but
AMD - or at least this AMD model in particular - uses 16 bytes
for alignment.
When creating a a particular texture (I did not determin which one
specifically!) a buffer of size 1276 bytes is requested.
1276 / 16 = 79.75, which is clearly not aligned to the required
16 bytes.
We request Vulkan to create a buffer of 1276 bytes for us, it
figures out that it's not aligned, and creates a buffer of 1280
bytes, which is aligned. The extra 4 bytes are wasted, but that's
okay. We immediately query this buffer for this exact information,
using vkGetBufferMemoryRequirements(), and proceed to create actual
memory to back this buffer up.
The buffer tells us we must use 1280 bytes, so we pass 1280 bytes
and everyone is happy, right? Of course not. We pass 1276 bytes,
and Vulkan is subtly unhappy at us.
Fix that by passing the value that Vulkan asks us to use, i.e.,
the size returned by vkGetBufferMemoryRequirements().