When creating an image using gsk_vulkan_image_new_for_framebuffer(),
it passes VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL.
However, this is a mistake. The spec demands that the initial
layout must be either VK_IMAGE_LAYOUT_UNDEFINED or
VK_IMAGE_LAYOUT_PREINITIALIZED.
Apparently this was an oversight from commit b97fb75146, since the
commit message even documents that, and all other calls pass either
VK_IMAGE_LAYOUT_UNDEFINED or VK_IMAGE_LAYOUT_PREINITIALIZED.
Create framebuffer images using VK_IMAGE_LAYOUT_UNDEFINED, which is
what was originally expected.
Instead of tracking a single scale, track x and y scales separately.
Factor out gsk_vulkan_render_pass_new() into a private function that
receives both scales, and pass 'scale_factor' for both.
This is mostly a cosmetic change, and the goal is twofold:
1. Make it easier to spot unimplemented render node types; and
2. Prepare for a small rework
The implementation for each node now lives in specific functions,
like the GL renderer; unlike the GL renderer, however, we use a
node type vtable to map GskRenderNodeType → implementation. Render
node without an implementation map to NULL, and use the fallback
implementation. Render nodes that fail any check and return FALSE
also use fallback implementation.
Add GskMaskNode, and support it in the render node
parser, in the inspector and in GtkSnapshot.
The rendering is just fallback for now.
Based on old work by Timm Bäder.
Having the initial layout set to VK_IMAGE_LAYOUT_GENERAL causes issues
when going from the final layout to the initial layout since the image
layout is expected to be the general layout. Setting the initial layout
to undefined doesn't have this restriction.
Move the resources of each renderer to its subdirectory.
We've previously done that for the ngl renderer, but it
is better to be consistent and do it for all the renderers.
Hook up the "Show fallback rendering" switch for Vulkan.
This brings home the sobering truth that the Vulkan renderer
is doing *all* fallback, since we switched from offset nodes
to transform nodes.
For vulkan/broadway this just means to ignore it, but for the gl
backend we support (with up to 4 texture inputs, which is similar to
what shadertoy does, so should be widely supported).
Language bindings—especially ones based on introspection—cannot deal
with custom type hiearchies. Luckily for us, GType has a derivable type
with low overhead: GTypeInstance.
By turning GskRenderNode into a GTypeInstance, and creating derived
types for each class of node, we can provide an introspectable API to
our non-C API consumers, with no functional change to the C API itself.
When we use if (GDK_PROFILER_IS_RUNNING) this means we get an
inlined if (FALSE) when the compiler support is not compiled in, which
gets rid of all the related code completely.
We also expand to G_UNLIKELY(gdk_profiler_is_running ()) in the supported
case which might cause somewhat better code generation.
UNDEFINED initial layouts may not preserve the contents
of the attachment after transitioning the layout. We want
them to be preserved because we do partial rendering.
Use GENERAL as the initial layout for render passes.
Multiple images in the before barrier array are defined with
VK_ACCESS_TRANSFER_WRITE_BIT and VK_ACCESS_TRANSFER_READ_BIT,
which requires passing VK_PIPELINE_STAGE_TRANSFER_BIT and
VK_PIPELINE_STAGE_HOST_BIT to vkCmdPipelineBarrier().
Pass these flags correctly.
Pass the glyph position into the glyph caching functions,
not just the glyph index. This allows us to cache different
images for different subpixel positions.
They were a neat idea while they lasted. But now, it's time for
categorized transform nodes, where matrices with
GSK_MATRIX_CATEGORY_2D_TRANSLATE are the exact replacement.
Renderers have not been adapted for this purpose, so they (continue to)
run slow paths.
Some of the flags got lost in the meson transition or were demoted from
error flags to warning flags.
This commit reintroduces them.
It also includes fixes for the code that had warnings with those flags.
The big one being -Wshadow.
As they require a draw context and the draw context is already bound to
the surface, it makes much more sense and reduces abiguity by moving
these APIs to the draw context.
As a side effect, we simplify GdkSurface APIs to a point where
GdkSurface now does not concern itself with drawing anymore at all,
apart from being the object that creates draw contexts.