The X11 queue_translation operation uses NextRequest to get the serial
of the XCopyArea operation where the translation should end. However,
if the gc passed to gdk_draw_drawable has a non-flushed clip region
(which it commonly has now for the window clipping) then the next
operation will be the GC flush, not the XCopyArea.
To handle this right we now pass in the GC to be used to
queue_translation and ensure that it is flushed before calling
NextRequest().
When we copy the region we need to also re-expose the areas of
the copied region that was not also in the destination.
And, we need to do this invalidation after the move, as the
move also moves any invalid area.
If there are outstanding moves in an area that intersects
the source of an outstanding move we need to move the invalid
area correspondingly, otherwise we will expose the wrong area
as the outstanding move copy will happen before we expose
the invalid area.
When moving an area we move any invalid region in this area to the
new place, but there really is no need to remove the old invalid
area as it would just be invalidated again (being newly exposed).
This extends the usage of the native clear region call such that its
called also for windows that have parent relative background all the
way up to a native window. That way we get true background relative
background clearing even to a foreign parent, which means that some
transparent notification icons look right again.
GdkDrawable->draw_drawback was replaced with a new vfunc
draw_drawback_with_src that is now called from gdk_draw_drawable.
However, some code seems to call the vfunc directly (see bug #591288),
so make it chain to the new call.
Note that such direct vfunc calls are a bad idea and won't work for all
cases.
This moves the native show/hide calls to the generic code
for calculating viewable rather than in its own separate code
called from gdk_window_show/hide. This simplifies the code a bit,
but most significantly it means things are correctly shown when
they become viewable for other reasons than a show/hide call.
For instance, this fixes bug 590442 (gvim embedding) where the
toplevel GtkPlug is mapped by the embedder and we didn't previously
pick up that the native children became viewable and should be shown.
We used to invalidate the whole window when raised, but this is
unnecessary much, we now just invalidate the visible area minus the
previously visible area.
This also fixes a problem where expose calling raise caused a loop (#588438)
This never worked before csw since the root window is never
set as IS_MAPPED, but with the new viewable check (which is
true for the root window) we could erronously queue exposes
on the root window.
This happened unexpectedly in bug 589369, where metacity
got a GraphicsExpose event on the root window due to some
graphics operation, queueing an expose which would be handled
by clearing that area. That is fixed with this commit.
This seems to more or less fix the build. On Tiger there are still issues
with libresolv missing on the link line, I will figure out what's up with
that soonish.
We get the real pixmap size and use as cairo surface size rather
than doing some magic to try to get clipping on the right hand size
(and the magic looks wrong anyway).
The previous code could result in the width/height being to big for
the cairo 28.4 fix point size and thus not drawing anything.
This fixes bug #588076.
When the fallback for gdk_draw_pixbuf (gdk_drawable_real_draw_pixbuf)
is called with a window destination we have already applied any clip
regions and offsets for the window, but the window we get is a wrapper
and not an impl. We have to ensure we really draw to the impl, as
otherwise the pixbuf drawing will be clipped by client side subwindows.
This fixes bug 588553.
gdk_window_input_shape_combine_mask() can accept NULL for the mask
parameter, but it wasn't checking for NULL before passing the
resulting GdkRegion to gdk_region_destroy(). Fixes#589275
When the region is empty we can return early, because there
is no more area to remove. This happens often for children
of scrolled windows (i.e. things that are clipped out.