After commit 447bc18c48 EGL on X11 broke.
But the handling of the GL context also was quite awkward because it was
unclear who was responsible for ensuring it got reset.
Change that by making gdk_gl_context_clear_current_if_surface() return
the context (with a reference because it might be the last reference) it
had unset, so that after changing EGL properties the code that caused
the clearing can re-make it current.
This moves the responsibility to the actual code that is dealing with
updating properties and frees the outer layers of code from that task.
And that means the X11 EGL code doesn't need to care and the code in the
Wayland backend that did care can be removed.
Related: !7662Fixes: #6964 on X11
This essentially reverts the changes from
c230546a2c but implies new semantics.
Namely, surface-attached contexts can now be bound to EGL_NO_SURFACE if
the windowing system isn't ready yet.
It is the task of the windowing system to make sure the context is
properly rebound when the contents become available.
We ensure this by checking in begin_frame() if we created the EGL window
and if we did, we make_current(). This works because creating the EGL
window creates the EGL surface and that does a clear_current(), so this
is always going to have the desired effect of re-making the current
context.
It is very convoluted though.
Fixes: #6964
Related: https://gitlab.freedesktop.org/mesa/mesa/-/issues/11784
We do this because:
a) The parent class (GdkGLContext) already stores the paint regions of
previous frames, no need to do the same.
b) The painted region passed to end_frame () includes the backbuffer's
damage region, so it's not really what we want.
This also fixes a leak of cairo_region_t that I introduced by mistake
in !7418
We need to ensure that an EGL surface exists before we call
eglMakeCurrent() with it. Otherwise we might end up binding to
EGL_NO_SURFACE and then never revising that decision.
Which leads to not rendering to the backbuffer, but into the void.
Fixes X11 rendering being black
Fixes#6930
The current resizing implementation in the GDK-Win32 backend is not
telling GDK early enough for Vulkan that a resize in the surface (i.e.
HWND) is done, so that GDK can re-create swapchain in time, which is
apparent on nVidia drivers (and AMD drivers that utilize the mailbox
presentation mode on Windows) when the HWND is being enlarged
interactively.
To work around this, bar a refactor in the Windows resizing/presentation
code, is to call _gdk_surface_update_size() when we really did resize
the HWND when we handle queued resizes via SetWindowsPos().
The existing call in gdksurface-win32.c in
_gdk_win32_surface_compute_size() remains required, otherwise the
surface won't display initially.
Thanks to Benjamin Otte for pointing this possibility out.
We don't need to hardcode all the interface names as string literals,
since they come as part of the wl_interface structs in the protocol
bindings we use.
The easiest things trigger the silliest mistakes. Add tests
for various properties we want our transfer functions to have,
such as:
- be inverse of each other
- stay within the defined ranges
- by symmetric around 0
Set primaries without name if supported, when named primaries are not.
But prefer named primaries if available.
This is just an attempt at defensive coding.
If we get sent primaries with the values as named primaries, treat them
like named primaries.
Fixes colorstate support on Kwin, which never sends named primaries.
If the texture covers all of the black background (like when watching a
1080p stream fullscreen on a 1080p monitor) we don't need a compositor
with single pixel support.
Fixes offloading in Kwin.
There's a ton of error checking happening that we want to do.
Because it turns out it is not really useful to create a subsurface for
the single pixel buffer when we don't even support single pixel buffers.
begin_frame_full does not return a reference, we assume that the
color state is staying alive for the duration of the frame anyway,
so end_frame simply sets priv->color_state to NULL.
We need to round outwards and a 1x1 rectangle with offset 0.5,0.5 should
end up as a 3x3 rectangle with offset 0,0 when rounded, not as a 2x2
rectangle.
We need to round outwards and a 1x1 rectangle with offset 0.5,0.5 should
end up as a 3x3 rectangle with offset 0,0 when rounded, not as a 2x2
rectangle.
The backbuffer's damage region is the region of the backbuffer
that doesn't contain up-to-date contents. This is determined
by the backbuffer's age and previous frame's paint regions.
This enables incremental rendering