Adds the gdk_display_ref_vulkan() and gdk_display_unref_vulkan()
functions which setup/tear down VUlkan support for the display.
Nothing is using those functions yet.
This adds the new type GdkGLContext that wraps an OpenGL context for a
particular native window. It also adds support for the gdk paint
machinery to use OpenGL to draw everything. As soon as anyone creates
a GL context for a native window we create a "paint context" for that
GdkWindow and switch to using GL for painting it.
This commit contains only an implementation for X11 (using GLX).
The way painting works is that all client gl contexts draw into
offscreen buffers rather than directly to the back buffer, and the
way something gets onto the window is by using gdk_cairo_draw_from_gl()
to draw part of that buffer onto the draw cairo context.
As a fallback (if we're doing redirected drawing or some effect like a
cairo_push_group()) we read back the gl buffer into memory and composite
using cairo. This means that GL rendering works in all cases, including
rendering to a PDF. However, this is not particularly fast.
In the *typical* case, where we're drawing directly to the window in
the regular paint loop we hit the fast path. The fast path uses opengl
to draw the buffer to the window back buffer, either by blitting or
texturing. Then we track the region that was drawn, and when the draw
ends we paint the normal cairo surface to the window (using
texture-from-pixmap in the X11 case, or texture from cairo image
otherwise) in the regions where there is no gl painted.
There are some complexities wrt layering of gl and cairo areas though:
* We track via gdk_window_mark_paint_from_clip() whenever gtk is
painting over a region we previously rendered with opengl
(flushed_region). This area (needs_blend_region) is blended
rather than copied at the end of the frame.
* If we're drawing a gl texture with alpha we first copy the current
cairo_surface inside the target region to the back buffer before
we blend over it.
These two operations allow us full stacking of transparent gl and cairo
regions.
Change the visibility handling to be the same way we do it in
GLib now. We pass -fvisibility=hidden to gcc and decorate public
functions with __attribute__((visibility("default"))).
This commit just does this for GDK, GTK+ will follow later.
This function can be used to find the GdkDevice wrapping
an XInput2 device ID. For core devices, the Virtual Core
Pointer/Keyboard IDs (2/3) may be used.
This function can be used to find out the XInput2 device ID
behind a GdkDevice, mostly useful when you need to interact
with say Clutter, or raw libXi calls.
Previously we weren't installing the device headers when compiling
without XINPUT support. But we would include them from gdkx.h, so
essentially the build was broken.
With this patch the types will exist but not do anything.
Remove the --sync option and remove the possibility of backend-specific
commandline options altogether. --sync is being replaced by
a GDK_SYNCHRONIZE environment variable.
These functions were trivial g_spawn wrappers in all backends
except for X11, and they can be easily replaced by
g_app_info_create_for_commandline + GdkAppLaunchContext.
This commit hides the GdkDisplayManager instance and class structs,
adds vfuncs for listing displays, opening displays, and getting and
setting the default display. The X11 backend has a derived
GdkDisplayManagerX11.
The gdk_display_manager_get() function is responsible for deciding on
which of the compiled in backends to use. Currently, it consults the
GDK_BACKEND environment variable and falls back to x11.
The old functions to get core pointer and devices list are gone as
well. This slice is entirely replaced internally by multidevice
handling and may just go.