This is mostly an empty shell for now. We only have static instances
for srgb and srgb-linear, which we will use as markers during our
node processing.
In the future, this object may grow more instances, as well as the
ability to create them from and save them to icc profiles or cicp
data. And a color conversion API.
This is a temporary solution to allow testing how well linear rendering
already works while refactoring code.
This will be removed once linear rendering is the default.
If the GL texture is exportable to a dmabuf, we can just use our dmabuf
importing code to get that texture into Vulkan.
There is no need to go via host memory in that case.
And if it doesn't work, we just fall back, like before.
We have code with proper error handling for dmabuf export, we can just
try to use it.
And if it doesn't work, we don't offload the texture like before.
But it does work - at least for me.
Instead of hardcoding which textures we presumably support, just try
creating a buffer and use the failure of that for the error message.
This makes the error message a bit less obvious, but it makes it
possible to refactor the get_buffer() code without having to deal with
the error path.
If we want to improve the debug message, we can start putting debug
messages into the get_buffer() function.
But I think this is good enough.
Unimplemented nodes are a failure now.
We make this a soft failure with a g_warning() so that during
development when adding new nodes, the renderer doesn't instantly crash,
but instead prnts a warning.
But we do consider unimplemented nodes a bug now.
Because of that, add_fallback_node() is now renamed to add_cairo_node().
Everyone should draw the error pink here, because that's what the
renderers not supporting it do, and it's also what the default shader
does.
So no matter if a renderer supports GL shaders or not, it should draw
the same pink.
When determining which way is up for the offloaded texture, we
must take all transforms into account - the ones outside the
subsurface node, and the ones inside.
By moving negative affines to be treated like dihedrals, because they
also need support of the modelview, we can free up the affine branch for
doing work without it.
Not a big win I guess, but it makes scaling more efficient.
This allows handling them without ever needing to offscreen for losing
the clip, because the clip can always be transformed.
Also, all the optimizations keep working, like occlusion culling,
clears, and so on.
The main benefit of this work is the ability for offloading to now
handle dihedral transforms of the video buffer.
The other big advantage is that we can now start our rendering with a
dihedral transform from the compositor.
This category does a finer-grained categorization than
GskTransformCategory, but it is deliberatedly made to allow
easy backwards compatibility.
The reason for the categories is that they fit our renderers more
fine.
In particular, it allows implementing wl_output_transform support more
efficiently, thereby allowing rendering buffers the right way for
rotated phone screens or monitors.
The rectangles need to touch/overlap in both directions, otherwise
there's no coverage that covers both rectangles.
Test included.
Fixes rendering glitches in various apps when redrawing.
Fixes: #6849
... instead of init_draw(); add_node(); finish_node();
We hook into the infrastructure one step earlier and close to where the
default renderer_render() and renderer_render_texture() arrive in the
nodeprocessor.
Why is this relevant?
Because process() does occlusion culling.
TL;DR: offscreens do culling now
We import them as general, so they should be exported like that.
This was a longstanding issue that I never got around to fixing and I'm
touching this code anyway atm.
See commit 3aa6c27c26 for more details.