We clear GtkTickCallbackInfo on creation to ensure all fields start
as 0. Before we sometimes ended up with destroyed being 1
so the tick was never called.
gtk_icon_info_copy and gtk_icon_info_free are deprecated for
the corresponding GObject methods.
We set correct transfer markup for the GtkIconInfo returning methods
to fix the introspection of them.
gtk_icon_info_load_symbolic_for_context_async had the wrong method
name in its documentation block.
We need to disconnect the frame clock when we unrealize (at which
point the old clock is still alive) not in destroy(). Since there
is no common unrealize for containers, trigger this from GtkWidget.
A switch of device may be significant for an application, so don't
compress motion events if they are for different devices. This simple
handling isn't sufficient if we have competing event streams from
two different pointer events, but we don't expect this case to be
common.
* remove gdk_frame_clock_get_frame_time_val(); a convenience
function that would rarely be used.
* remove gdk_frame_clock_get_requested() and
::frame-requested signal; while we might want to eventually
be able to track the requested phases for a clock, we don't
have a current use case.
* Make gdk_frame_clock_freeze/thaw() private: they are only
used within GTK+ and have complex semantics.
* Remove gdk_frame_clock_get_last_complete(). Another convenience
function that I don't have a current use case for.
* Rename:
gdk_frame_clock_get_start() => gdk_frame_clock_get_history_start()
gdk_frame_clocK_get_current_frame_timings() => gdk_frame_clock_get_timings()
Since we're not exporting the ability to create your own frame
clock for now, remove the setters for GdkFrameTimings fields.
Also remove all setters and getters for fields that are more
about implementation than about quantities that are meaningful
to the applcation and just access the fields directly within
GDK.
Now that GdkFrameClock is a class, not interface, there's no real advantage
to splitting the frame history into an aggregate object, so directly
merge it into GdkFrameClock.
It's unlikely that anyone will want to have, say, a GtkWidget that
also acts as a GdkFrameClock, so an abstract base class is as
flexible as making GdkFrameClock an interface, but has advantages:
- If we decide to never make implementing your own frame clock
possible, we can remove the virtualization.
- We can put functionality like history into the base class.
- Avoids the oddity of a interface without a public interface
VTable, which may cause problems for language bindings.
Instead of making the frame clock a settable property of a window, make
toplevel windows inherently have a frame clock when created (getting
rid of the default frame clock.) We need to create or destroy frame
clocks when reparenting a window to be a toplevel, or to not be a
toplevel, but otherwise the frame clock for a window is immutable.
Add a very simple GtkWidget function for an "tick" callback, which
is connected to the ::update signal of GdkFrameClock.
Remove:
- GtkTimeline. The consensus is that it is too complex.
- GdkPaintClockTarget. In the rare cases where tick callbacks
aren't sufficient, it's possible to track the
paint clock with ::realize/::unrealize/::hierarchy-changed.
GtkTimeline is kept using ::update directly to allow using a GtkTimeline
with a paint clock but no widget.
If we get a focus event for a X window we don't recognize, just
ignore it and avoid a g-critical when
_gdk_device_manager_core_handle_focus() is called with a NULL window.
Deprecate gdk_window_enable_synchronized_configure() and
gdk_window_configure_done() and make them no-ops. Implement the
handling of _NET_WM_SYNC_REQUEST in terms of the frame cycle -
we know that all processing will be finished in the next frame
cycle after the ConfigureNotify is received.
The first version of the video-timer simply played back the video
according to the wall clock, and showed each frame at the neareste
presentatin time. But an alternative strategy for playing back
video is that if the frame-rate is an integer-divisor of the
display refresh rate, or very close to that, is to change the playback
speed to complete avoid frame drops and changes in latency.
(This would require resampling audio if present.)
Demonstrate this technique by adding a --pll option to the
video-timer demo.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Add a test case that simulates the timing operaton that goes on
when showing a constant frame rate stream like a video - each
frame is shown at the VBlank interval that is closest to when it
would ideally be timed.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
For an operation like synchronizing audio to video playback, we need to
be able to predict the time that a frame will be presented. The details
of this depend on the windowing system, so make the backend predict
a presentation time for ::begin-frame and set it on the GdkFrameTimings.
The timing algorithm of GdkFrameClockIdle is adjusted to give predictable
presentation times for frames that are not throttled by the windowing
system.
Helper functions:
gdk_frame_clock_get_current_frame_timings()
gdk_frame_clock_get_refresh_info()
are added for operations that would otherwise be needed multiple times
in different locations.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Show the average and standard deviation of the latency in addition to
the frame rate. Add options to print the output in machine-readable form,
and to control the frequency and total number of statistics that will be
output.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
We want the compositor to do different things for frames where
"slept before" is TRUE. Communicate to the compositor that
frame is a no-delay frame (slept_before=FALSE) by ending the frame
by increasing the counter value by 1, and that the frame is a
normal frame (slept_before=TRUE) by increasing the counter value
by 3.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Add functions that tell us whether the main loop slept before we drew
a frame. Blocking with the frame clock frozen doesn't count as sleeping.
We'll use this to advertise to the compositor whether we
are drawing as fast as possible (and it should do the same) or timing
frames carefully (and it should do the same.)
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Don't start the idle if we're in the middle of painting a frame -
this will prevent us from getting the timing right when starting
the idle after the frame.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
In order to be able to track statistics about how well we are drawing,
and in order to be able to do sophisticated things with frame timing
like predicting per-frame latencies and synchronizing audio with video,
we need to be able to track exactly when previous frames were drawn
to the screen.
Information about each frame is stored in a new GdkFrameTimings object.
A new GdkFrameHistory object is added which keeps a queue of recent
GdkFrameTimings (this is added to avoid further complicating the
implementation of GdkFrameClock.)
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Instead of communicating the start of a frame to the window manager
as soon as we begin a frame, start a frame only when we know we've
actually created damage to the contents of a window.
(This uses cairo_set_mime_data() as a notification mechanism - a
clever suggestion from Uli Schlachter.)
The advantage of this is that we aren't forcing the compositor to
do a frame cycle and send _NET_WM_FRAME_DRAWN - depending on how the
compositor is structured that might either cause it to do extra
work or it might send _NET_WM_FRAME_DRAWN early and upset frame
timing.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Since events can be paused independently for each window during processing,
make _gdk_display_pause_events() count how many times it is called
and only unpause when unpause_events() is called the same number of
times.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Unqueuing events from the windowing system when paused could result
in weird reordering if event filters resulted in application-visible
behavior. Since we now resume events when the frame clock is frozen,
we now no longer count on low-level event handling running while
event handling is paused.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Keeping events paused after the end of a frame put us in a
weird state where we had to process and queue events - so that
we would get the message from the compositor - but not deliver
them. Instead resume events before ending the frame.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
When we have pending motion events, instead of delivering them
directly, request the new FLUSH_EVENTS phase of the frame clock.
This allows us to compress repeated motion events sent to the
same window.
In the FLUSH_EVENTS phase, which occur at priority GDK_PRIORITY_EVENTS + 1,
we deliver any pending motion events then turn off event delivery
until the end of the next frame. Turning off event delivery means
that we'll reliably paint the compressed motion events even if more
have arrived.
Add a motion-compression test case which demonstrates behavior when
an application takes too long handle motion events. It is unusable
without this patch but behaves fine with the patch.
https://bugzilla.gnome.org/show_bug.cgi?id=685460