It includes a fallback list of fourccs. Otherwise we might miss some
DRM_FORMAT definition.
This happens in SLES12:
```
../testsuite/gdk/dmabufformats.c: In function ‘test_dmabuf_formats_basic’:
../testsuite/gdk/dmabufformats.c:29:56: error: ‘DRM_FORMAT_ABGR16161616F’ undeclared (first use in this function); did you mean ‘DRM_FORMAT_ABGR2101010’?
29 | g_assert_true (gdk_dmabuf_formats_contains (formats, DRM_FORMAT_ABGR16161616F, DRM_FORMAT_MOD_LINEAR));
```
Look for nodes like subsurface { clip { texture {} } }, and use
the clip to provide a source rectangle for subsetting the texture.
Update affected tests, and add a new one.
This will let us use a subset of the full texture, which can
be necessary in the case that converters put padding around
content in dmabufs. The naming follows the Wayland viewporter
spec.
For now, make all callers pass the full texture rect.
We are going to introduce another rect, so better to be clear in
naming. We are following the naming of the Wayland viewporter spec
and call the rectangle that we drawing into the dest(ination).
We can just check if the subsurfaces contain content - and if they do,
they will be offloading and we can ignore the diff.
This essentially reverts 48740de71a
Instead of relying on diffing subsurface nodes, we track damage
generated by offloaded contents inside GskOffload.
There are 3 stages a subsurface node can be in:
1. not offloaded
Drawing is done by the renderer
2. offloaded above
The renderer draws nothing
3. offloaded below
The renderer needs to punch a hole.
Whenever the stage changes, we need to repaint.
And that can happen without the subsurface's contents changing, like
when a widget is put above the subsurface and it needs to to go from
offloaded above to below.
So we now recruit GskOffload for tracking these changes, instead of
relying on the subsurface diffing.
But we still need the subsurface diffing code to work for the
non-offloaded case, because then the offloading code is not used.
So we keep using it whenever that happens.
Not that when a subsurface transitions between being offloaded and not
being offloaded, we may diff it twice - once in the offload code and
once in the node diffing - but that shouldn't matter.
The dmabuf texture tests are failing, so we don't run them in
ci, but the format tests are perfectly fine, so split them off.
Add some tests for GdkDmabufFormatsBuilder and for the new
gdk_dmabuf_formats_equal(), too.
The node processing wasn't skipping 0-size nodes when using the
uber shader, leading to assertions down the road. Since the ngl
renderer doesn't use uber shaders, this only affects vulkan.
Test included.
Fixes: #6370
When we don't have an embedded font file via a url, then we want
to parse fonts "as normal", i.e. allow fallback for aliases like
"Monospace 10". This was broken when the url support was added.
Make it work again.
Update affected tests. In particular, the output of the text-fail
test goes back to be the same it was before the url changes.
See previous commit for an explanation of the problem.
This test actually draws a rounded border, but the rounding is clipped
away. What is remaining is the 4 corners of the border, where the
top/bottom color is red and the left/right color is green. But because
the bottom/right side has a width of zero, the result should be all red.
We are not catching bugs when inserting if we're right at a boundary.
This because we never add or remove items from a section. We only ever
add or remove whole sections.
Introduce a test which inserts items at a random position inside of a
section.
With the --repeat version of this test, Cairo needs to draw partially
clipped glyphs. However, there's a bug in Cairo where it doesn't account
for the subpixel positioning when clipping, so the glyphs get cut off at
the edge.
This is filed as https://gitlab.freedesktop.org/cairo/cairo/-/issues/821
Draw a grid of 21x21 box glyphs.
Each glyph is offset by n/20 pixels in the x and y direction.
The background color is carefully selected to be divisible by 16, so
that when the box glyph is subpixel positioned by 1/4th of a pixel
offset from the pixel grid in either direction, the result will be an
edge pixel whose color value can be computed exactly.
Cairo still rounds this wrong for color values >= 128 which is why we
use a dark gray that guarantees the resulting color values are all <128.
Clip from 1025px (which is what this test is about) to 1024px because the
GLES2 renderer in CI otherwise scales its repeat node offscreen for the
--repeat version of this test and that conveniently produces off-by-one
misrenderings everywhere.
However, we need to keep the image large enough so that all the glyphs
are actually rendered and not skipped which would not overflow the
cache.
This test is specifically engineered to trigger an overflow in the glyph
renderer that was theorized on IRC with an earlier patchset.
If only one slice was available, and that slice was not high enough to
hold the glyph we were trying to put in there, it would allocate a slice
that was too small. The check for the size was missing.
So now add a test that fills up all the slices in the glyph cache apart
from one and than tries to add one final glyph that is too large for the
last slice.
After the node-editor crashed on me once too often, I decided to take a
good hard look at the parsing code and add a bunch of weird corner
cases into the testsuite.
That meant redoing the parser so that the error paths cause neither
crashes nor duplicated or wrong error messages.
The gl renderer has an optimization where it uses the glyph atlas
to render color nodes that show up in the middle of text (e.g. for
underlines and carets). This adds a simple test for that scenario,
which hits this codepath.