This is mostly a cosmetic change, and the goal is twofold:
1. Make it easier to spot unimplemented render node types; and
2. Prepare for a small rework
The implementation for each node now lives in specific functions,
like the GL renderer; unlike the GL renderer, however, we use a
node type vtable to map GskRenderNodeType → implementation. Render
node without an implementation map to NULL, and use the fallback
implementation. Render nodes that fail any check and return FALSE
also use fallback implementation.
The scrolling code assumes the adjustment values are up to date or
it crashes and before we've run size_allocate() we haven't update them.
Fixes a crash in the gtk-demo scrollinfo that would set the adjustments
with random values (via ScrolledWindow.set_child()) and then scroll in a
tick callback right before the (first) size_allocate().
The Lunarg validation layers seem to have been deprecated in favour
of the Khronos ones. There's no reason not to have both, to accept
loading both - simultaneously, even.
Instead of passing a single, potentially massive rectangle that is
just the extents of the damage rect, collect and pass all damage
rects individually.
Add a new flag to track whether buffer scale is dirty or not,
and centralize calling wl_surface_set_buffer_scale() in a single
place: gdk_wayland_surface_sync_buffer_scale().
gdk_wayland_surface_sync_buffer_scale() is only called by
gdk_wayland_surface_sync(), which itself is called by the GL,
Vulkan, and Cairo contexts, right before submitting a frame.
This ensure that each frame has an up-to-date buffer scale.
This mimics how opaque and input regions are tracked.
According to the at-spi2 docs, for a widget to be considered visible,
it needs both the showing and visible states. Many applications rely on that,
for example the flat review functionality of Orca.
this fixes#5194
Don't fudge around poking through the listview, trying to get a model
and selecting it directly. Instead, use the proper way and activate the
"listitem.select" action.
Instead of directly calling select_item(), trigger the select-item
action of the focused child.
We do this convoluted calling into the widget because that way
GtkListItem::selectable gets respected, which is what one would expect.
Plus, this code is usually triggered via keybindings, and this way the
ListBase keybindings work identical to the ListItem keybindings.
If we encounter a node or texture the 1st time and they are going
to be used again, give them a name.
Then, when encountering them again, print them by name instead
of duplicating them.
We extend the syntax for nodes from:
<node-type> { ... }
to
<node-type> { ... }
<node-type> <string> { ... }
<string>;
where the first is the same as before, the 2nd defines a named node and
the last references a previously defined node.
Or to give an example:
color "node" {
bounds: 0 0 10 10;
color: red;
}
transform {
bounds: 20 0 10 10;
child: "node";
}
This will draw the red box twice, once at (0,0) and once at
(20,0).
The intended use for this is both shortening generated node files as
well as allowing to write tests that reuse nodes, in particular when
dealing with caches.
We extend the syntax for textures from just:
<url>
to
[<string>] <url>
<string>
where the first defines a named texture while the second references a
texture.
Or to give an example:
texture {
bounds: 0 0 10 10;
texture: "foo" url("foo.png");
}
texture {
bounds: 20 0 10 10;
texture: "foo";
}
This will draw the texture "foo.png" twice, once at (0,0) and once at
(20,0).
The intended use for this is both shortening generated node files as
well as allowing to write tests that reuse textures, in particular when
mixing them in texture and texture-scale nodes.