uniform float iTime; // Originally from: https://www.shadertoy.com/view/3ljyDD // License CC0: Hexagonal tiling + cog wheels // Nothing fancy, just hexagonal tiling + cog wheels #define PI 3.141592654 #define TAU (2.0*PI) #define MROT(a) mat2(cos(a), sin(a), -sin(a), cos(a)) float hash(in vec2 co) { return fract(sin(dot(co.xy ,vec2(12.9898,58.233))) * 13758.5453); } float pcos(float a) { return 0.5 + 0.5*cos(a); } void rot(inout vec2 p, float a) { float c = cos(a); float s = sin(a); p = vec2(c*p.x + s*p.y, -s*p.x + c*p.y); } float modPolar(inout vec2 p, float repetitions) { float angle = 2.0*PI/repetitions; float a = atan(p.y, p.x) + angle/2.; float r = length(p); float c = floor(a/angle); a = mod(a,angle) - angle/2.; p = vec2(cos(a), sin(a))*r; // For an odd number of repetitions, fix cell index of the cell in -x direction // (cell index would be e.g. -5 and 5 in the two halves of the cell): if (abs(c) >= (repetitions/2.0)) c = abs(c); return c; } float pmin(float a, float b, float k) { float h = clamp( 0.5+0.5*(b-a)/k, 0.0, 1.0 ); return mix( b, a, h ) - k*h*(1.0-h); } const vec2 sz = vec2(1.0, sqrt(3.0)); const vec2 hsz = 0.5*sz; const float smallCount = 16.0; vec2 hextile(inout vec2 p) { // See Art of Code: Hexagonal Tiling Explained! // https://www.youtube.com/watch?v=VmrIDyYiJBA vec2 p1 = mod(p, sz)-hsz; vec2 p2 = mod(p - hsz*1.0, sz)-hsz; vec2 p3 = mix(p2, p1, vec2(length(p1) < length(p2))); vec2 n = p3 - p; p = p3; return n; } float circle(vec2 p, float r) { return length(p) - r; } float box(vec2 p, vec2 b) { vec2 d = abs(p)-b; return length(max(d,0.0)) + min(max(d.x,d.y),0.0); } float unevenCapsule(vec2 p, float r1, float r2, float h) { p.x = abs(p.x); float b = (r1-r2)/h; float a = sqrt(1.0-b*b); float k = dot(p,vec2(-b,a)); if( k < 0.0 ) return length(p) - r1; if( k > a*h ) return length(p-vec2(0.0,h)) - r2; return dot(p, vec2(a,b) ) - r1; } float cogwheel(vec2 p, float innerRadius, float outerRadius, float cogs, float holes) { float cogWidth = 0.25*innerRadius*TAU/cogs; float d0 = circle(p, innerRadius); vec2 icp = p; modPolar(icp, holes); icp -= vec2(innerRadius*0.55, 0.0); float d1 = circle(icp, innerRadius*0.25); vec2 cp = p; modPolar(cp, cogs); cp -= vec2(innerRadius, 0.0); float d2 = unevenCapsule(cp.yx, cogWidth, cogWidth*0.75, (outerRadius-innerRadius)); float d3 = circle(p, innerRadius*0.20); float d = 1E6; d = min(d, d0); d = pmin(d, d2, 0.5*cogWidth); d = min(d, d2); d = max(d, -d1); d = max(d, -d3); return d; } float ccell1(vec2 p, float r) { float d = 1E6; const float bigCount = 60.0; vec2 cp0 = p; rot(cp0, -iTime*TAU/bigCount); float d0 = cogwheel(cp0, 0.36, 0.38, bigCount, 5.0); vec2 cp1 = p; float nm = modPolar(cp1, 6.0); cp1 -= vec2(0.5, 0.0); rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount); float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0); d = min(d, d0); d = min(d, d1); return d; } float ccell2(vec2 p, float r) { float d = 1E6; vec2 cp0 = p; float nm = modPolar(cp0, 6.0); vec2 cp1 = cp0; const float off = 0.275; const float count = smallCount + 2.0; cp0 -= vec2(off, 0.0); rot(cp0, 0.+TAU*nm/2.0 - iTime*TAU/count); float d0 = cogwheel(cp0, 0.09, 0.105, count, 5.0); cp1 -= vec2(0.5, 0.0); rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount); float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0); float l = length(p); float d2 = l - (off+0.055); float d3 = d2 + 0.020;; vec2 tp0 = p; modPolar(tp0, 60.0); tp0.x -= off; float d4 = box(tp0, vec2(0.0125, 0.005)); float ctime = -(iTime*0.05 + r)*TAU; vec2 tp1 = p; rot(tp1, ctime*12.0); tp1.x -= 0.13; float d5 = box(tp1, vec2(0.125, 0.005)); vec2 tp2 = p; rot(tp2, ctime); tp2.x -= 0.13*0.5; float d6 = box(tp2, vec2(0.125*0.5, 0.0075)); float d7 = l - 0.025; float d8 = l - 0.0125; d = min(d, d0); d = min(d, d1); d = min(d, d2); d = max(d, -d3); d = min(d, d4); d = min(d, d5); d = min(d, d6); d = min(d, d7); d = max(d, -d8); return d; } float df(vec2 p, float scale, inout vec2 nn) { p /= scale; nn = hextile(p); nn = round(nn); float r = hash(nn); float d;; if (r < 0.5) { d = ccell1(p, r); } else { d = ccell2(p, r); } return d*scale; } vec3 postProcess(vec3 col, vec2 q) { //col = saturate(col); col=pow(clamp(col,0.0,1.0),vec3(0.75)); col=col*0.6+0.4*col*col*(3.0-2.0*col); // contrast col=mix(col, vec3(dot(col, vec3(0.33))), -0.4); // satuation col*=0.5+0.5*pow(19.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.7); // vigneting return col; } void mainImage(out vec4 fragColor, in vec2 fragCoord, in vec2 resolution, in vec2 uv) { vec2 q = fragCoord/resolution.xy; vec2 p = -1.0 + 2.0*q; p.x *= resolution.x/resolution.y; float tm = iTime*0.1; p += vec2(cos(tm), sin(tm*sqrt(0.5))); float z = mix(0.5, 1.0, pcos(tm*sqrt(0.3))); float aa = 4.0 / resolution.y; vec2 nn = vec2(0.0); float d = df(p, z, nn); vec3 col = vec3(160.0)/vec3(255.0); vec3 baseCol = vec3(0.3); vec4 logoCol = vec4(baseCol, 1.0)*smoothstep(-aa, 0.0, -d); col = mix(col, logoCol.xyz, pow(logoCol.w, 8.0)); col += 0.4*pow(abs(sin(20.0*d)), 0.6); col = postProcess(col, q); fragColor = vec4(col, 1.0); }