/* * Copyright © 2020 Benjamin Otte * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . * * Authors: Benjamin Otte */ #include "config.h" #include "gskcurveprivate.h" #include "gskboundingboxprivate.h" /* GskCurve collects all the functionality we need for Bézier segments */ #define MIN_PROGRESS (1/1024.f) typedef struct _GskCurveClass GskCurveClass; struct _GskCurveClass { void (* init) (GskCurve *curve, gskpathop op); void (* init_foreach) (GskCurve *curve, GskPathOperation op, const graphene_point_t *pts, gsize n_pts); void (* print) (const GskCurve *curve, GString *string); gskpathop (* pathop) (const GskCurve *curve); const graphene_point_t * (* get_start_point) (const GskCurve *curve); const graphene_point_t * (* get_end_point) (const GskCurve *curve); void (* get_start_tangent) (const GskCurve *curve, graphene_vec2_t *tangent); void (* get_end_tangent) (const GskCurve *curve, graphene_vec2_t *tangent); void (* get_point) (const GskCurve *curve, float t, graphene_point_t *pos); void (* get_tangent) (const GskCurve *curve, float t, graphene_vec2_t *tangent); void (* reverse) (const GskCurve *curve, GskCurve *reverse); float (* get_curvature) (const GskCurve *curve, float t); void (* split) (const GskCurve *curve, float progress, GskCurve *result1, GskCurve *result2); void (* segment) (const GskCurve *curve, float start, float end, GskCurve *segment); gboolean (* decompose) (const GskCurve *curve, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data); gboolean (* decompose_curve) (const GskCurve *curve, GskPathForeachFlags flags, float tolerance, GskCurveAddCurveFunc add_curve_func, gpointer user_data); void (* get_bounds) (const GskCurve *curve, GskBoundingBox *bounds); void (* get_tight_bounds) (const GskCurve *curve, GskBoundingBox *bounds); }; /* {{{ Utilities */ static void get_tangent (const graphene_point_t *p0, const graphene_point_t *p1, graphene_vec2_t *t) { graphene_vec2_init (t, p1->x - p0->x, p1->y - p0->y); graphene_vec2_normalize (t, t); } /* Replace a line by an equivalent quad, * and a quad by an equivalent cubic. */ static void gsk_curve_elevate (const GskCurve *curve, GskCurve *elevated) { if (curve->op == GSK_PATH_LINE) { graphene_point_t p[3]; p[0] = curve->line.points[0]; graphene_point_interpolate (&curve->line.points[0], &curve->line.points[1], 0.5, &p[1]); p[2] = curve->line.points[1]; gsk_curve_init (elevated, gsk_pathop_encode (GSK_PATH_QUAD, p)); } else if (curve->op == GSK_PATH_QUAD) { graphene_point_t p[4]; p[0] = curve->quad.points[0]; graphene_point_interpolate (&curve->quad.points[0], &curve->quad.points[1], 2/3., &p[1]); graphene_point_interpolate (&curve->quad.points[2], &curve->quad.points[1], 2/3., &p[2]); p[3] = curve->quad.points[2]; gsk_curve_init (elevated, gsk_pathop_encode (GSK_PATH_CUBIC, p)); } else g_assert_not_reached (); } /* }}} */ /* {{{ Line */ static void gsk_line_curve_init_from_points (GskLineCurve *self, GskPathOperation op, const graphene_point_t *start, const graphene_point_t *end) { self->op = op; self->points[0] = *start; self->points[1] = *end; } static void gsk_line_curve_init (GskCurve *curve, gskpathop op) { GskLineCurve *self = &curve->line; const graphene_point_t *pts = gsk_pathop_points (op); gsk_line_curve_init_from_points (self, gsk_pathop_op (op), &pts[0], &pts[1]); } static void gsk_line_curve_init_foreach (GskCurve *curve, GskPathOperation op, const graphene_point_t *pts, gsize n_pts) { GskLineCurve *self = &curve->line; g_assert (n_pts == 2); gsk_line_curve_init_from_points (self, op, &pts[0], &pts[1]); } static void gsk_line_curve_print (const GskCurve *curve, GString *string) { g_string_append_printf (string, "M %g %g L %g %g", curve->line.points[0].x, curve->line.points[0].y, curve->line.points[1].x, curve->line.points[1].y); } static gskpathop gsk_line_curve_pathop (const GskCurve *curve) { const GskLineCurve *self = &curve->line; return gsk_pathop_encode (self->op, self->points); } static const graphene_point_t * gsk_line_curve_get_start_point (const GskCurve *curve) { const GskLineCurve *self = &curve->line; return &self->points[0]; } static const graphene_point_t * gsk_line_curve_get_end_point (const GskCurve *curve) { const GskLineCurve *self = &curve->line; return &self->points[1]; } static void gsk_line_curve_get_start_end_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { const GskLineCurve *self = &curve->line; get_tangent (&self->points[0], &self->points[1], tangent); } static void gsk_line_curve_get_point (const GskCurve *curve, float t, graphene_point_t *pos) { const GskLineCurve *self = &curve->line; graphene_point_interpolate (&self->points[0], &self->points[1], t, pos); } static void gsk_line_curve_get_tangent (const GskCurve *curve, float t, graphene_vec2_t *tangent) { const GskLineCurve *self = &curve->line; get_tangent (&self->points[0], &self->points[1], tangent); } static float gsk_line_curve_get_curvature (const GskCurve *curve, float t) { return 0; } static void gsk_line_curve_reverse (const GskCurve *curve, GskCurve *reverse) { const GskLineCurve *self = &curve->line; reverse->op = GSK_PATH_LINE; reverse->line.points[0] = self->points[1]; reverse->line.points[1] = self->points[0]; } static void gsk_line_curve_split (const GskCurve *curve, float progress, GskCurve *start, GskCurve *end) { const GskLineCurve *self = &curve->line; graphene_point_t point; graphene_point_interpolate (&self->points[0], &self->points[1], progress, &point); if (start) gsk_line_curve_init_from_points (&start->line, GSK_PATH_LINE, &self->points[0], &point); if (end) gsk_line_curve_init_from_points (&end->line, GSK_PATH_LINE, &point, &self->points[1]); } static void gsk_line_curve_segment (const GskCurve *curve, float start, float end, GskCurve *segment) { const GskLineCurve *self = &curve->line; graphene_point_t start_point, end_point; graphene_point_interpolate (&self->points[0], &self->points[1], start, &start_point); graphene_point_interpolate (&self->points[0], &self->points[1], end, &end_point); gsk_line_curve_init_from_points (&segment->line, GSK_PATH_LINE, &start_point, &end_point); } static gboolean gsk_line_curve_decompose (const GskCurve *curve, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data) { const GskLineCurve *self = &curve->line; return add_line_func (&self->points[0], &self->points[1], 0.0f, 1.0f, GSK_CURVE_LINE_REASON_STRAIGHT, user_data); } static gboolean gsk_line_curve_decompose_curve (const GskCurve *curve, GskPathForeachFlags flags, float tolerance, GskCurveAddCurveFunc add_curve_func, gpointer user_data) { const GskLineCurve *self = &curve->line; return add_curve_func (GSK_PATH_LINE, self->points, 2, user_data); } static void gsk_line_curve_get_bounds (const GskCurve *curve, GskBoundingBox *bounds) { const GskLineCurve *self = &curve->line; const graphene_point_t *pts = self->points; gsk_bounding_box_init (bounds, &pts[0], &pts[1]); } static const GskCurveClass GSK_LINE_CURVE_CLASS = { gsk_line_curve_init, gsk_line_curve_init_foreach, gsk_line_curve_print, gsk_line_curve_pathop, gsk_line_curve_get_start_point, gsk_line_curve_get_end_point, gsk_line_curve_get_start_end_tangent, gsk_line_curve_get_start_end_tangent, gsk_line_curve_get_point, gsk_line_curve_get_tangent, gsk_line_curve_reverse, gsk_line_curve_get_curvature, gsk_line_curve_split, gsk_line_curve_segment, gsk_line_curve_decompose, gsk_line_curve_decompose_curve, gsk_line_curve_get_bounds, gsk_line_curve_get_bounds, }; /* }}} */ /* {{{ Quadratic */ static void gsk_quad_curve_ensure_coefficients (const GskQuadCurve *curve) { GskQuadCurve *self = (GskQuadCurve *) curve; const graphene_point_t *pts = self->points; if (self->has_coefficients) return; self->coeffs[2] = pts[0]; self->coeffs[1] = GRAPHENE_POINT_INIT (2 * (pts[1].x - pts[0].x), 2 * (pts[1].y - pts[0].y)); self->coeffs[0] = GRAPHENE_POINT_INIT (pts[2].x - 2 * pts[1].x + pts[0].x, pts[2].y - 2 * pts[1].y + pts[0].y); self->has_coefficients = TRUE; } static void gsk_quad_curve_init_from_points (GskQuadCurve *self, const graphene_point_t pts[3]) { self->op = GSK_PATH_QUAD; self->has_coefficients = FALSE; memcpy (self->points, pts, sizeof (graphene_point_t) * 3); } static void gsk_quad_curve_init (GskCurve *curve, gskpathop op) { GskQuadCurve *self = &curve->quad; gsk_quad_curve_init_from_points (self, gsk_pathop_points (op)); } static void gsk_quad_curve_init_foreach (GskCurve *curve, GskPathOperation op, const graphene_point_t *pts, gsize n_pts) { GskQuadCurve *self = &curve->quad; g_assert (n_pts == 3); gsk_quad_curve_init_from_points (self, pts); } static void gsk_quad_curve_print (const GskCurve *curve, GString *string) { g_string_append_printf (string, "M %g %g Q %g %g %g %g", curve->quad.points[0].x, curve->quad.points[0].y, curve->quad.points[1].x, curve->cubic.points[1].y, curve->quad.points[2].x, curve->cubic.points[2].y); } static gskpathop gsk_quad_curve_pathop (const GskCurve *curve) { const GskQuadCurve *self = &curve->quad; return gsk_pathop_encode (self->op, self->points); } static const graphene_point_t * gsk_quad_curve_get_start_point (const GskCurve *curve) { const GskQuadCurve *self = &curve->quad; return &self->points[0]; } static const graphene_point_t * gsk_quad_curve_get_end_point (const GskCurve *curve) { const GskQuadCurve *self = &curve->quad; return &self->points[2]; } static void gsk_quad_curve_get_start_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { const GskQuadCurve *self = &curve->quad; get_tangent (&self->points[0], &self->points[1], tangent); } static void gsk_quad_curve_get_end_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { const GskQuadCurve *self = &curve->quad; get_tangent (&self->points[1], &self->points[2], tangent); } static void gsk_quad_curve_get_point (const GskCurve *curve, float t, graphene_point_t *pos) { GskQuadCurve *self = (GskQuadCurve *) &curve->quad; const graphene_point_t *c = self->coeffs; gsk_quad_curve_ensure_coefficients (self); *pos = GRAPHENE_POINT_INIT ((c[0].x * t + c[1].x) * t + c[2].x, (c[0].y * t + c[1].y) * t + c[2].y); } static void gsk_quad_curve_get_tangent (const GskCurve *curve, float t, graphene_vec2_t *tangent) { GskQuadCurve *self = (GskQuadCurve *) &curve->quad; const graphene_point_t *c = self->coeffs; gsk_quad_curve_ensure_coefficients (self); graphene_vec2_init (tangent, 2.0f * c[0].x * t + c[1].x, 2.0f * c[0].y * t + c[1].y); graphene_vec2_normalize (tangent, tangent); } static float gsk_cubic_curve_get_curvature (const GskCurve *curve, float t); static float gsk_quad_curve_get_curvature (const GskCurve *curve, float t) { return gsk_cubic_curve_get_curvature (curve, t); } static void gsk_quad_curve_reverse (const GskCurve *curve, GskCurve *reverse) { const GskCubicCurve *self = &curve->cubic; reverse->op = GSK_PATH_QUAD; reverse->cubic.points[0] = self->points[2]; reverse->cubic.points[1] = self->points[1]; reverse->cubic.points[2] = self->points[0]; reverse->cubic.has_coefficients = FALSE; } static void gsk_quad_curve_split (const GskCurve *curve, float progress, GskCurve *start, GskCurve *end) { GskQuadCurve *self = (GskQuadCurve *) &curve->quad; const graphene_point_t *pts = self->points; graphene_point_t ab, bc; graphene_point_t final; graphene_point_interpolate (&pts[0], &pts[1], progress, &ab); graphene_point_interpolate (&pts[1], &pts[2], progress, &bc); graphene_point_interpolate (&ab, &bc, progress, &final); if (start) gsk_quad_curve_init_from_points (&start->quad, (graphene_point_t[3]) { pts[0], ab, final }); if (end) gsk_quad_curve_init_from_points (&end->quad, (graphene_point_t[3]) { final, bc, pts[2] }); } static void gsk_quad_curve_segment (const GskCurve *curve, float start, float end, GskCurve *segment) { GskCurve tmp; gsk_quad_curve_split (curve, start, NULL, &tmp); gsk_quad_curve_split (&tmp, (end - start) / (1.0f - start), segment, NULL); } /* taken from Skia, including the very descriptive name */ static gboolean gsk_quad_curve_too_curvy (const GskQuadCurve *self, float tolerance) { const graphene_point_t *pts = self->points; float dx, dy; dx = fabs (pts[1].x / 2 - (pts[0].x + pts[2].x) / 4); dy = fabs (pts[1].y / 2 - (pts[0].y + pts[2].y) / 4); return MAX (dx, dy) > tolerance; } static gboolean gsk_quad_curve_decompose_step (const GskCurve *curve, float start_progress, float end_progress, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data) { const GskQuadCurve *self = &curve->quad; GskCurve left, right; float mid_progress; if (!gsk_quad_curve_too_curvy (self, tolerance)) return add_line_func (&self->points[0], &self->points[2], start_progress, end_progress, GSK_CURVE_LINE_REASON_STRAIGHT, user_data); if (end_progress - start_progress <= MIN_PROGRESS) return add_line_func (&self->points[0], &self->points[2], start_progress, end_progress, GSK_CURVE_LINE_REASON_SHORT, user_data); gsk_quad_curve_split ((const GskCurve *) self, 0.5, &left, &right); mid_progress = (start_progress + end_progress) / 2; return gsk_quad_curve_decompose_step (&left, start_progress, mid_progress, tolerance, add_line_func, user_data) && gsk_quad_curve_decompose_step (&right, mid_progress, end_progress, tolerance, add_line_func, user_data); } static gboolean gsk_quad_curve_decompose (const GskCurve *curve, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data) { return gsk_quad_curve_decompose_step (curve, 0.0, 1.0, tolerance, add_line_func, user_data); } typedef struct { GskCurveAddCurveFunc add_curve; gpointer user_data; } AddLineData; static gboolean gsk_curve_add_line_cb (const graphene_point_t *from, const graphene_point_t *to, float from_progress, float to_progress, GskCurveLineReason reason, gpointer user_data) { AddLineData *data = user_data; graphene_point_t p[2] = { *from, *to }; return data->add_curve (GSK_PATH_LINE, p, 2, data->user_data); } static gboolean gsk_quad_curve_decompose_curve (const GskCurve *curve, GskPathForeachFlags flags, float tolerance, GskCurveAddCurveFunc add_curve_func, gpointer user_data) { const GskQuadCurve *self = &curve->quad; if (flags & GSK_PATH_FOREACH_ALLOW_QUAD) return add_curve_func (GSK_PATH_QUAD, self->points, 3, user_data); else if (flags & GSK_PATH_FOREACH_ALLOW_CUBIC) { GskCurve c; gsk_curve_elevate (curve, &c); return add_curve_func (GSK_PATH_CUBIC, c.cubic.points, 4, user_data); } else { return gsk_quad_curve_decompose (curve, tolerance, gsk_curve_add_line_cb, &(AddLineData) { add_curve_func, user_data }); } } static void gsk_quad_curve_get_bounds (const GskCurve *curve, GskBoundingBox *bounds) { const GskQuadCurve *self = &curve->quad; const graphene_point_t *pts = self->points; gsk_bounding_box_init (bounds, &pts[0], &pts[2]); gsk_bounding_box_expand (bounds, &pts[1]); } /* Solve P' = 0 where P is * P = (1-t)^2*pa + 2*t*(1-t)*pb + t^2*pc */ static int get_quadratic_extrema (float pa, float pb, float pc, float t[1]) { float d = pa - 2 * pb + pc; if (fabs (d) > 0.0001) { t[0] = (pa - pb) / d; return 1; } return 0; } static void gsk_quad_curve_get_tight_bounds (const GskCurve *curve, GskBoundingBox *bounds) { const GskQuadCurve *self = &curve->quad; const graphene_point_t *pts = self->points; float t[4]; int n; gsk_bounding_box_init (bounds, &pts[0], &pts[2]); n = 0; n += get_quadratic_extrema (pts[0].x, pts[1].x, pts[2].x, &t[n]); n += get_quadratic_extrema (pts[0].y, pts[1].y, pts[2].y, &t[n]); for (int i = 0; i < n; i++) { graphene_point_t p; gsk_quad_curve_get_point (curve, t[i], &p); gsk_bounding_box_expand (bounds, &p); } } static const GskCurveClass GSK_QUAD_CURVE_CLASS = { gsk_quad_curve_init, gsk_quad_curve_init_foreach, gsk_quad_curve_print, gsk_quad_curve_pathop, gsk_quad_curve_get_start_point, gsk_quad_curve_get_end_point, gsk_quad_curve_get_start_tangent, gsk_quad_curve_get_end_tangent, gsk_quad_curve_get_point, gsk_quad_curve_get_tangent, gsk_quad_curve_reverse, gsk_quad_curve_get_curvature, gsk_quad_curve_split, gsk_quad_curve_segment, gsk_quad_curve_decompose, gsk_quad_curve_decompose_curve, gsk_quad_curve_get_bounds, gsk_quad_curve_get_tight_bounds, }; /* }}} */ /* {{{ Cubic */ static void gsk_cubic_curve_ensure_coefficients (const GskCubicCurve *curve) { GskCubicCurve *self = (GskCubicCurve *) curve; const graphene_point_t *pts = &self->points[0]; if (self->has_coefficients) return; self->coeffs[0] = GRAPHENE_POINT_INIT (pts[3].x - 3.0f * pts[2].x + 3.0f * pts[1].x - pts[0].x, pts[3].y - 3.0f * pts[2].y + 3.0f * pts[1].y - pts[0].y); self->coeffs[1] = GRAPHENE_POINT_INIT (3.0f * pts[2].x - 6.0f * pts[1].x + 3.0f * pts[0].x, 3.0f * pts[2].y - 6.0f * pts[1].y + 3.0f * pts[0].y); self->coeffs[2] = GRAPHENE_POINT_INIT (3.0f * pts[1].x - 3.0f * pts[0].x, 3.0f * pts[1].y - 3.0f * pts[0].y); self->coeffs[3] = pts[0]; self->has_coefficients = TRUE; } static void gsk_cubic_curve_init_from_points (GskCubicCurve *self, const graphene_point_t pts[4]) { self->op = GSK_PATH_CUBIC; self->has_coefficients = FALSE; memcpy (self->points, pts, sizeof (graphene_point_t) * 4); } static void gsk_cubic_curve_init (GskCurve *curve, gskpathop op) { GskCubicCurve *self = &curve->cubic; gsk_cubic_curve_init_from_points (self, gsk_pathop_points (op)); } static void gsk_cubic_curve_init_foreach (GskCurve *curve, GskPathOperation op, const graphene_point_t *pts, gsize n_pts) { GskCubicCurve *self = &curve->cubic; g_assert (n_pts == 4); gsk_cubic_curve_init_from_points (self, pts); } static void gsk_cubic_curve_print (const GskCurve *curve, GString *string) { g_string_append_printf (string, "M %f %f C %f %f %f %f %f %f", curve->cubic.points[0].x, curve->cubic.points[0].y, curve->cubic.points[1].x, curve->cubic.points[1].y, curve->cubic.points[2].x, curve->cubic.points[2].y, curve->cubic.points[3].x, curve->cubic.points[3].y); } static gskpathop gsk_cubic_curve_pathop (const GskCurve *curve) { const GskCubicCurve *self = &curve->cubic; return gsk_pathop_encode (self->op, self->points); } static const graphene_point_t * gsk_cubic_curve_get_start_point (const GskCurve *curve) { const GskCubicCurve *self = &curve->cubic; return &self->points[0]; } static const graphene_point_t * gsk_cubic_curve_get_end_point (const GskCurve *curve) { const GskCubicCurve *self = &curve->cubic; return &self->points[3]; } static void gsk_cubic_curve_get_start_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { const GskCubicCurve *self = &curve->cubic; if (graphene_point_near (&self->points[0], &self->points[1], 0.0001)) { if (graphene_point_near (&self->points[0], &self->points[2], 0.0001)) get_tangent (&self->points[0], &self->points[3], tangent); else get_tangent (&self->points[0], &self->points[2], tangent); } else get_tangent (&self->points[0], &self->points[1], tangent); } static void gsk_cubic_curve_get_end_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { const GskCubicCurve *self = &curve->cubic; if (graphene_point_near (&self->points[2], &self->points[3], 0.0001)) { if (graphene_point_near (&self->points[1], &self->points[3], 0.0001)) get_tangent (&self->points[0], &self->points[3], tangent); else get_tangent (&self->points[1], &self->points[3], tangent); } else get_tangent (&self->points[2], &self->points[3], tangent); } static void gsk_cubic_curve_get_point (const GskCurve *curve, float t, graphene_point_t *pos) { const GskCubicCurve *self = &curve->cubic; const graphene_point_t *c = self->coeffs; gsk_cubic_curve_ensure_coefficients (self); *pos = GRAPHENE_POINT_INIT (((c[0].x * t + c[1].x) * t +c[2].x) * t + c[3].x, ((c[0].y * t + c[1].y) * t +c[2].y) * t + c[3].y); } static void gsk_cubic_curve_get_tangent (const GskCurve *curve, float t, graphene_vec2_t *tangent) { const GskCubicCurve *self = &curve->cubic; const graphene_point_t *c = self->coeffs; gsk_cubic_curve_ensure_coefficients (self); graphene_vec2_init (tangent, (3.0f * c[0].x * t + 2.0f * c[1].x) * t + c[2].x, (3.0f * c[0].y * t + 2.0f * c[1].y) * t + c[2].y); graphene_vec2_normalize (tangent, tangent); } static void gsk_cubic_curve_reverse (const GskCurve *curve, GskCurve *reverse) { const GskCubicCurve *self = &curve->cubic; reverse->op = GSK_PATH_CUBIC; reverse->cubic.points[0] = self->points[3]; reverse->cubic.points[1] = self->points[2]; reverse->cubic.points[2] = self->points[1]; reverse->cubic.points[3] = self->points[0]; reverse->cubic.has_coefficients = FALSE; } static void gsk_curve_get_derivative (const GskCurve *curve, GskCurve *deriv) { switch (curve->op) { case GSK_PATH_LINE: { const GskLineCurve *self = &curve->line; graphene_point_t p; p.x = self->points[1].x - self->points[0].x; p.y = self->points[1].y - self->points[0].y; gsk_line_curve_init_from_points (&deriv->line, GSK_PATH_LINE, &p, &p); } break; case GSK_PATH_QUAD: { const GskQuadCurve *self = &curve->quad; graphene_point_t p[2]; p[0].x = 2.f * (self->points[1].x - self->points[0].x); p[0].y = 2.f * (self->points[1].y - self->points[0].y); p[1].x = 2.f * (self->points[2].x - self->points[1].x); p[1].y = 2.f * (self->points[2].y - self->points[1].y); gsk_line_curve_init_from_points (&deriv->line, GSK_PATH_LINE, &p[0], &p[1]); } break; case GSK_PATH_CUBIC: { const GskCubicCurve *self = &curve->cubic; graphene_point_t p[3]; p[0].x = 3.f * (self->points[1].x - self->points[0].x); p[0].y = 3.f * (self->points[1].y - self->points[0].y); p[1].x = 3.f * (self->points[2].x - self->points[1].x); p[1].y = 3.f * (self->points[2].y - self->points[1].y); p[2].x = 3.f * (self->points[3].x - self->points[2].x); p[2].y = 3.f * (self->points[3].y - self->points[2].y); gsk_quad_curve_init_from_points (&deriv->quad, p); } break; case GSK_PATH_MOVE: case GSK_PATH_CLOSE: default: g_assert_not_reached (); } } static inline float cross (const graphene_vec2_t *v1, const graphene_vec2_t *v2) { return graphene_vec2_get_x (v1) * graphene_vec2_get_y (v2) - graphene_vec2_get_y (v1) * graphene_vec2_get_x (v2); } static inline float pow3 (float w) { return w * w * w; } static float gsk_cubic_curve_get_curvature (const GskCurve *curve, float t) { GskCurve c1, c2; graphene_point_t p, pp; graphene_vec2_t d, dd; float num, denom; gsk_curve_get_derivative (curve, &c1); gsk_curve_get_derivative (&c1, &c2); gsk_curve_get_point (&c1, t, &p); gsk_curve_get_point (&c2, t, &pp); graphene_vec2_init (&d, p.x, p.y); graphene_vec2_init (&dd, pp.x, pp.y); num = cross (&d, &dd); if (num == 0) return 0; denom = pow3 (graphene_vec2_length (&d)); if (denom == 0) return 0; return num / denom; } static void gsk_cubic_curve_split (const GskCurve *curve, float progress, GskCurve *start, GskCurve *end) { const GskCubicCurve *self = &curve->cubic; const graphene_point_t *pts = self->points; graphene_point_t ab, bc, cd; graphene_point_t abbc, bccd; graphene_point_t final; graphene_point_interpolate (&pts[0], &pts[1], progress, &ab); graphene_point_interpolate (&pts[1], &pts[2], progress, &bc); graphene_point_interpolate (&pts[2], &pts[3], progress, &cd); graphene_point_interpolate (&ab, &bc, progress, &abbc); graphene_point_interpolate (&bc, &cd, progress, &bccd); graphene_point_interpolate (&abbc, &bccd, progress, &final); if (start) gsk_cubic_curve_init_from_points (&start->cubic, (graphene_point_t[4]) { pts[0], ab, abbc, final }); if (end) gsk_cubic_curve_init_from_points (&end->cubic, (graphene_point_t[4]) { final, bccd, cd, pts[3] }); } static void gsk_cubic_curve_segment (const GskCurve *curve, float start, float end, GskCurve *segment) { GskCurve tmp; gsk_cubic_curve_split (curve, start, NULL, &tmp); gsk_cubic_curve_split (&tmp, (end - start) / (1.0f - start), segment, NULL); } /* taken from Skia, including the very descriptive name */ static gboolean gsk_cubic_curve_too_curvy (const GskCubicCurve *self, float tolerance) { const graphene_point_t *pts = self->points; graphene_point_t p; graphene_point_interpolate (&pts[0], &pts[3], 1.0f / 3, &p); if (MAX (ABS (p.x - pts[1].x), ABS (p.y - pts[1].y)) > tolerance) return TRUE; graphene_point_interpolate (&pts[0], &pts[3], 2.0f / 3, &p); if (MAX (ABS (p.x - pts[2].x), ABS (p.y - pts[2].y)) > tolerance) return TRUE; return FALSE; } static gboolean gsk_cubic_curve_decompose_step (const GskCurve *curve, float start_progress, float end_progress, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data) { const GskCubicCurve *self = &curve->cubic; GskCurve left, right; float mid_progress; if (!gsk_cubic_curve_too_curvy (self, tolerance)) return add_line_func (&self->points[0], &self->points[3], start_progress, end_progress, GSK_CURVE_LINE_REASON_STRAIGHT, user_data); if (end_progress - start_progress <= MIN_PROGRESS) return add_line_func (&self->points[0], &self->points[3], start_progress, end_progress, GSK_CURVE_LINE_REASON_SHORT, user_data); gsk_cubic_curve_split ((const GskCurve *) self, 0.5, &left, &right); mid_progress = (start_progress + end_progress) / 2; return gsk_cubic_curve_decompose_step (&left, start_progress, mid_progress, tolerance, add_line_func, user_data) && gsk_cubic_curve_decompose_step (&right, mid_progress, end_progress, tolerance, add_line_func, user_data); } static gboolean gsk_cubic_curve_decompose (const GskCurve *curve, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data) { return gsk_cubic_curve_decompose_step (curve, 0.0, 1.0, tolerance, add_line_func, user_data); } static gboolean gsk_cubic_curve_decompose_curve (const GskCurve *curve, GskPathForeachFlags flags, float tolerance, GskCurveAddCurveFunc add_curve_func, gpointer user_data) { const GskCubicCurve *self = &curve->cubic; if (flags & GSK_PATH_FOREACH_ALLOW_CUBIC) return add_curve_func (GSK_PATH_CUBIC, self->points, 4, user_data); /* FIXME: Quadratic (or conic?) approximation */ return gsk_cubic_curve_decompose (curve, tolerance, gsk_curve_add_line_cb, &(AddLineData) { add_curve_func, user_data }); } static void gsk_cubic_curve_get_bounds (const GskCurve *curve, GskBoundingBox *bounds) { const GskCubicCurve *self = &curve->cubic; const graphene_point_t *pts = self->points; gsk_bounding_box_init (bounds, &pts[0], &pts[3]); gsk_bounding_box_expand (bounds, &pts[1]); gsk_bounding_box_expand (bounds, &pts[2]); } static inline gboolean acceptable (float t) { return 0 <= t && t <= 1; } /* Solve P' = 0 where P is * P = (1-t)^3*pa + 3*t*(1-t)^2*pb + 3*t^2*(1-t)*pc + t^3*pd */ static int get_cubic_extrema (float pa, float pb, float pc, float pd, float t[2]) { float a, b, c; float d, tt; int n = 0; a = 3 * (pd - 3*pc + 3*pb - pa); b = 6 * (pc - 2*pb + pa); c = 3 * (pb - pa); if (fabs (a) > 0.0001) { if (b*b > 4*a*c) { d = sqrt (b*b - 4*a*c); tt = (-b + d)/(2*a); if (acceptable (tt)) t[n++] = tt; tt = (-b - d)/(2*a); if (acceptable (tt)) t[n++] = tt; } else { tt = -b / (2*a); if (acceptable (tt)) t[n++] = tt; } } else if (fabs (b) > 0.0001) { tt = -c / b; if (acceptable (tt)) t[n++] = tt; } return n; } static void gsk_cubic_curve_get_tight_bounds (const GskCurve *curve, GskBoundingBox *bounds) { const GskCubicCurve *self = &curve->cubic; const graphene_point_t *pts = self->points; float t[4]; int n; gsk_bounding_box_init (bounds, &pts[0], &pts[3]); n = 0; n += get_cubic_extrema (pts[0].x, pts[1].x, pts[2].x, pts[3].x, &t[n]); n += get_cubic_extrema (pts[0].y, pts[1].y, pts[2].y, pts[3].y, &t[n]); for (int i = 0; i < n; i++) { graphene_point_t p; gsk_cubic_curve_get_point (curve, t[i], &p); gsk_bounding_box_expand (bounds, &p); } } static const GskCurveClass GSK_CUBIC_CURVE_CLASS = { gsk_cubic_curve_init, gsk_cubic_curve_init_foreach, gsk_cubic_curve_print, gsk_cubic_curve_pathop, gsk_cubic_curve_get_start_point, gsk_cubic_curve_get_end_point, gsk_cubic_curve_get_start_tangent, gsk_cubic_curve_get_end_tangent, gsk_cubic_curve_get_point, gsk_cubic_curve_get_tangent, gsk_cubic_curve_reverse, gsk_cubic_curve_get_curvature, gsk_cubic_curve_split, gsk_cubic_curve_segment, gsk_cubic_curve_decompose, gsk_cubic_curve_decompose_curve, gsk_cubic_curve_get_bounds, gsk_cubic_curve_get_tight_bounds, }; /* }}} */ /* {{{ API */ static const GskCurveClass * get_class (GskPathOperation op) { const GskCurveClass *klasses[] = { [GSK_PATH_CLOSE] = &GSK_LINE_CURVE_CLASS, [GSK_PATH_LINE] = &GSK_LINE_CURVE_CLASS, [GSK_PATH_QUAD] = &GSK_QUAD_CURVE_CLASS, [GSK_PATH_CUBIC] = &GSK_CUBIC_CURVE_CLASS, }; g_assert (op < G_N_ELEMENTS (klasses) && klasses[op] != NULL); return klasses[op]; } void gsk_curve_init (GskCurve *curve, gskpathop op) { memset (curve, 0, sizeof (GskCurve)); get_class (gsk_pathop_op (op))->init (curve, op); } void gsk_curve_init_foreach (GskCurve *curve, GskPathOperation op, const graphene_point_t *pts, gsize n_pts) { memset (curve, 0, sizeof (GskCurve)); get_class (op)->init_foreach (curve, op, pts, n_pts); } void gsk_curve_print (const GskCurve *curve, GString *string) { get_class (curve->op)->print (curve, string); } char * gsk_curve_to_string (const GskCurve *curve) { GString *s = g_string_new (""); gsk_curve_print (curve, s); return g_string_free (s, FALSE); } gskpathop gsk_curve_pathop (const GskCurve *curve) { return get_class (curve->op)->pathop (curve); } const graphene_point_t * gsk_curve_get_start_point (const GskCurve *curve) { return get_class (curve->op)->get_start_point (curve); } const graphene_point_t * gsk_curve_get_end_point (const GskCurve *curve) { return get_class (curve->op)->get_end_point (curve); } void gsk_curve_get_start_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { get_class (curve->op)->get_start_tangent (curve, tangent); } void gsk_curve_get_end_tangent (const GskCurve *curve, graphene_vec2_t *tangent) { get_class (curve->op)->get_end_tangent (curve, tangent); } void gsk_curve_get_point (const GskCurve *curve, float progress, graphene_point_t *pos) { get_class (curve->op)->get_point (curve, progress, pos); } void gsk_curve_get_tangent (const GskCurve *curve, float progress, graphene_vec2_t *tangent) { get_class (curve->op)->get_tangent (curve, progress, tangent); } float gsk_curve_get_curvature (const GskCurve *curve, float t, graphene_point_t *center) { float k; k = get_class (curve->op)->get_curvature (curve, t); if (center != NULL && k != 0) { graphene_point_t p; graphene_vec2_t tangent; float r; r = 1/k; gsk_curve_get_point (curve, t, &p); gsk_curve_get_tangent (curve, t, &tangent); center->x = p.x - r * graphene_vec2_get_y (&tangent); center->y = p.y + r * graphene_vec2_get_x (&tangent); } return k; } void gsk_curve_reverse (const GskCurve *curve, GskCurve *reverse) { get_class (curve->op)->reverse (curve, reverse); } void gsk_curve_split (const GskCurve *curve, float progress, GskCurve *start, GskCurve *end) { get_class (curve->op)->split (curve, progress, start, end); } void gsk_curve_segment (const GskCurve *curve, float start, float end, GskCurve *segment) { if (start <= 0 && end >= 1) { *segment = *curve; return; } get_class (curve->op)->segment (curve, start, end, segment); } gboolean gsk_curve_decompose (const GskCurve *curve, float tolerance, GskCurveAddLineFunc add_line_func, gpointer user_data) { return get_class (curve->op)->decompose (curve, tolerance, add_line_func, user_data); } gboolean gsk_curve_decompose_curve (const GskCurve *curve, GskPathForeachFlags flags, float tolerance, GskCurveAddCurveFunc add_curve_func, gpointer user_data) { return get_class (curve->op)->decompose_curve (curve, flags, tolerance, add_curve_func, user_data); } void gsk_curve_get_bounds (const GskCurve *curve, GskBoundingBox *bounds) { get_class (curve->op)->get_bounds (curve, bounds); } void gsk_curve_get_tight_bounds (const GskCurve *curve, GskBoundingBox *bounds) { get_class (curve->op)->get_tight_bounds (curve, bounds); } static inline int line_get_crossing (const graphene_point_t *p, const graphene_point_t *p1, const graphene_point_t *p2) { if (p1->y <= p->y) { if (p2->y > p->y) { if ((p2->x - p1->x) * (p->y - p1->y) - (p->x - p1->x) * (p2->y - p1->y) > 0) return 1; } } else if (p2->y <= p->y) { if ((p2->x - p1->x) * (p->y - p1->y) - (p->x - p1->x) * (p2->y - p1->y) < 0) return -1; } return 0; } int gsk_curve_get_crossing (const GskCurve *curve, const graphene_point_t *point) { GskBoundingBox bounds; GskCurve c1, c2; if (curve->op == GSK_PATH_LINE || curve->op == GSK_PATH_CLOSE) return line_get_crossing (point, gsk_curve_get_start_point (curve), gsk_curve_get_end_point (curve)); gsk_curve_get_bounds (curve, &bounds); if (bounds.max.y < point->y || bounds.min.y > point->y || bounds.max.x < point->x) return 0; if (bounds.min.x > point->x) return line_get_crossing (point, gsk_curve_get_start_point (curve), gsk_curve_get_end_point (curve)); if (graphene_point_distance (&bounds.min, &bounds.max, NULL, NULL) < 0.001) return line_get_crossing (point, gsk_curve_get_start_point (curve), gsk_curve_get_end_point (curve)); gsk_curve_split (curve, 0.5, &c1, &c2); return gsk_curve_get_crossing (&c1, point) + gsk_curve_get_crossing (&c2, point); } static gboolean project_point_onto_line (const GskCurve *curve, const graphene_point_t *point, float threshold, float *out_distance, float *out_t) { const graphene_point_t *a = gsk_curve_get_start_point (curve); const graphene_point_t *b = gsk_curve_get_end_point (curve); graphene_vec2_t n, ap; graphene_point_t p; if (graphene_point_equal (a, b)) { *out_t = 0; *out_distance = graphene_point_distance (point, a, NULL, NULL); } else { graphene_vec2_init (&n, b->x - a->x, b->y - a->y); graphene_vec2_init (&ap, point->x - a->x, point->y - a->y); *out_t = graphene_vec2_dot (&n, &ap) / graphene_vec2_dot (&n, &n); *out_t = CLAMP (*out_t, 0, 1); graphene_point_interpolate (a, b, *out_t, &p); *out_distance = graphene_point_distance (point, &p, NULL, NULL); } return *out_distance <= threshold; } static float get_segment_bounding_sphere (const GskCurve *curve, float t1, float t2, graphene_point_t *center) { GskCurve c; GskBoundingBox bounds; gsk_curve_segment (curve, t1, t2, &c); gsk_curve_get_tight_bounds (&c, &bounds); graphene_point_interpolate (&bounds.min, &bounds.max, 0.5, center); return graphene_point_distance (center, &bounds.min, NULL, NULL); } static gboolean find_closest_point (const GskCurve *curve, const graphene_point_t *point, float threshold, float t1, float t2, float *out_distance, float *out_t) { graphene_point_t center; float radius; float t, d, nt; radius = get_segment_bounding_sphere (curve, t1, t2, ¢er); if (graphene_point_distance (¢er, point, NULL, NULL) > threshold + radius) return FALSE; d = INFINITY; t = (t1 + t2) / 2; if (radius < 1) { graphene_point_t p; gsk_curve_get_point (curve, t, &p); d = graphene_point_distance (point, &p, NULL, NULL); nt = t; } else { float dd, tt; dd = INFINITY; nt = 0; if (find_closest_point (curve, point, threshold, t1, t, &dd, &tt)) { d = dd; nt = tt; } if (find_closest_point (curve, point, MIN (dd, threshold), t, t2, &dd, &tt)) { d = dd; nt = tt; } } if (d < threshold) { *out_distance = d; *out_t = nt; return TRUE; } else { *out_distance = INFINITY; *out_t = 0; return FALSE; } } gboolean gsk_curve_get_closest_point (const GskCurve *curve, const graphene_point_t *point, float threshold, float *out_dist, float *out_t) { if (curve->op == GSK_PATH_LINE || curve->op == GSK_PATH_CLOSE) return project_point_onto_line (curve, point, threshold, out_dist, out_t); else return find_closest_point (curve, point, threshold, 0, 1, out_dist, out_t); } /* }}} */ /* vim:set foldmethod=marker expandtab: */