Threads functions for using GDK in multi-threaded programs For thread safety, GDK relies on the thread primitives in GLib, and on the thread-safe GLib main loop. GLib is completely thread safe (all global data is automatically locked), but individual data structure instances are not automatically locked for performance reasons. So e.g. you must coordinate accesses to the same #GHashTable from multiple threads. GTK+ is "thread aware" but not thread safe — it provides a global lock controlled by gdk_threads_enter()/gdk_threads_leave() which protects all use of GTK+. That is, only one thread can use GTK+ at any given time. You must call g_thread_init() and gdk_threads_init() before executing any other GTK+ or GDK functions in a threaded GTK+ program. Idles, timeouts, and input functions are executed outside of the main GTK+ lock. So, if you need to call GTK+ inside of such a callback, you must surround the callback with a gdk_threads_enter()/gdk_threads_leave() pair. (However, signals are still executed within the main GTK+ lock.) In particular, this means, if you are writing widgets that might be used in threaded programs, you must surround timeouts and idle functions in this matter. As always, you must also surround any calls to GTK+ not made within a signal handler with a gdk_threads_enter()/gdk_threads_leave() pair. A minimal main program for a threaded GTK+ application looks like: int main (int argc, char *argv[]) { GtkWidget *window; g_thread_init (NULL); gdk_threads_init (); gtk_init (&argc, &argv); window = create_window (); gtk_widget_show (window); gdk_threads_enter (); gtk_main (); gdk_threads_leave (); return 0; } Callbacks require a bit of attention. Callbacks from GTK+ signals are made within the GTK+ lock. However callbacks from GLib (timeouts, IO callbacks, and idle functions) are made outside of the GTK+ lock. So, within a signal handler you do not need to call gdk_threads_enter(), but within the other types of callbacks, you do. Erik Mouw contributed the following code example to illustrate how to use threads within GTK+ programs. /*------------------------------------------------------------------------- * Filename: gtk-thread.c * Version: 0.99.1 * Copyright: Copyright (C) 1999, Erik Mouw * Author: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> * Description: GTK threads example. * Created at: Sun Oct 17 21:27:09 1999 * Modified by: Erik Mouw <J.A.K.Mouw@its.tudelft.nl> * Modified at: Sun Oct 24 17:21:41 1999 *-----------------------------------------------------------------------*/ /* * Compile with: * * cc -o gtk-thread gtk-thread.c `gtk-config --cflags --libs gthread` * * Thanks to Sebastian Wilhelmi and Owen Taylor for pointing out some * bugs. * */ #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <time.h> #include <gtk/gtk.h> #include <glib.h> #include <pthread.h> #define YES_IT_IS (1) #define NO_IT_IS_NOT (0) typedef struct { GtkWidget *label; int what; } yes_or_no_args; G_LOCK_DEFINE_STATIC (yes_or_no); static volatile int yes_or_no = YES_IT_IS; void destroy (GtkWidget *widget, gpointer data) { gtk_main_quit (); } void *argument_thread (void *args) { yes_or_no_args *data = (yes_or_no_args *)args; gboolean say_something; for (;;) { /* sleep a while */ sleep(rand() / (RAND_MAX / 3) + 1); /* lock the yes_or_no_variable */ G_LOCK(yes_or_no); /* do we have to say something? */ say_something = (yes_or_no != data->what); if(say_something) { /* set the variable */ yes_or_no = data->what; } /* Unlock the yes_or_no variable */ G_UNLOCK (yes_or_no); if (say_something) { /* get GTK thread lock */ gdk_threads_enter (); /* set label text */ if(data->what == YES_IT_IS) gtk_label_set_text (GTK_LABEL (data->label), "O yes, it is!"); else gtk_label_set_text (GTK_LABEL (data->label), "O no, it isn't!"); /* release GTK thread lock */ gdk_threads_leave (); } } return NULL; } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *label; yes_or_no_args yes_args, no_args; pthread_t no_tid, yes_tid; /* init threads */ g_thread_init (NULL); gdk_threads_init (); /* init gtk */ gtk_init(&argc, &argv); /* init random number generator */ srand ((unsigned int) time (NULL)); /* create a window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (destroy), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* create a label */ label = gtk_label_new ("And now for something completely different ..."); gtk_container_add (GTK_CONTAINER (window), label); /* show everything */ gtk_widget_show (label); gtk_widget_show (window); /* create the threads */ yes_args.label = label; yes_args.what = YES_IT_IS; pthread_create (&yes_tid, NULL, argument_thread, &yes_args); no_args.label = label; no_args.what = NO_IT_IS_NOT; pthread_create (&no_tid, NULL, argument_thread, &no_args); /* enter the GTK main loop */ gdk_threads_enter (); gtk_main (); gdk_threads_leave (); return 0; } This macro marks the beginning of a critical section in which GDK and GTK+ functions can be called. Only one thread at a time can be in such a critial section. The macro expands to a no-op if #G_THREADS_ENABLED has not been defined. Typically gdk_threads_enter() should be used instead of this macro. This macro marks the end of a critical section begun with #GDK_THREADS_ENTER. This macro marks the beginning of a critical section in which GDK and GTK+ functions can be called. Only one thread at a time can be in such a critial section. Leaves a critical region begun with gdk_threads_enter(). The #GMutex used to implement the critical region for gdk_threads_enter()/gdk_threads_leave(). This variable should not be used directly — consider it private.