/* GSK - The GTK Scene Kit * * Copyright 2016 Endless * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . */ #include "config.h" #include "gskrendernodeprivate.h" #include "gskcairoblurprivate.h" #include "gskdebugprivate.h" #include "gskrendererprivate.h" #include "gskroundedrectprivate.h" #include "gsktextureprivate.h" static gboolean check_variant_type (GVariant *variant, const char *type_string, GError **error) { if (!g_variant_is_of_type (variant, G_VARIANT_TYPE (type_string))) { g_set_error (error, GSK_SERIALIZATION_ERROR, GSK_SERIALIZATION_INVALID_DATA, "Wrong variant type, got '%s' but needed '%s", g_variant_get_type_string (variant), type_string); return FALSE; } return TRUE; } /*** GSK_COLOR_NODE ***/ typedef struct _GskColorNode GskColorNode; struct _GskColorNode { GskRenderNode render_node; GdkRGBA color; }; static void gsk_color_node_finalize (GskRenderNode *node) { } static void gsk_color_node_draw (GskRenderNode *node, cairo_t *cr) { GskColorNode *self = (GskColorNode *) node; gdk_cairo_set_source_rgba (cr, &self->color); cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_fill (cr); } #define GSK_COLOR_NODE_VARIANT_TYPE "(dddddddd)" static GVariant * gsk_color_node_serialize (GskRenderNode *node) { GskColorNode *self = (GskColorNode *) node; return g_variant_new (GSK_COLOR_NODE_VARIANT_TYPE, self->color.red, self->color.green, self->color.blue, self->color.alpha, (double) node->bounds.origin.x, (double) node->bounds.origin.y, (double) node->bounds.size.width, (double) node->bounds.size.height); } static GskRenderNode * gsk_color_node_deserialize (GVariant *variant, GError **error) { double x, y, w, h; GdkRGBA color; if (!check_variant_type (variant, GSK_COLOR_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_COLOR_NODE_VARIANT_TYPE, &color.red, &color.green, &color.blue, &color.alpha, &x, &y, &w, &h); return gsk_color_node_new (&color, &GRAPHENE_RECT_INIT (x, y, w, h)); } static const GskRenderNodeClass GSK_COLOR_NODE_CLASS = { GSK_COLOR_NODE, sizeof (GskColorNode), "GskColorNode", gsk_color_node_finalize, gsk_color_node_draw, gsk_color_node_serialize, gsk_color_node_deserialize, }; const GdkRGBA * gsk_color_node_peek_color (GskRenderNode *node) { GskColorNode *self = (GskColorNode *) node; return &self->color; } /** * gsk_color_node_new: * @color: the #GskColor * @bounds: the rectangle to render the color into * * Creates a #GskRenderNode that will render the given * @color into the area given by @bounds. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_color_node_new (const GdkRGBA *rgba, const graphene_rect_t *bounds) { GskColorNode *self; g_return_val_if_fail (rgba != NULL, NULL); g_return_val_if_fail (bounds != NULL, NULL); self = (GskColorNode *) gsk_render_node_new (&GSK_COLOR_NODE_CLASS, 0); self->color = *rgba; graphene_rect_init_from_rect (&self->render_node.bounds, bounds); return &self->render_node; } /*** GSK_LINEAR_GRADIENT_NODE ***/ typedef struct _GskLinearGradientNode GskLinearGradientNode; struct _GskLinearGradientNode { GskRenderNode render_node; graphene_point_t start; graphene_point_t end; gsize n_stops; GskColorStop stops[]; }; static void gsk_linear_gradient_node_finalize (GskRenderNode *node) { } static void gsk_linear_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; cairo_pattern_t *pattern; gsize i; pattern = cairo_pattern_create_linear (self->start.x, self->start.y, self->end.x, self->end.y); if (gsk_render_node_get_node_type (node) == GSK_REPEATING_LINEAR_GRADIENT_NODE) cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); for (i = 0; i < self->n_stops; i++) { cairo_pattern_add_color_stop_rgba (pattern, self->stops[i].offset, self->stops[i].color.red, self->stops[i].color.green, self->stops[i].color.blue, self->stops[i].color.alpha); } cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_fill (cr); } #define GSK_LINEAR_GRADIENT_NODE_VARIANT_TYPE "(dddddddda(ddddd))" static GVariant * gsk_linear_gradient_node_serialize (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; GVariantBuilder builder; guint i; g_variant_builder_init (&builder, G_VARIANT_TYPE ("a(ddddd)")); for (i = 0; i < self->n_stops; i++) { g_variant_builder_add (&builder, "(ddddd)", (double) self->stops[i].offset, self->stops[i].color.red, self->stops[i].color.green, self->stops[i].color.blue, self->stops[i].color.alpha); } return g_variant_new (GSK_LINEAR_GRADIENT_NODE_VARIANT_TYPE, (double) node->bounds.origin.x, (double) node->bounds.origin.y, (double) node->bounds.size.width, (double) node->bounds.size.height, (double) self->start.x, (double) self->start.y, (double) self->end.x, (double) self->end.y, &builder); } static GskRenderNode * gsk_linear_gradient_node_real_deserialize (GVariant *variant, gboolean repeating, GError **error) { GVariantIter *iter; double x, y, w, h, start_x, start_y, end_x, end_y; gsize i, n_stops; if (!check_variant_type (variant, GSK_LINEAR_GRADIENT_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_LINEAR_GRADIENT_NODE_VARIANT_TYPE, &x, &y, &w, &h, &start_x, &start_y, &end_x, &end_y, &iter); n_stops = g_variant_iter_n_children (iter); GskColorStop *stops = g_newa (GskColorStop, n_stops); for (i = 0; i < n_stops; i++) { double offset; g_variant_iter_next (iter, "(ddddd)", &offset, &stops[i].color.red, &stops[i].color.green, &stops[i].color.blue, &stops[i].color.alpha); stops[i].offset = offset; } g_variant_iter_free (iter); return (repeating ? gsk_repeating_linear_gradient_node_new : gsk_linear_gradient_node_new) (&GRAPHENE_RECT_INIT (x, y, w, h), &GRAPHENE_POINT_INIT (start_x, start_y), &GRAPHENE_POINT_INIT (end_x, end_y), stops, n_stops); } static GskRenderNode * gsk_linear_gradient_node_deserialize (GVariant *variant, GError **error) { return gsk_linear_gradient_node_real_deserialize (variant, FALSE, error); } static GskRenderNode * gsk_repeating_linear_gradient_node_deserialize (GVariant *variant, GError **error) { return gsk_linear_gradient_node_real_deserialize (variant, TRUE, error); } static const GskRenderNodeClass GSK_LINEAR_GRADIENT_NODE_CLASS = { GSK_LINEAR_GRADIENT_NODE, sizeof (GskLinearGradientNode), "GskLinearGradientNode", gsk_linear_gradient_node_finalize, gsk_linear_gradient_node_draw, gsk_linear_gradient_node_serialize, gsk_linear_gradient_node_deserialize, }; static const GskRenderNodeClass GSK_REPEATING_LINEAR_GRADIENT_NODE_CLASS = { GSK_REPEATING_LINEAR_GRADIENT_NODE, sizeof (GskLinearGradientNode), "GskLinearGradientNode", gsk_linear_gradient_node_finalize, gsk_linear_gradient_node_draw, gsk_linear_gradient_node_serialize, gsk_repeating_linear_gradient_node_deserialize, }; /** * gsk_linear_gradient_node_new: * @linear_gradient: the #GskLinearGradient * @bounds: the rectangle to render the linear_gradient into * * Creates a #GskRenderNode that will render the given * @linear_gradient into the area given by @bounds. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_linear_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *start, const graphene_point_t *end, const GskColorStop *color_stops, gsize n_color_stops) { GskLinearGradientNode *self; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (start != NULL, NULL); g_return_val_if_fail (end != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) { g_return_val_if_fail (color_stops[i].offset >= color_stops[i-1].offset, NULL); } g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = (GskLinearGradientNode *) gsk_render_node_new (&GSK_LINEAR_GRADIENT_NODE_CLASS, sizeof (GskColorStop) * n_color_stops); graphene_rect_init_from_rect (&self->render_node.bounds, bounds); graphene_point_init_from_point (&self->start, start); graphene_point_init_from_point (&self->end, end); memcpy (&self->stops, color_stops, sizeof (GskColorStop) * n_color_stops); self->n_stops = n_color_stops; return &self->render_node; } GskRenderNode * gsk_repeating_linear_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *start, const graphene_point_t *end, const GskColorStop *color_stops, gsize n_color_stops) { GskLinearGradientNode *self; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (start != NULL, NULL); g_return_val_if_fail (end != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) { g_return_val_if_fail (color_stops[i].offset >= color_stops[i-1].offset, NULL); } g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = (GskLinearGradientNode *) gsk_render_node_new (&GSK_REPEATING_LINEAR_GRADIENT_NODE_CLASS, sizeof (GskColorStop) * n_color_stops); graphene_rect_init_from_rect (&self->render_node.bounds, bounds); graphene_point_init_from_point (&self->start, start); graphene_point_init_from_point (&self->end, end); memcpy (&self->stops, color_stops, sizeof (GskColorStop) * n_color_stops); self->n_stops = n_color_stops; return &self->render_node; } const graphene_point_t * gsk_linear_gradient_node_peek_start (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return &self->start; } const graphene_point_t * gsk_linear_gradient_node_peek_end (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return &self->end; } const gsize gsk_linear_gradient_node_get_n_color_stops (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return self->n_stops; } const GskColorStop * gsk_linear_gradient_node_peek_color_stops (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return self->stops; } /*** GSK_BORDER_NODE ***/ typedef struct _GskBorderNode GskBorderNode; struct _GskBorderNode { GskRenderNode render_node; GskRoundedRect outline; float border_width[4]; GdkRGBA border_color[4]; }; static void gsk_border_node_finalize (GskRenderNode *node) { } static void gsk_border_node_draw (GskRenderNode *node, cairo_t *cr) { GskBorderNode *self = (GskBorderNode *) node; GskRoundedRect inside; cairo_save (cr); gsk_rounded_rect_init_copy (&inside, &self->outline); gsk_rounded_rect_shrink (&inside, self->border_width[0], self->border_width[1], self->border_width[2], self->border_width[3]); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (&self->outline, cr); gsk_rounded_rect_path (&inside, cr); if (gdk_rgba_equal (&self->border_color[0], &self->border_color[1]) && gdk_rgba_equal (&self->border_color[0], &self->border_color[2]) && gdk_rgba_equal (&self->border_color[0], &self->border_color[3])) { gdk_cairo_set_source_rgba (cr, &self->border_color[0]); cairo_fill (cr); } else { const graphene_rect_t *bounds = &self->outline.bounds; /* distance to center "line": * +-------------------------+ * | | * | | * | ---this-line--- | * | | * | | * +-------------------------+ * That line is equidistant from all sides. It's either horiontal * or vertical, depending on if the rect is wider or taller. * We use the 4 sides spanned up by connecting the line to the corner * points to color the regions of the rectangle differently. * Note that the call to cairo_fill() will add the potential final * segment by closing the path, so we don't have to care. */ float dst = MIN (bounds->size.width, bounds->size.height) / 2.0; cairo_clip (cr); /* top */ cairo_move_to (cr, bounds->origin.x + dst, bounds->origin.y + dst); cairo_rel_line_to (cr, - dst, - dst); cairo_rel_line_to (cr, bounds->size.width, 0); cairo_rel_line_to (cr, - dst, dst); gdk_cairo_set_source_rgba (cr, &self->border_color[0]); cairo_fill (cr); /* right */ cairo_move_to (cr, bounds->origin.x + bounds->size.width - dst, bounds->origin.y + dst); cairo_rel_line_to (cr, dst, - dst); cairo_rel_line_to (cr, 0, bounds->size.height); cairo_rel_line_to (cr, - dst, - dst); gdk_cairo_set_source_rgba (cr, &self->border_color[1]); cairo_fill (cr); /* bottom */ cairo_move_to (cr, bounds->origin.x + bounds->size.width - dst, bounds->origin.y + bounds->size.height - dst); cairo_rel_line_to (cr, dst, dst); cairo_rel_line_to (cr, - bounds->size.width, 0); cairo_rel_line_to (cr, dst, - dst); gdk_cairo_set_source_rgba (cr, &self->border_color[2]); cairo_fill (cr); /* left */ cairo_move_to (cr, bounds->origin.x + dst, bounds->origin.y + bounds->size.height - dst); cairo_rel_line_to (cr, - dst, dst); cairo_rel_line_to (cr, 0, - bounds->size.height); cairo_rel_line_to (cr, dst, dst); gdk_cairo_set_source_rgba (cr, &self->border_color[3]); cairo_fill (cr); } cairo_restore (cr); } #define GSK_BORDER_NODE_VARIANT_TYPE "(dddddddddddddddddddddddddddddddd)" static GVariant * gsk_border_node_serialize (GskRenderNode *node) { GskBorderNode *self = (GskBorderNode *) node; return g_variant_new (GSK_BORDER_NODE_VARIANT_TYPE, (double) self->outline.bounds.origin.x, (double) self->outline.bounds.origin.y, (double) self->outline.bounds.size.width, (double) self->outline.bounds.size.height, (double) self->outline.corner[0].width, (double) self->outline.corner[0].height, (double) self->outline.corner[1].width, (double) self->outline.corner[1].height, (double) self->outline.corner[2].width, (double) self->outline.corner[2].height, (double) self->outline.corner[3].width, (double) self->outline.corner[3].height, (double) self->border_width[0], (double) self->border_width[1], (double) self->border_width[2], (double) self->border_width[3], self->border_color[0].red, self->border_color[0].green, self->border_color[0].blue, self->border_color[0].alpha, self->border_color[1].red, self->border_color[1].green, self->border_color[1].blue, self->border_color[1].alpha, self->border_color[2].red, self->border_color[2].green, self->border_color[2].blue, self->border_color[2].alpha, self->border_color[3].red, self->border_color[3].green, self->border_color[3].blue, self->border_color[3].alpha); } static GskRenderNode * gsk_border_node_deserialize (GVariant *variant, GError **error) { double doutline[12], dwidths[4]; GdkRGBA colors[4]; if (!check_variant_type (variant, GSK_BORDER_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_BORDER_NODE_VARIANT_TYPE, &doutline[0], &doutline[1], &doutline[2], &doutline[3], &doutline[4], &doutline[5], &doutline[6], &doutline[7], &doutline[8], &doutline[9], &doutline[10], &doutline[11], &dwidths[0], &dwidths[1], &dwidths[2], &dwidths[3], &colors[0].red, &colors[0].green, &colors[0].blue, &colors[0].alpha, &colors[1].red, &colors[1].green, &colors[1].blue, &colors[1].alpha, &colors[2].red, &colors[2].green, &colors[2].blue, &colors[2].alpha, &colors[3].red, &colors[3].green, &colors[3].blue, &colors[3].alpha); return gsk_border_node_new (&(GskRoundedRect) { .bounds = GRAPHENE_RECT_INIT(doutline[0], doutline[1], doutline[2], doutline[3]), .corner = { GRAPHENE_SIZE_INIT (doutline[4], doutline[5]), GRAPHENE_SIZE_INIT (doutline[6], doutline[7]), GRAPHENE_SIZE_INIT (doutline[8], doutline[9]), GRAPHENE_SIZE_INIT (doutline[10], doutline[11]) } }, (float[4]) { dwidths[0], dwidths[1], dwidths[2], dwidths[3] }, colors); } static const GskRenderNodeClass GSK_BORDER_NODE_CLASS = { GSK_BORDER_NODE, sizeof (GskBorderNode), "GskBorderNode", gsk_border_node_finalize, gsk_border_node_draw, gsk_border_node_serialize, gsk_border_node_deserialize }; const GskRoundedRect * gsk_border_node_peek_outline (GskRenderNode *node) { GskBorderNode *self = (GskBorderNode *) node; return &self->outline; } float gsk_border_node_get_width (GskRenderNode *node, guint i) { GskBorderNode *self = (GskBorderNode *) node; return self->border_width[i]; } const GdkRGBA * gsk_border_node_peek_color (GskRenderNode *node, guint i) { GskBorderNode *self = (GskBorderNode *) node; return &self->border_color[i]; } /** * gsk_border_node_new: * @outline: a #GskRoundedRect describing the outline of the border * @border_width: the stroke width of the border on the top, right, bottom and * left side respectively. * @border_color: the color used on the top, right, bottom and left side. * * Creates a #GskRenderNode that will stroke a border rectangle inside the * given @outline. The 4 sides of the border can have different widths and * colors. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_border_node_new (const GskRoundedRect *outline, const float border_width[4], const GdkRGBA border_color[4]) { GskBorderNode *self; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (border_width != NULL, NULL); g_return_val_if_fail (border_color != NULL, NULL); self = (GskBorderNode *) gsk_render_node_new (&GSK_BORDER_NODE_CLASS, 0); gsk_rounded_rect_init_copy (&self->outline, outline); memcpy (self->border_width, border_width, sizeof (self->border_width)); memcpy (self->border_color, border_color, sizeof (self->border_color)); graphene_rect_init_from_rect (&self->render_node.bounds, &self->outline.bounds); return &self->render_node; } /*** GSK_TEXTURE_NODE ***/ typedef struct _GskTextureNode GskTextureNode; struct _GskTextureNode { GskRenderNode render_node; GskTexture *texture; }; static void gsk_texture_node_finalize (GskRenderNode *node) { GskTextureNode *self = (GskTextureNode *) node; g_object_unref (self->texture); } static void gsk_texture_node_draw (GskRenderNode *node, cairo_t *cr) { GskTextureNode *self = (GskTextureNode *) node; cairo_surface_t *surface; surface = gsk_texture_download_surface (self->texture); cairo_save (cr); cairo_translate (cr, node->bounds.origin.x, node->bounds.origin.y); cairo_scale (cr, node->bounds.size.width / gsk_texture_get_width (self->texture), node->bounds.size.height / gsk_texture_get_height (self->texture)); cairo_set_source_surface (cr, surface, 0, 0); cairo_paint (cr); cairo_restore (cr); cairo_surface_destroy (surface); } #define GSK_TEXTURE_NODE_VARIANT_TYPE "(dddduuau)" static GVariant * gsk_texture_node_serialize (GskRenderNode *node) { GskTextureNode *self = (GskTextureNode *) node; cairo_surface_t *surface; GVariant *result; surface = gsk_texture_download_surface (self->texture); g_assert (cairo_image_surface_get_width (surface) * 4 == cairo_image_surface_get_stride (surface)); result = g_variant_new ("(dddduu@au)", (double) node->bounds.origin.x, (double) node->bounds.origin.y, (double) node->bounds.size.width, (double) node->bounds.size.height, (guint32) gsk_texture_get_width (self->texture), (guint32) gsk_texture_get_height (self->texture), g_variant_new_fixed_array (G_VARIANT_TYPE ("u"), cairo_image_surface_get_data (surface), gsk_texture_get_width (self->texture) * gsk_texture_get_height (self->texture), sizeof (guint32))); cairo_surface_destroy (surface); return result; } static GskRenderNode * gsk_texture_node_deserialize (GVariant *variant, GError **error) { GskRenderNode *node; GskTexture *texture; double bounds[4]; guint32 width, height; GVariant *pixel_variant; gsize n_pixels; if (!check_variant_type (variant, GSK_TEXTURE_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, "(dddduu@au)", &bounds[0], &bounds[1], &bounds[2], &bounds[3], &width, &height, &pixel_variant); /* XXX: Make this work without copying the data */ texture = gsk_texture_new_for_data (g_variant_get_fixed_array (pixel_variant, &n_pixels, sizeof (guint32)), width, height, width * 4); g_variant_unref (pixel_variant); node = gsk_texture_node_new (texture, &GRAPHENE_RECT_INIT(bounds[0], bounds[1], bounds[2], bounds[3])); g_object_unref (texture); return node; } static const GskRenderNodeClass GSK_TEXTURE_NODE_CLASS = { GSK_TEXTURE_NODE, sizeof (GskTextureNode), "GskTextureNode", gsk_texture_node_finalize, gsk_texture_node_draw, gsk_texture_node_serialize, gsk_texture_node_deserialize }; GskTexture * gsk_texture_node_get_texture (GskRenderNode *node) { GskTextureNode *self = (GskTextureNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXTURE_NODE), 0); return self->texture; } /** * gsk_texture_node_new: * @texture: the #GskTexture * @bounds: the rectangle to render the texture into * * Creates a #GskRenderNode that will render the given * @texture into the area given by @bounds. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_texture_node_new (GskTexture *texture, const graphene_rect_t *bounds) { GskTextureNode *self; g_return_val_if_fail (GSK_IS_TEXTURE (texture), NULL); g_return_val_if_fail (bounds != NULL, NULL); self = (GskTextureNode *) gsk_render_node_new (&GSK_TEXTURE_NODE_CLASS, 0); self->texture = g_object_ref (texture); graphene_rect_init_from_rect (&self->render_node.bounds, bounds); return &self->render_node; } /*** GSK_INSET_SHADOW_NODE ***/ typedef struct _GskInsetShadowNode GskInsetShadowNode; struct _GskInsetShadowNode { GskRenderNode render_node; GskRoundedRect outline; GdkRGBA color; float dx; float dy; float spread; float blur_radius; }; static void gsk_inset_shadow_node_finalize (GskRenderNode *node) { } static gboolean has_empty_clip (cairo_t *cr) { double x1, y1, x2, y2; cairo_clip_extents (cr, &x1, &y1, &x2, &y2); return x1 == x2 && y1 == y2; } static void draw_shadow (cairo_t *cr, gboolean inset, GskRoundedRect *box, GskRoundedRect *clip_box, float radius, const GdkRGBA *color, GskBlurFlags blur_flags) { cairo_t *shadow_cr; gboolean do_blur; if (has_empty_clip (cr)) return; gdk_cairo_set_source_rgba (cr, color); do_blur = (blur_flags & (GSK_BLUR_X | GSK_BLUR_Y)) != 0; if (do_blur) shadow_cr = gsk_cairo_blur_start_drawing (cr, radius, blur_flags); else shadow_cr = cr; cairo_set_fill_rule (shadow_cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (box, shadow_cr); if (inset) cairo_rectangle (cr, clip_box->bounds.origin.x, clip_box->bounds.origin.y, clip_box->bounds.size.width, clip_box->bounds.size.height); cairo_fill (shadow_cr); if (do_blur) gsk_cairo_blur_finish_drawing (shadow_cr, radius, color, blur_flags); } typedef struct { float radius; graphene_size_t corner; } CornerMask; typedef enum { TOP, RIGHT, BOTTOM, LEFT } Side; static guint corner_mask_hash (CornerMask *mask) { return ((guint)mask->radius << 24) ^ ((guint)(mask->corner.width*4)) << 12 ^ ((guint)(mask->corner.height*4)) << 0; } static gboolean corner_mask_equal (CornerMask *mask1, CornerMask *mask2) { return mask1->radius == mask2->radius && mask1->corner.width == mask2->corner.width && mask1->corner.height == mask2->corner.height; } static void draw_shadow_corner (cairo_t *cr, gboolean inset, GskRoundedRect *box, GskRoundedRect *clip_box, float radius, const GdkRGBA *color, GskCorner corner, cairo_rectangle_int_t *drawn_rect) { float clip_radius; int x1, x2, x3, y1, y2, y3, x, y; GskRoundedRect corner_box; cairo_t *mask_cr; cairo_surface_t *mask; cairo_pattern_t *pattern; cairo_matrix_t matrix; float sx, sy; static GHashTable *corner_mask_cache = NULL; float max_other; CornerMask key; gboolean overlapped; clip_radius = gsk_cairo_blur_compute_pixels (radius); overlapped = FALSE; if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_BOTTOM_LEFT) { x1 = floor (box->bounds.origin.x - clip_radius); x2 = ceil (box->bounds.origin.x + box->corner[corner].width + clip_radius); x = x1; sx = 1; max_other = MAX(box->corner[GSK_CORNER_TOP_RIGHT].width, box->corner[GSK_CORNER_BOTTOM_RIGHT].width); x3 = floor (box->bounds.origin.x + box->bounds.size.width - max_other - clip_radius); if (x2 > x3) overlapped = TRUE; } else { x1 = floor (box->bounds.origin.x + box->bounds.size.width - box->corner[corner].width - clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); x = x2; sx = -1; max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].width, box->corner[GSK_CORNER_BOTTOM_LEFT].width); x3 = ceil (box->bounds.origin.x + max_other + clip_radius); if (x3 > x1) overlapped = TRUE; } if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_TOP_RIGHT) { y1 = floor (box->bounds.origin.y - clip_radius); y2 = ceil (box->bounds.origin.y + box->corner[corner].height + clip_radius); y = y1; sy = 1; max_other = MAX(box->corner[GSK_CORNER_BOTTOM_LEFT].height, box->corner[GSK_CORNER_BOTTOM_RIGHT].height); y3 = floor (box->bounds.origin.y + box->bounds.size.height - max_other - clip_radius); if (y2 > y3) overlapped = TRUE; } else { y1 = floor (box->bounds.origin.y + box->bounds.size.height - box->corner[corner].height - clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); y = y2; sy = -1; max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].height, box->corner[GSK_CORNER_TOP_RIGHT].height); y3 = ceil (box->bounds.origin.y + max_other + clip_radius); if (y3 > y1) overlapped = TRUE; } drawn_rect->x = x1; drawn_rect->y = y1; drawn_rect->width = x2 - x1; drawn_rect->height = y2 - y1; cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1); cairo_clip (cr); if (inset || overlapped) { /* Fall back to generic path if inset or if the corner radius runs into each other */ draw_shadow (cr, inset, box, clip_box, radius, color, GSK_BLUR_X | GSK_BLUR_Y); return; } if (has_empty_clip (cr)) return; /* At this point we're drawing a blurred outset corner. The only * things that affect the output of the blurred mask in this case * is: * * What corner this is, which defines the orientation (sx,sy) * and position (x,y) * * The blur radius (which also defines the clip_radius) * * The the horizontal and vertical corner radius * * We apply the first position and orientation when drawing the * mask, so we cache rendered masks based on the blur radius and the * corner radius. */ if (corner_mask_cache == NULL) corner_mask_cache = g_hash_table_new_full ((GHashFunc)corner_mask_hash, (GEqualFunc)corner_mask_equal, g_free, (GDestroyNotify)cairo_surface_destroy); key.radius = radius; key.corner = box->corner[corner]; mask = g_hash_table_lookup (corner_mask_cache, &key); if (mask == NULL) { mask = cairo_surface_create_similar_image (cairo_get_target (cr), CAIRO_FORMAT_A8, drawn_rect->width + clip_radius, drawn_rect->height + clip_radius); mask_cr = cairo_create (mask); gsk_rounded_rect_init_from_rect (&corner_box, &GRAPHENE_RECT_INIT (clip_radius, clip_radius, 2*drawn_rect->width, 2*drawn_rect->height), 0); corner_box.corner[0] = box->corner[corner]; gsk_rounded_rect_path (&corner_box, mask_cr); cairo_fill (mask_cr); gsk_cairo_blur_surface (mask, radius, GSK_BLUR_X | GSK_BLUR_Y); cairo_destroy (mask_cr); g_hash_table_insert (corner_mask_cache, g_memdup (&key, sizeof (key)), mask); } gdk_cairo_set_source_rgba (cr, color); pattern = cairo_pattern_create_for_surface (mask); cairo_matrix_init_identity (&matrix); cairo_matrix_scale (&matrix, sx, sy); cairo_matrix_translate (&matrix, -x, -y); cairo_pattern_set_matrix (pattern, &matrix); cairo_mask (cr, pattern); cairo_pattern_destroy (pattern); } static void draw_shadow_side (cairo_t *cr, gboolean inset, GskRoundedRect *box, GskRoundedRect *clip_box, float radius, const GdkRGBA *color, Side side, cairo_rectangle_int_t *drawn_rect) { GskBlurFlags blur_flags = GSK_BLUR_REPEAT; gdouble clip_radius; int x1, x2, y1, y2; clip_radius = gsk_cairo_blur_compute_pixels (radius); if (side == TOP || side == BOTTOM) { blur_flags |= GSK_BLUR_Y; x1 = floor (box->bounds.origin.x - clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); } else if (side == LEFT) { x1 = floor (box->bounds.origin.x -clip_radius); x2 = ceil (box->bounds.origin.x + clip_radius); } else { x1 = floor (box->bounds.origin.x + box->bounds.size.width -clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); } if (side == LEFT || side == RIGHT) { blur_flags |= GSK_BLUR_X; y1 = floor (box->bounds.origin.y - clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); } else if (side == TOP) { y1 = floor (box->bounds.origin.y -clip_radius); y2 = ceil (box->bounds.origin.y + clip_radius); } else { y1 = floor (box->bounds.origin.y + box->bounds.size.height -clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); } drawn_rect->x = x1; drawn_rect->y = y1; drawn_rect->width = x2 - x1; drawn_rect->height = y2 - y1; cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1); cairo_clip (cr); draw_shadow (cr, inset, box, clip_box, radius, color, blur_flags); } static gboolean needs_blur (double radius) { /* The code doesn't actually do any blurring for radius 1, as it * ends up with box filter size 1 */ if (radius <= 1.0) return FALSE; return TRUE; } static void gsk_inset_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; GskRoundedRect box, clip_box; int clip_radius; double x1c, y1c, x2c, y2c; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&self->color)) return; cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c); if (!gsk_rounded_rect_intersects_rect (&self->outline, &GRAPHENE_RECT_INIT (x1c, y1c, x2c - x1c, y2c - y1c))) return; clip_radius = gsk_cairo_blur_compute_pixels (self->blur_radius); cairo_save (cr); gsk_rounded_rect_path (&self->outline, cr); cairo_clip (cr); gsk_rounded_rect_init_copy (&box, &self->outline); gsk_rounded_rect_offset (&box, self->dx, self->dy); gsk_rounded_rect_shrink (&box, self->spread, self->spread, self->spread, self->spread); gsk_rounded_rect_init_copy (&clip_box, &self->outline); gsk_rounded_rect_shrink (&clip_box, -clip_radius, -clip_radius, -clip_radius, -clip_radius); if (!needs_blur (self->blur_radius)) draw_shadow (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); else { cairo_region_t *remaining; cairo_rectangle_int_t r; int i; /* For the blurred case we divide the rendering into 9 parts, * 4 of the corners, 4 for the horizonat/vertical lines and * one for the interior. We make the non-interior parts * large enought to fit the full radius of the blur, so that * the interior part can be drawn solidly. */ /* In the inset case we want to paint the whole clip-box. * We could remove the part of "box" where the blur doesn't * reach, but computing that is a bit tricky since the * rounded corners are on the "inside" of it. */ r.x = floor (clip_box.bounds.origin.x); r.y = floor (clip_box.bounds.origin.y); r.width = ceil (clip_box.bounds.origin.x + clip_box.bounds.size.width) - r.x; r.height = ceil (clip_box.bounds.origin.y + clip_box.bounds.size.height) - r.y; remaining = cairo_region_create_rectangle (&r); /* First do the corners of box */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_corner (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the sides */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_side (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the rest, which needs no blurring */ cairo_save (cr); gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); cairo_restore (cr); cairo_region_destroy (remaining); } cairo_restore (cr); } #define GSK_INSET_SHADOW_NODE_VARIANT_TYPE "(dddddddddddddddddddd)" static GVariant * gsk_inset_shadow_node_serialize (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; return g_variant_new (GSK_INSET_SHADOW_NODE_VARIANT_TYPE, (double) self->outline.bounds.origin.x, (double) self->outline.bounds.origin.y, (double) self->outline.bounds.size.width, (double) self->outline.bounds.size.height, (double) self->outline.corner[0].width, (double) self->outline.corner[0].height, (double) self->outline.corner[1].width, (double) self->outline.corner[1].height, (double) self->outline.corner[2].width, (double) self->outline.corner[2].height, (double) self->outline.corner[3].width, (double) self->outline.corner[3].height, self->color.red, self->color.green, self->color.blue, self->color.alpha, (double) self->dx, (double) self->dy, (double) self->spread, (double) self->blur_radius); } static GskRenderNode * gsk_inset_shadow_node_deserialize (GVariant *variant, GError **error) { double doutline[12], dx, dy, spread, radius; GdkRGBA color; if (!check_variant_type (variant, GSK_INSET_SHADOW_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_INSET_SHADOW_NODE_VARIANT_TYPE, &doutline[0], &doutline[1], &doutline[2], &doutline[3], &doutline[4], &doutline[5], &doutline[6], &doutline[7], &doutline[8], &doutline[9], &doutline[10], &doutline[11], &color.red, &color.green, &color.blue, &color.alpha, &dx, &dy, &spread, &radius); return gsk_inset_shadow_node_new (&(GskRoundedRect) { .bounds = GRAPHENE_RECT_INIT(doutline[0], doutline[1], doutline[2], doutline[3]), .corner = { GRAPHENE_SIZE_INIT (doutline[4], doutline[5]), GRAPHENE_SIZE_INIT (doutline[6], doutline[7]), GRAPHENE_SIZE_INIT (doutline[8], doutline[9]), GRAPHENE_SIZE_INIT (doutline[10], doutline[11]) } }, &color, dx, dy, spread, radius); } static const GskRenderNodeClass GSK_INSET_SHADOW_NODE_CLASS = { GSK_INSET_SHADOW_NODE, sizeof (GskInsetShadowNode), "GskInsetShadowNode", gsk_inset_shadow_node_finalize, gsk_inset_shadow_node_draw, gsk_inset_shadow_node_serialize, gsk_inset_shadow_node_deserialize }; /** * gsk_inset_shadow_node_new: * @outline: outline of the region containing the shadow * @color: color of the shadow * @dx: horizontal offset of shadow * @dy: vertical offset of shadow * @spread: how far the shadow spreads towards the inside * @blur_radius: how much blur to apply to the shadow * * Creates a #GskRenderNode that will render an inset shadow * into the box given by @outline. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_inset_shadow_node_new (const GskRoundedRect *outline, const GdkRGBA *color, float dx, float dy, float spread, float blur_radius) { GskInsetShadowNode *self; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (color != NULL, NULL); self = (GskInsetShadowNode *) gsk_render_node_new (&GSK_INSET_SHADOW_NODE_CLASS, 0); gsk_rounded_rect_init_copy (&self->outline, outline); self->color = *color; self->dx = dx; self->dy = dy; self->spread = spread; self->blur_radius = blur_radius; graphene_rect_init_from_rect (&self->render_node.bounds, &self->outline.bounds); return &self->render_node; } /*** GSK_OUTSET_SHADOW_NODE ***/ typedef struct _GskOutsetShadowNode GskOutsetShadowNode; struct _GskOutsetShadowNode { GskRenderNode render_node; GskRoundedRect outline; GdkRGBA color; float dx; float dy; float spread; float blur_radius; }; static void gsk_outset_shadow_node_finalize (GskRenderNode *node) { } static void gsk_outset_shadow_get_extents (GskOutsetShadowNode *self, float *top, float *right, float *bottom, float *left) { float clip_radius; clip_radius = gsk_cairo_blur_compute_pixels (self->blur_radius); *top = MAX (0, clip_radius + self->spread - self->dy); *right = MAX (0, ceil (clip_radius + self->spread + self->dx)); *bottom = MAX (0, ceil (clip_radius + self->spread + self->dy)); *left = MAX (0, ceil (clip_radius + self->spread - self->dx)); } static void gsk_outset_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; GskRoundedRect box, clip_box; int clip_radius; double x1c, y1c, x2c, y2c; float top, right, bottom, left; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&self->color)) return; cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c); if (gsk_rounded_rect_contains_rect (&self->outline, &GRAPHENE_RECT_INIT (x1c, y1c, x2c - x1c, y2c - y1c))) return; clip_radius = gsk_cairo_blur_compute_pixels (self->blur_radius); cairo_save (cr); gsk_rounded_rect_init_copy (&clip_box, &self->outline); gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left); gsk_rounded_rect_shrink (&clip_box, -top, -right, -bottom, -left); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (&self->outline, cr); cairo_rectangle (cr, clip_box.bounds.origin.x, clip_box.bounds.origin.y, clip_box.bounds.size.width, clip_box.bounds.size.height); cairo_clip (cr); gsk_rounded_rect_init_copy (&box, &self->outline); gsk_rounded_rect_offset (&box, self->dx, self->dy); gsk_rounded_rect_shrink (&box, -self->spread, -self->spread, -self->spread, -self->spread); if (!needs_blur (self->blur_radius)) draw_shadow (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); else { int i; cairo_region_t *remaining; cairo_rectangle_int_t r; /* For the blurred case we divide the rendering into 9 parts, * 4 of the corners, 4 for the horizonat/vertical lines and * one for the interior. We make the non-interior parts * large enought to fit the full radius of the blur, so that * the interior part can be drawn solidly. */ /* In the outset case we want to paint the entire box, plus as far * as the radius reaches from it */ r.x = floor (box.bounds.origin.x - clip_radius); r.y = floor (box.bounds.origin.y - clip_radius); r.width = ceil (box.bounds.origin.x + box.bounds.size.width + clip_radius) - r.x; r.height = ceil (box.bounds.origin.y + box.bounds.size.height + clip_radius) - r.y; remaining = cairo_region_create_rectangle (&r); /* First do the corners of box */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_corner (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the sides */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_side (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the rest, which needs no blurring */ cairo_save (cr); gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); cairo_restore (cr); cairo_region_destroy (remaining); } cairo_restore (cr); } #define GSK_OUTSET_SHADOW_NODE_VARIANT_TYPE "(dddddddddddddddddddd)" static GVariant * gsk_outset_shadow_node_serialize (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; return g_variant_new (GSK_OUTSET_SHADOW_NODE_VARIANT_TYPE, (double) self->outline.bounds.origin.x, (double) self->outline.bounds.origin.y, (double) self->outline.bounds.size.width, (double) self->outline.bounds.size.height, (double) self->outline.corner[0].width, (double) self->outline.corner[0].height, (double) self->outline.corner[1].width, (double) self->outline.corner[1].height, (double) self->outline.corner[2].width, (double) self->outline.corner[2].height, (double) self->outline.corner[3].width, (double) self->outline.corner[3].height, self->color.red, self->color.green, self->color.blue, self->color.alpha, (double) self->dx, (double) self->dy, (double) self->spread, (double) self->blur_radius); } static GskRenderNode * gsk_outset_shadow_node_deserialize (GVariant *variant, GError **error) { double doutline[12], dx, dy, spread, radius; GdkRGBA color; if (!check_variant_type (variant, GSK_OUTSET_SHADOW_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_INSET_SHADOW_NODE_VARIANT_TYPE, &doutline[0], &doutline[1], &doutline[2], &doutline[3], &doutline[4], &doutline[5], &doutline[6], &doutline[7], &doutline[8], &doutline[9], &doutline[10], &doutline[11], &color.red, &color.green, &color.blue, &color.alpha, &dx, &dy, &spread, &radius); return gsk_outset_shadow_node_new (&(GskRoundedRect) { .bounds = GRAPHENE_RECT_INIT(doutline[0], doutline[1], doutline[2], doutline[3]), .corner = { GRAPHENE_SIZE_INIT (doutline[4], doutline[5]), GRAPHENE_SIZE_INIT (doutline[6], doutline[7]), GRAPHENE_SIZE_INIT (doutline[8], doutline[9]), GRAPHENE_SIZE_INIT (doutline[10], doutline[11]) } }, &color, dx, dy, spread, radius); } static const GskRenderNodeClass GSK_OUTSET_SHADOW_NODE_CLASS = { GSK_OUTSET_SHADOW_NODE, sizeof (GskOutsetShadowNode), "GskOutsetShadowNode", gsk_outset_shadow_node_finalize, gsk_outset_shadow_node_draw, gsk_outset_shadow_node_serialize, gsk_outset_shadow_node_deserialize }; /** * gsk_outset_shadow_node_new: * @outline: outline of the region surrounded by shadow * @color: color of the shadow * @dx: horizontal offset of shadow * @dy: vertical offset of shadow * @spread: how far the shadow spreads towards the inside * @blur_radius: how much blur to apply to the shadow * * Creates a #GskRenderNode that will render an outset shadow * around the box given by @outline. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_outset_shadow_node_new (const GskRoundedRect *outline, const GdkRGBA *color, float dx, float dy, float spread, float blur_radius) { GskOutsetShadowNode *self; float top, right, bottom, left; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (color != NULL, NULL); self = (GskOutsetShadowNode *) gsk_render_node_new (&GSK_OUTSET_SHADOW_NODE_CLASS, 0); gsk_rounded_rect_init_copy (&self->outline, outline); self->color = *color; self->dx = dx; self->dy = dy; self->spread = spread; self->blur_radius = blur_radius; gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left); graphene_rect_init_from_rect (&self->render_node.bounds, &self->outline.bounds); self->render_node.bounds.origin.x -= left; self->render_node.bounds.origin.y -= top; self->render_node.bounds.size.width += left + right; self->render_node.bounds.size.height += top + bottom; return &self->render_node; } /*** GSK_CAIRO_NODE ***/ typedef struct _GskCairoNode GskCairoNode; struct _GskCairoNode { GskRenderNode render_node; cairo_surface_t *surface; }; static void gsk_cairo_node_finalize (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; if (self->surface) cairo_surface_destroy (self->surface); } static void gsk_cairo_node_draw (GskRenderNode *node, cairo_t *cr) { GskCairoNode *self = (GskCairoNode *) node; if (self->surface == NULL) return; cairo_set_source_surface (cr, self->surface, node->bounds.origin.x, node->bounds.origin.y); cairo_paint (cr); } #define GSK_CAIRO_NODE_VARIANT_TYPE "(dddduuau)" static GVariant * gsk_cairo_node_serialize (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; if (self->surface == NULL) { return g_variant_new ("(dddduu@au)", (double) node->bounds.origin.x, (double) node->bounds.origin.y, (double) node->bounds.size.width, (double) node->bounds.size.height, (guint32) 0, (guint32) 0, g_variant_new_array (G_VARIANT_TYPE ("u"), NULL, 0)); } else if (cairo_image_surface_get_width (self->surface) * 4 == cairo_image_surface_get_stride (self->surface)) { return g_variant_new ("(dddduu@au)", (double) node->bounds.origin.x, (double) node->bounds.origin.y, (double) node->bounds.size.width, (double) node->bounds.size.height, (guint32) cairo_image_surface_get_width (self->surface), (guint32) cairo_image_surface_get_height (self->surface), g_variant_new_fixed_array (G_VARIANT_TYPE ("u"), cairo_image_surface_get_data (self->surface), cairo_image_surface_get_width (self->surface) * cairo_image_surface_get_height (self->surface), sizeof (guint32))); } else { /* FIXME: implement! */ g_assert_not_reached (); return NULL; } } const cairo_user_data_key_t gsk_surface_variant_key; static GskRenderNode * gsk_cairo_node_deserialize (GVariant *variant, GError **error) { GskRenderNode *result; cairo_surface_t *surface; double x, y, width, height; guint32 surface_width, surface_height; GVariant *pixel_variant; gsize n_pixels; if (!check_variant_type (variant, GSK_CAIRO_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, "(dddduu@au)", &x, &y, &width, &height, &surface_width, &surface_height, &pixel_variant); if (surface_width == 0 || surface_height == 0) { g_variant_unref (pixel_variant); return gsk_cairo_node_new (&GRAPHENE_RECT_INIT (x, y, width, height)); } /* XXX: Make this work without copying the data */ surface = cairo_image_surface_create_for_data ((guchar *) g_variant_get_fixed_array (pixel_variant, &n_pixels, sizeof (guint32)), CAIRO_FORMAT_ARGB32, surface_width, surface_height, surface_width * 4); cairo_surface_set_user_data (surface, &gsk_surface_variant_key, pixel_variant, (cairo_destroy_func_t) g_variant_unref); result = gsk_cairo_node_new_for_surface (&GRAPHENE_RECT_INIT (x, y, width, height), surface); cairo_surface_destroy (surface); return result; } static const GskRenderNodeClass GSK_CAIRO_NODE_CLASS = { GSK_CAIRO_NODE, sizeof (GskCairoNode), "GskCairoNode", gsk_cairo_node_finalize, gsk_cairo_node_draw, gsk_cairo_node_serialize, gsk_cairo_node_deserialize }; /*< private > * gsk_cairo_node_get_surface: * @node: a #GskRenderNode * * Retrieves the surface set using gsk_render_node_set_surface(). * * Returns: (transfer none) (nullable): a Cairo surface */ cairo_surface_t * gsk_cairo_node_get_surface (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL); return self->surface; } GskRenderNode * gsk_cairo_node_new_for_surface (const graphene_rect_t *bounds, cairo_surface_t *surface) { GskCairoNode *self; g_return_val_if_fail (bounds != NULL, NULL); self = (GskCairoNode *) gsk_render_node_new (&GSK_CAIRO_NODE_CLASS, 0); graphene_rect_init_from_rect (&self->render_node.bounds, bounds); self->surface = cairo_surface_reference (surface); return &self->render_node; } /** * gsk_cairo_node_new: * @bounds: the rectangle to render the to * * Creates a #GskRenderNode that will render a cairo surface * into the area given by @bounds. You can draw to the cairo * surface using gsk_cairo_node_get_draw_context() * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_cairo_node_new (const graphene_rect_t *bounds) { GskCairoNode *self; g_return_val_if_fail (bounds != NULL, NULL); self = (GskCairoNode *) gsk_render_node_new (&GSK_CAIRO_NODE_CLASS, 0); graphene_rect_init_from_rect (&self->render_node.bounds, bounds); return &self->render_node; } /** * gsk_cairo_node_get_draw_context: * @node: a cairo #GskRenderNode * @renderer: (nullable): Renderer to optimize for or %NULL for any * * Creates a Cairo context for drawing using the surface associated * to the render node. * If no surface exists yet, a surface will be created optimized for * rendering to @renderer. * * Returns: (transfer full): a Cairo context used for drawing; use * cairo_destroy() when done drawing * * Since: 3.90 */ cairo_t * gsk_cairo_node_get_draw_context (GskRenderNode *node, GskRenderer *renderer) { GskCairoNode *self = (GskCairoNode *) node; int width, height; cairo_t *res; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL); g_return_val_if_fail (renderer == NULL || GSK_IS_RENDERER (renderer), NULL); width = ceilf (node->bounds.size.width); height = ceilf (node->bounds.size.height); if (width <= 0 || height <= 0) { cairo_surface_t *surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, 0, 0); res = cairo_create (surface); cairo_surface_destroy (surface); } else if (self->surface == NULL) { if (renderer) { self->surface = gsk_renderer_create_cairo_surface (renderer, CAIRO_FORMAT_ARGB32, ceilf (node->bounds.size.width), ceilf (node->bounds.size.height)); } else { self->surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, ceilf (node->bounds.size.width), ceilf (node->bounds.size.height)); } res = cairo_create (self->surface); } else { res = cairo_create (self->surface); } cairo_translate (res, -node->bounds.origin.x, -node->bounds.origin.y); cairo_rectangle (res, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_clip (res); if (GSK_DEBUG_CHECK (SURFACE)) { const char *prefix; prefix = g_getenv ("GSK_DEBUG_PREFIX"); if (!prefix || g_str_has_prefix (node->name, prefix)) { cairo_save (res); cairo_rectangle (res, node->bounds.origin.x + 1, node->bounds.origin.y + 1, node->bounds.size.width - 2, node->bounds.size.height - 2); cairo_set_line_width (res, 2); cairo_set_source_rgb (res, 1, 0, 0); cairo_stroke (res); cairo_restore (res); } } return res; } /**** GSK_CONTAINER_NODE ***/ typedef struct _GskContainerNode GskContainerNode; struct _GskContainerNode { GskRenderNode render_node; guint n_children; GskRenderNode *children[]; }; static void gsk_container_node_finalize (GskRenderNode *node) { GskContainerNode *container = (GskContainerNode *) node; guint i; for (i = 0; i < container->n_children; i++) gsk_render_node_unref (container->children[i]); } static void gsk_container_node_draw (GskRenderNode *node, cairo_t *cr) { GskContainerNode *container = (GskContainerNode *) node; guint i; for (i = 0; i < container->n_children; i++) { gsk_render_node_draw (container->children[i], cr); } } static void gsk_container_node_get_bounds (GskContainerNode *container, graphene_rect_t *bounds) { guint i; if (container->n_children == 0) { graphene_rect_init_from_rect (bounds, graphene_rect_zero()); return; } graphene_rect_init_from_rect (bounds, &container->children[0]->bounds); for (i = 1; i < container->n_children; i++) graphene_rect_union (bounds, &container->children[i]->bounds, bounds); } #define GSK_CONTAINER_NODE_VARIANT_TYPE "a(uv)" static GVariant * gsk_container_node_serialize (GskRenderNode *node) { GskContainerNode *self = (GskContainerNode *) node; GVariantBuilder builder; guint i; g_variant_builder_init (&builder, G_VARIANT_TYPE (GSK_CONTAINER_NODE_VARIANT_TYPE)); for (i = 0; i < self->n_children; i++) { g_variant_builder_add (&builder, "(uv)", (guint32) gsk_render_node_get_node_type (self->children[i]), gsk_render_node_serialize_node (self->children[i])); } return g_variant_builder_end (&builder); } static GskRenderNode * gsk_container_node_deserialize (GVariant *variant, GError **error) { GskRenderNode *result; GVariantIter iter; gsize i, n_children; guint32 child_type; GVariant *child_variant; if (!check_variant_type (variant, GSK_CONTAINER_NODE_VARIANT_TYPE, error)) return NULL; i = 0; n_children = g_variant_iter_init (&iter, variant); GskRenderNode **children = g_newa (GskRenderNode *, n_children); while (g_variant_iter_loop (&iter, "(uv)", &child_type, &child_variant)) { children[i] = gsk_render_node_deserialize_node (child_type, child_variant, error); if (children[i] == NULL) { guint j; for (j = 0; j < i; j++) gsk_render_node_unref (children[j]); g_variant_unref (child_variant); return NULL; } i++; } result = gsk_container_node_new (children, n_children); for (i = 0; i < n_children; i++) gsk_render_node_unref (children[i]); return result; } static const GskRenderNodeClass GSK_CONTAINER_NODE_CLASS = { GSK_CONTAINER_NODE, sizeof (GskContainerNode), "GskContainerNode", gsk_container_node_finalize, gsk_container_node_draw, gsk_container_node_serialize, gsk_container_node_deserialize }; /** * gsk_container_node_new: * @children: (array length=n_children) (transfer none): The children of the node * @n_children: Number of children in the @children array * * Creates a new #GskRenderNode instance for holding the given @children. * The new node will acquire a reference to each of the children. * * Returns: (transfer full): the new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_container_node_new (GskRenderNode **children, guint n_children) { GskContainerNode *container; guint i; container = (GskContainerNode *) gsk_render_node_new (&GSK_CONTAINER_NODE_CLASS, sizeof (GskRenderNode *) * n_children); container->n_children = n_children; for (i = 0; i < container->n_children; i++) container->children[i] = gsk_render_node_ref (children[i]); gsk_container_node_get_bounds (container, &container->render_node.bounds); return &container->render_node; } /** * gsk_container_node_get_n_children: * @node: a container #GskRenderNode * * Retrieves the number of direct children of @node. * * Returns: the number of children of the #GskRenderNode * * Since: 3.90 */ guint gsk_container_node_get_n_children (GskRenderNode *node) { GskContainerNode *container = (GskContainerNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CONTAINER_NODE), 0); return container->n_children; } GskRenderNode * gsk_container_node_get_child (GskRenderNode *node, guint idx) { GskContainerNode *container = (GskContainerNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CONTAINER_NODE), NULL); g_return_val_if_fail (idx < container->n_children, 0); return container->children[idx]; } /*** GSK_TRANSFORM_NODE ***/ typedef struct _GskTransformNode GskTransformNode; struct _GskTransformNode { GskRenderNode render_node; GskRenderNode *child; graphene_matrix_t transform; }; static void gsk_transform_node_finalize (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; gsk_render_node_unref (self->child); } static void gsk_transform_node_draw (GskRenderNode *node, cairo_t *cr) { GskTransformNode *self = (GskTransformNode *) node; cairo_matrix_t ctm; if (graphene_matrix_to_2d (&self->transform, &ctm.xx, &ctm.yx, &ctm.xy, &ctm.yy, &ctm.x0, &ctm.y0)) { GSK_NOTE (CAIRO, g_print ("CTM = { .xx = %g, .yx = %g, .xy = %g, .yy = %g, .x0 = %g, .y0 = %g }\n", ctm.xx, ctm.yx, ctm.xy, ctm.yy, ctm.x0, ctm.y0)); cairo_transform (cr, &ctm); gsk_render_node_draw (self->child, cr); } else { cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.); cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_fill (cr); } } #define GSK_TRANSFORM_NODE_VARIANT_TYPE "(dddddddddddddddduv)" static GVariant * gsk_transform_node_serialize (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; float mat[16]; graphene_matrix_to_float (&self->transform, mat); return g_variant_new (GSK_TRANSFORM_NODE_VARIANT_TYPE, (double) mat[0], (double) mat[1], (double) mat[2], (double) mat[3], (double) mat[4], (double) mat[5], (double) mat[6], (double) mat[7], (double) mat[8], (double) mat[9], (double) mat[10], (double) mat[11], (double) mat[12], (double) mat[13], (double) mat[14], (double) mat[15], (guint32) gsk_render_node_get_node_type (self->child), gsk_render_node_serialize_node (self->child)); } static GskRenderNode * gsk_transform_node_deserialize (GVariant *variant, GError **error) { graphene_matrix_t transform; double mat[16]; guint32 child_type; GVariant *child_variant; GskRenderNode *result, *child; if (!check_variant_type (variant, GSK_TRANSFORM_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_TRANSFORM_NODE_VARIANT_TYPE, &mat[0], &mat[1], &mat[2], &mat[3], &mat[4], &mat[5], &mat[6], &mat[7], &mat[8], &mat[9], &mat[10], &mat[11], &mat[12], &mat[13], &mat[14], &mat[15], &child_type, &child_variant); child = gsk_render_node_deserialize_node (child_type, child_variant, error); g_variant_unref (child_variant); if (child == NULL) return NULL; graphene_matrix_init_from_float (&transform, (float[16]) { mat[0], mat[1], mat[2], mat[3], mat[4], mat[5], mat[6], mat[7], mat[8], mat[9], mat[10], mat[11], mat[12], mat[13], mat[14], mat[15] }); result = gsk_transform_node_new (child, &transform); gsk_render_node_unref (child); return result; } static const GskRenderNodeClass GSK_TRANSFORM_NODE_CLASS = { GSK_TRANSFORM_NODE, sizeof (GskTransformNode), "GskTransformNode", gsk_transform_node_finalize, gsk_transform_node_draw, gsk_transform_node_serialize, gsk_transform_node_deserialize }; /** * gsk_transform_node_new: * @child: The node to transform * @transform: The transform to apply * * Creates a #GskRenderNode that will transform the given @child * with the given @transform. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_transform_node_new (GskRenderNode *child, const graphene_matrix_t *transform) { GskTransformNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (transform != NULL, NULL); self = (GskTransformNode *) gsk_render_node_new (&GSK_TRANSFORM_NODE_CLASS, 0); self->child = gsk_render_node_ref (child); graphene_matrix_init_from_matrix (&self->transform, transform); graphene_matrix_transform_bounds (&self->transform, &child->bounds, &self->render_node.bounds); return &self->render_node; } /** * gsk_transform_node_get_child: * @node: a transform @GskRenderNode * * Gets the child node that is getting transformed by the given @node. * * Returns: (transfer none): The child that is getting transformed **/ GskRenderNode * gsk_transform_node_get_child (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TRANSFORM_NODE), NULL); return self->child; } void gsk_transform_node_get_transform (GskRenderNode *node, graphene_matrix_t *transform) { GskTransformNode *self = (GskTransformNode *) node; g_return_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TRANSFORM_NODE)); graphene_matrix_init_from_matrix (transform, &self->transform); } /*** GSK_OPACITY_NODE ***/ typedef struct _GskOpacityNode GskOpacityNode; struct _GskOpacityNode { GskRenderNode render_node; GskRenderNode *child; double opacity; }; static void gsk_opacity_node_finalize (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; gsk_render_node_unref (self->child); } static void gsk_opacity_node_draw (GskRenderNode *node, cairo_t *cr) { GskOpacityNode *self = (GskOpacityNode *) node; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); cairo_pop_group_to_source (cr); cairo_paint_with_alpha (cr, self->opacity); cairo_restore (cr); } #define GSK_OPACITY_NODE_VARIANT_TYPE "(duv)" static GVariant * gsk_opacity_node_serialize (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; return g_variant_new (GSK_OPACITY_NODE_VARIANT_TYPE, (double) self->opacity, (guint32) gsk_render_node_get_node_type (self->child), gsk_render_node_serialize_node (self->child)); } static GskRenderNode * gsk_opacity_node_deserialize (GVariant *variant, GError **error) { double opacity; guint32 child_type; GVariant *child_variant; GskRenderNode *result, *child; if (!check_variant_type (variant, GSK_OPACITY_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_OPACITY_NODE_VARIANT_TYPE, &opacity, &child_type, &child_variant); child = gsk_render_node_deserialize_node (child_type, child_variant, error); g_variant_unref (child_variant); if (child == NULL) return NULL; result = gsk_opacity_node_new (child, opacity); gsk_render_node_unref (child); return result; } static const GskRenderNodeClass GSK_OPACITY_NODE_CLASS = { GSK_OPACITY_NODE, sizeof (GskOpacityNode), "GskOpacityNode", gsk_opacity_node_finalize, gsk_opacity_node_draw, gsk_opacity_node_serialize, gsk_opacity_node_deserialize }; /** * gsk_opacity_node_new: * @child: The node to draw * @opacity: The opacity to apply * * Creates a #GskRenderNode that will drawn the @child with reduced * @opacity. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_opacity_node_new (GskRenderNode *child, double opacity) { GskOpacityNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = (GskOpacityNode *) gsk_render_node_new (&GSK_OPACITY_NODE_CLASS, 0); self->child = gsk_render_node_ref (child); self->opacity = CLAMP (opacity, 0.0, 1.0); graphene_rect_init_from_rect (&self->render_node.bounds, &child->bounds); return &self->render_node; } /** * gsk_opacity_node_get_child: * @node: a opacity @GskRenderNode * * Gets the child node that is getting opacityed by the given @node. * * Returns: (transfer none): The child that is getting opacityed **/ GskRenderNode * gsk_opacity_node_get_child (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OPACITY_NODE), NULL); return self->child; } double gsk_opacity_node_get_opacity (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OPACITY_NODE), 1.0); return self->opacity; } /*** GSK_COLOR_MATRIX_NODE ***/ typedef struct _GskColorMatrixNode GskColorMatrixNode; struct _GskColorMatrixNode { GskRenderNode render_node; GskRenderNode *child; graphene_matrix_t color_matrix; graphene_vec4_t color_offset; }; static void gsk_color_matrix_node_finalize (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; gsk_render_node_unref (self->child); } static void gsk_color_matrix_node_draw (GskRenderNode *node, cairo_t *cr) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; cairo_pattern_t *pattern; cairo_surface_t *surface, *image_surface; graphene_vec4_t pixel; guint32* pixel_data; guchar *data; gsize x, y, width, height, stride; float alpha; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); cairo_pattern_get_surface (pattern, &surface); image_surface = cairo_surface_map_to_image (surface, NULL); data = cairo_image_surface_get_data (image_surface); width = cairo_image_surface_get_width (image_surface); height = cairo_image_surface_get_height (image_surface); stride = cairo_image_surface_get_stride (image_surface); for (y = 0; y < height; y++) { pixel_data = (guint32 *) data; for (x = 0; x < width; x++) { alpha = ((pixel_data[x] >> 24) & 0xFF) / 255.0; if (alpha == 0) { graphene_vec4_init (&pixel, 0.0, 0.0, 0.0, 0.0); } else { graphene_vec4_init (&pixel, ((pixel_data[x] >> 16) & 0xFF) / (255.0 * alpha), ((pixel_data[x] >> 8) & 0xFF) / (255.0 * alpha), ( pixel_data[x] & 0xFF) / (255.0 * alpha), alpha); graphene_matrix_transform_vec4 (&self->color_matrix, &pixel, &pixel); } graphene_vec4_add (&pixel, &self->color_offset, &pixel); alpha = graphene_vec4_get_w (&pixel); if (alpha > 0.0) { alpha = MIN (alpha, 1.0); pixel_data[x] = (((guint32) (alpha * 255)) << 24) | (((guint32) (CLAMP (graphene_vec4_get_x (&pixel), 0, 1) * alpha * 255)) << 16) | (((guint32) (CLAMP (graphene_vec4_get_y (&pixel), 0, 1) * alpha * 255)) << 8) | ((guint32) (CLAMP (graphene_vec4_get_z (&pixel), 0, 1) * alpha * 255)); } else { pixel_data[x] = 0; } } data += stride; } cairo_surface_mark_dirty (image_surface); cairo_surface_unmap_image (surface, image_surface); cairo_set_source (cr, pattern); cairo_paint (cr); cairo_restore (cr); } #define GSK_COLOR_MATRIX_NODE_VARIANT_TYPE "(dddddddddddddddddddduv)" static GVariant * gsk_color_matrix_node_serialize (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; float mat[16], vec[4]; graphene_matrix_to_float (&self->color_matrix, mat); graphene_vec4_to_float (&self->color_offset, vec); return g_variant_new (GSK_COLOR_MATRIX_NODE_VARIANT_TYPE, (double) mat[0], (double) mat[1], (double) mat[2], (double) mat[3], (double) mat[4], (double) mat[5], (double) mat[6], (double) mat[7], (double) mat[8], (double) mat[9], (double) mat[10], (double) mat[11], (double) mat[12], (double) mat[13], (double) mat[14], (double) mat[15], (double) vec[0], (double) vec[1], (double) vec[2], (double) vec[3], (guint32) gsk_render_node_get_node_type (self->child), gsk_render_node_serialize_node (self->child)); } static GskRenderNode * gsk_color_matrix_node_deserialize (GVariant *variant, GError **error) { double mat[16], vec[4]; guint32 child_type; GVariant *child_variant; GskRenderNode *result, *child; graphene_matrix_t matrix; graphene_vec4_t offset; if (!check_variant_type (variant, GSK_COLOR_MATRIX_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_COLOR_MATRIX_NODE_VARIANT_TYPE, &mat[0], &mat[1], &mat[2], &mat[3], &mat[4], &mat[5], &mat[6], &mat[7], &mat[8], &mat[9], &mat[10], &mat[11], &mat[12], &mat[13], &mat[14], &mat[15], &vec[0], &vec[1], &vec[2], &vec[3], &child_type, &child_variant); child = gsk_render_node_deserialize_node (child_type, child_variant, error); g_variant_unref (child_variant); if (child == NULL) return NULL; graphene_matrix_init_from_float (&matrix, (float[16]) { mat[0], mat[1], mat[2], mat[3], mat[4], mat[5], mat[6], mat[7], mat[8], mat[9], mat[10], mat[11], mat[12], mat[13], mat[14], mat[15] }); graphene_vec4_init (&offset, vec[0], vec[1], vec[2], vec[3]); result = gsk_color_matrix_node_new (child, &matrix, &offset); gsk_render_node_unref (child); return result; } static const GskRenderNodeClass GSK_COLOR_MATRIX_NODE_CLASS = { GSK_COLOR_MATRIX_NODE, sizeof (GskColorMatrixNode), "GskColorMatrixNode", gsk_color_matrix_node_finalize, gsk_color_matrix_node_draw, gsk_color_matrix_node_serialize, gsk_color_matrix_node_deserialize }; /** * gsk_color_matrix_node_new: * @child: The node to draw * @color_matrix: The matrix to apply * @color_offset: Values to add to the color * * Creates a #GskRenderNode that will drawn the @child with reduced * @color_matrix. * * In particular, the node will transform the operation * pixel = color_matrix * pixel + color_offset * for every pixel. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_color_matrix_node_new (GskRenderNode *child, const graphene_matrix_t *color_matrix, const graphene_vec4_t *color_offset) { GskColorMatrixNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = (GskColorMatrixNode *) gsk_render_node_new (&GSK_COLOR_MATRIX_NODE_CLASS, 0); self->child = gsk_render_node_ref (child); graphene_matrix_init_from_matrix (&self->color_matrix, color_matrix); graphene_vec4_init_from_vec4 (&self->color_offset, color_offset); graphene_rect_init_from_rect (&self->render_node.bounds, &child->bounds); return &self->render_node; } GskRenderNode * gsk_color_matrix_node_get_child (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_MATRIX_NODE), NULL); return self->child; } const graphene_matrix_t * gsk_color_matrix_node_peek_color_matrix (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_MATRIX_NODE), NULL); return &self->color_matrix; } const graphene_vec4_t * gsk_color_matrix_node_peek_color_offset (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_MATRIX_NODE), NULL); return &self->color_offset; } /*** GSK_CLIP_NODE ***/ typedef struct _GskClipNode GskClipNode; struct _GskClipNode { GskRenderNode render_node; GskRenderNode *child; graphene_rect_t clip; }; static void gsk_clip_node_finalize (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; gsk_render_node_unref (self->child); } static void gsk_clip_node_draw (GskRenderNode *node, cairo_t *cr) { GskClipNode *self = (GskClipNode *) node; cairo_save (cr); cairo_rectangle (cr, self->clip.origin.x, self->clip.origin.y, self->clip.size.width, self->clip.size.height); cairo_clip (cr); gsk_render_node_draw (self->child, cr); cairo_restore (cr); } #define GSK_CLIP_NODE_VARIANT_TYPE "(dddduv)" static GVariant * gsk_clip_node_serialize (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; return g_variant_new (GSK_CLIP_NODE_VARIANT_TYPE, (double) node->bounds.origin.x, (double) node->bounds.origin.y, (double) node->bounds.size.width, (double) node->bounds.size.height, (guint32) gsk_render_node_get_node_type (self->child), gsk_render_node_serialize_node (self->child)); } static GskRenderNode * gsk_clip_node_deserialize (GVariant *variant, GError **error) { double x, y, width, height; guint32 child_type; GVariant *child_variant; GskRenderNode *result, *child; if (!check_variant_type (variant, GSK_CLIP_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_CLIP_NODE_VARIANT_TYPE, &x, &y, &width, &height, &child_type, &child_variant); child = gsk_render_node_deserialize_node (child_type, child_variant, error); g_variant_unref (child_variant); if (child == NULL) return NULL; result = gsk_clip_node_new (child, &GRAPHENE_RECT_INIT(x, y, width, height)); gsk_render_node_unref (child); return result; } static const GskRenderNodeClass GSK_CLIP_NODE_CLASS = { GSK_CLIP_NODE, sizeof (GskClipNode), "GskClipNode", gsk_clip_node_finalize, gsk_clip_node_draw, gsk_clip_node_serialize, gsk_clip_node_deserialize }; /** * gsk_clip_node_new: * @child: The node to draw * @clip: The clip to apply * * Creates a #GskRenderNode that will clip the @child to the area * given by @clip. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_clip_node_new (GskRenderNode *child, const graphene_rect_t *clip) { GskClipNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (clip != NULL, NULL); self = (GskClipNode *) gsk_render_node_new (&GSK_CLIP_NODE_CLASS, 0); self->child = gsk_render_node_ref (child); graphene_rect_normalize_r (clip, &self->clip); graphene_rect_intersection (&self->clip, &child->bounds, &self->render_node.bounds); return &self->render_node; } /** * gsk_clip_node_get_child: * @node: a clip @GskRenderNode * * Gets the child node that is getting clipped by the given @node. * * Returns: (transfer none): The child that is getting clipped **/ GskRenderNode * gsk_clip_node_get_child (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CLIP_NODE), NULL); return self->child; } const graphene_rect_t * gsk_clip_node_peek_clip (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CLIP_NODE), NULL); return &self->clip; } /*** GSK_ROUNDED_CLIP_NODE ***/ typedef struct _GskRoundedClipNode GskRoundedClipNode; struct _GskRoundedClipNode { GskRenderNode render_node; GskRenderNode *child; GskRoundedRect clip; }; static void gsk_rounded_clip_node_finalize (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; gsk_render_node_unref (self->child); } static void gsk_rounded_clip_node_draw (GskRenderNode *node, cairo_t *cr) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; cairo_save (cr); gsk_rounded_rect_path (&self->clip, cr); cairo_clip (cr); gsk_render_node_draw (self->child, cr); cairo_restore (cr); } #define GSK_ROUNDED_CLIP_NODE_VARIANT_TYPE "(dddddddddddduv)" static GVariant * gsk_rounded_clip_node_serialize (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; return g_variant_new (GSK_ROUNDED_CLIP_NODE_VARIANT_TYPE, (double) self->clip.bounds.origin.x, (double) self->clip.bounds.origin.y, (double) self->clip.bounds.size.width, (double) self->clip.bounds.size.height, (double) self->clip.corner[0].width, (double) self->clip.corner[0].height, (double) self->clip.corner[1].width, (double) self->clip.corner[1].height, (double) self->clip.corner[2].width, (double) self->clip.corner[2].height, (double) self->clip.corner[3].width, (double) self->clip.corner[3].height, (guint32) gsk_render_node_get_node_type (self->child), gsk_render_node_serialize_node (self->child)); } static GskRenderNode * gsk_rounded_clip_node_deserialize (GVariant *variant, GError **error) { double doutline[12]; guint32 child_type; GVariant *child_variant; GskRenderNode *child, *result; if (!check_variant_type (variant, GSK_ROUNDED_CLIP_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_ROUNDED_CLIP_NODE_VARIANT_TYPE, &doutline[0], &doutline[1], &doutline[2], &doutline[3], &doutline[4], &doutline[5], &doutline[6], &doutline[7], &doutline[8], &doutline[9], &doutline[10], &doutline[11], &child_type, &child_variant); child = gsk_render_node_deserialize_node (child_type, child_variant, error); g_variant_unref (child_variant); if (child == NULL) return NULL; result = gsk_rounded_clip_node_new (child, &(GskRoundedRect) { .bounds = GRAPHENE_RECT_INIT(doutline[0], doutline[1], doutline[2], doutline[3]), .corner = { GRAPHENE_SIZE_INIT (doutline[4], doutline[5]), GRAPHENE_SIZE_INIT (doutline[6], doutline[7]), GRAPHENE_SIZE_INIT (doutline[8], doutline[9]), GRAPHENE_SIZE_INIT (doutline[10], doutline[11]) } }); gsk_render_node_unref (child); return result; } static const GskRenderNodeClass GSK_ROUNDED_CLIP_NODE_CLASS = { GSK_ROUNDED_CLIP_NODE, sizeof (GskRoundedClipNode), "GskRoundedClipNode", gsk_rounded_clip_node_finalize, gsk_rounded_clip_node_draw, gsk_rounded_clip_node_serialize, gsk_rounded_clip_node_deserialize }; /** * gsk_rounded_clip_node_new: * @child: The node to draw * @clip: The clip to apply * * Creates a #GskRenderNode that will clip the @child to the area * given by @clip. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_rounded_clip_node_new (GskRenderNode *child, const GskRoundedRect *clip) { GskRoundedClipNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (clip != NULL, NULL); self = (GskRoundedClipNode *) gsk_render_node_new (&GSK_ROUNDED_CLIP_NODE_CLASS, 0); self->child = gsk_render_node_ref (child); gsk_rounded_rect_init_copy (&self->clip, clip); graphene_rect_intersection (&self->clip.bounds, &child->bounds, &self->render_node.bounds); return &self->render_node; } /** * gsk_rounded_clip_node_get_child: * @node: a clip @GskRenderNode * * Gets the child node that is getting clipped by the given @node. * * Returns: (transfer none): The child that is getting clipped **/ GskRenderNode * gsk_rounded_clip_node_get_child (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_ROUNDED_CLIP_NODE), NULL); return self->child; } const GskRoundedRect * gsk_rounded_clip_node_peek_clip (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_ROUNDED_CLIP_NODE), NULL); return &self->clip; } /*** GSK_SHADOW_NODE ***/ typedef struct _GskShadowNode GskShadowNode; struct _GskShadowNode { GskRenderNode render_node; GskRenderNode *child; gsize n_shadows; GskShadow shadows[]; }; static void gsk_shadow_node_finalize (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; gsk_render_node_unref (self->child); } static void gsk_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskShadowNode *self = (GskShadowNode *) node; cairo_pattern_t *pattern; gsize i; cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); for (i = 0; i < self->n_shadows; i++) { GskShadow *shadow = &self->shadows[i]; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&shadow->color)) continue; cairo_save (cr); gdk_cairo_set_source_rgba (cr, &shadow->color); cr = gsk_cairo_blur_start_drawing (cr, shadow->radius, GSK_BLUR_X | GSK_BLUR_Y); cairo_translate (cr, shadow->dx, shadow->dy); cairo_mask (cr, pattern); cr = gsk_cairo_blur_finish_drawing (cr, shadow->radius, &shadow->color, GSK_BLUR_X | GSK_BLUR_Y); cairo_restore (cr); } cairo_set_source (cr, pattern); cairo_paint (cr); cairo_pattern_destroy (pattern); } static void gsk_shadow_node_get_bounds (GskShadowNode *self, graphene_rect_t *bounds) { float top = 0, right = 0, bottom = 0, left = 0; gsize i; graphene_rect_init_from_rect (bounds, &self->child->bounds); for (i = 0; i < self->n_shadows; i++) { float clip_radius = gsk_cairo_blur_compute_pixels (self->shadows[i].radius); top = MAX (top, clip_radius - self->shadows[i].dy); right = MAX (right, clip_radius + self->shadows[i].dx); bottom = MAX (bottom, clip_radius + self->shadows[i].dy); left = MAX (left, clip_radius - self->shadows[i].dx); } bounds->origin.x -= left; bounds->origin.y -= top; bounds->size.width += left + right; bounds->size.height += top + bottom; } #define GSK_SHADOW_NODE_VARIANT_TYPE "(uva(ddddddd))" static GVariant * gsk_shadow_node_serialize (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; GVariantBuilder builder; gsize i; g_variant_builder_init (&builder, G_VARIANT_TYPE ("a(ddddddd)")); for (i = 0; i < self->n_shadows; i++) { g_variant_builder_add (&builder, "(ddddddd)", self->shadows[i].color.red, self->shadows[i].color.green, self->shadows[i].color.blue, self->shadows[i].color.alpha, self->shadows[i].dx, self->shadows[i].dy, self->shadows[i].radius); } return g_variant_new (GSK_SHADOW_NODE_VARIANT_TYPE, (guint32) gsk_render_node_get_node_type (self->child), gsk_render_node_serialize_node (self->child), &builder); } static GskRenderNode * gsk_shadow_node_deserialize (GVariant *variant, GError **error) { gsize n_shadows; guint32 child_type; GVariant *child_variant; GskRenderNode *result, *child; GVariantIter *iter; gsize i; if (!check_variant_type (variant, GSK_SHADOW_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_SHADOW_NODE_VARIANT_TYPE, &child_type, &child_variant, &iter); child = gsk_render_node_deserialize_node (child_type, child_variant, error); g_variant_unref (child_variant); if (child == NULL) { g_variant_iter_free (iter); return NULL; } n_shadows = g_variant_iter_n_children (iter); GskShadow *shadows = g_newa (GskShadow, n_shadows); for (i = 0; i < n_shadows; i++) { double dx, dy, radius; g_variant_iter_next (iter, "(ddddddd)", &shadows[i].color.red, &shadows[i].color.green, &shadows[i].color.blue, &shadows[i].color.alpha, &dx, &dy, &radius); shadows[i].dx = dx; shadows[i].dy = dy; shadows[i].radius = radius; } g_variant_iter_free (iter); result = gsk_shadow_node_new (child, shadows, n_shadows); gsk_render_node_unref (child); return result; } static const GskRenderNodeClass GSK_SHADOW_NODE_CLASS = { GSK_SHADOW_NODE, sizeof (GskShadowNode), "GskShadowNode", gsk_shadow_node_finalize, gsk_shadow_node_draw, gsk_shadow_node_serialize, gsk_shadow_node_deserialize }; /** * gsk_shadow_node_new: * @child: The node to draw * @shadows: (array length=n_shadows): The shadows to apply * @n_shadows: number of entries in the @shadows array * * Creates a #GskRenderNode that will draw a @child with the given * @shadows below it. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_shadow_node_new (GskRenderNode *child, const GskShadow *shadows, gsize n_shadows) { GskShadowNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (shadows != NULL, NULL); g_return_val_if_fail (n_shadows > 0, NULL); self = (GskShadowNode *) gsk_render_node_new (&GSK_SHADOW_NODE_CLASS, n_shadows * sizeof (GskShadow)); self->child = gsk_render_node_ref (child); memcpy (&self->shadows, shadows, n_shadows * sizeof (GskShadow)); self->n_shadows = n_shadows; gsk_shadow_node_get_bounds (self, &self->render_node.bounds); return &self->render_node; } GskRenderNode * gsk_shadow_node_get_child (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_SHADOW_NODE), NULL); return self->child; } const GskShadow * gsk_shadow_node_peek_shadow (GskRenderNode *node, gsize i) { GskShadowNode *self = (GskShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_SHADOW_NODE), NULL); g_return_val_if_fail (i < self->n_shadows, NULL); return &self->shadows[i]; } gsize gsk_shadow_node_get_n_shadows (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_SHADOW_NODE), 0); return self->n_shadows; } /*** GSK_BLEND_NODE ***/ typedef struct _GskBlendNode GskBlendNode; struct _GskBlendNode { GskRenderNode render_node; GskRenderNode *bottom; GskRenderNode *top; GskBlendMode blend_mode; }; static cairo_operator_t gsk_blend_mode_to_cairo_operator (GskBlendMode blend_mode) { switch (blend_mode) { default: g_assert_not_reached (); case GSK_BLEND_MODE_DEFAULT: return CAIRO_OPERATOR_OVER; case GSK_BLEND_MODE_MULTIPLY: return CAIRO_OPERATOR_MULTIPLY; case GSK_BLEND_MODE_SCREEN: return CAIRO_OPERATOR_SCREEN; case GSK_BLEND_MODE_OVERLAY: return CAIRO_OPERATOR_OVERLAY; case GSK_BLEND_MODE_DARKEN: return CAIRO_OPERATOR_DARKEN; case GSK_BLEND_MODE_LIGHTEN: return CAIRO_OPERATOR_LIGHTEN; case GSK_BLEND_MODE_COLOR_DODGE: return CAIRO_OPERATOR_COLOR_DODGE; case GSK_BLEND_MODE_COLOR_BURN: return CAIRO_OPERATOR_COLOR_BURN; case GSK_BLEND_MODE_HARD_LIGHT: return CAIRO_OPERATOR_HARD_LIGHT; case GSK_BLEND_MODE_SOFT_LIGHT: return CAIRO_OPERATOR_SOFT_LIGHT; case GSK_BLEND_MODE_DIFFERENCE: return CAIRO_OPERATOR_DIFFERENCE; case GSK_BLEND_MODE_EXCLUSION: return CAIRO_OPERATOR_EXCLUSION; case GSK_BLEND_MODE_COLOR: return CAIRO_OPERATOR_HSL_COLOR; case GSK_BLEND_MODE_HUE: return CAIRO_OPERATOR_HSL_HUE; case GSK_BLEND_MODE_SATURATION: return CAIRO_OPERATOR_HSL_SATURATION; case GSK_BLEND_MODE_LUMINOSITY: return CAIRO_OPERATOR_HSL_LUMINOSITY; } } static void gsk_blend_node_finalize (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; gsk_render_node_unref (self->bottom); gsk_render_node_unref (self->top); } static void gsk_blend_node_draw (GskRenderNode *node, cairo_t *cr) { GskBlendNode *self = (GskBlendNode *) node; cairo_push_group (cr); gsk_render_node_draw (self->bottom, cr); cairo_push_group (cr); gsk_render_node_draw (self->top, cr); cairo_pop_group_to_source (cr); cairo_set_operator (cr, gsk_blend_mode_to_cairo_operator (self->blend_mode)); cairo_paint (cr); cairo_pop_group_to_source (cr); /* resets operator */ cairo_paint (cr); } #define GSK_BLEND_NODE_VARIANT_TYPE "(uvuvu)" static GVariant * gsk_blend_node_serialize (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; return g_variant_new (GSK_BLEND_NODE_VARIANT_TYPE, (guint32) gsk_render_node_get_node_type (self->bottom), gsk_render_node_serialize_node (self->bottom), (guint32) gsk_render_node_get_node_type (self->top), gsk_render_node_serialize_node (self->top), (guint32) self->blend_mode); } static GskRenderNode * gsk_blend_node_deserialize (GVariant *variant, GError **error) { guint32 bottom_child_type, top_child_type, blend_mode; GVariant *bottom_child_variant, *top_child_variant; GskRenderNode *bottom_child, *top_child, *result; if (!check_variant_type (variant, GSK_BLEND_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_BLEND_NODE_VARIANT_TYPE, &bottom_child_type, &bottom_child_variant, &top_child_type, &top_child_variant, &blend_mode); bottom_child = gsk_render_node_deserialize_node (bottom_child_type, bottom_child_variant, error); g_variant_unref (bottom_child_variant); if (bottom_child == NULL) { g_variant_unref (top_child_variant); return NULL; } top_child = gsk_render_node_deserialize_node (top_child_type, top_child_variant, error); g_variant_unref (top_child_variant); if (top_child == NULL) { gsk_render_node_unref (bottom_child); return NULL; } result = gsk_blend_node_new (bottom_child, top_child, blend_mode); gsk_render_node_unref (top_child); gsk_render_node_unref (bottom_child); return result; } static const GskRenderNodeClass GSK_BLEND_NODE_CLASS = { GSK_BLEND_NODE, sizeof (GskBlendNode), "GskBlendNode", gsk_blend_node_finalize, gsk_blend_node_draw, gsk_blend_node_serialize, gsk_blend_node_deserialize }; /** * gsk_blend_node_new: * @bottom: The bottom node to be drawn * @top: The node to be blended onto the @bottom node * @blend_mode: The blend mode to use * * Creates a #GskRenderNode that will use @blend_mode to blend the @top * node onto the @bottom node. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_blend_node_new (GskRenderNode *bottom, GskRenderNode *top, GskBlendMode blend_mode) { GskBlendNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (bottom), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (top), NULL); self = (GskBlendNode *) gsk_render_node_new (&GSK_BLEND_NODE_CLASS, 0); self->bottom = gsk_render_node_ref (bottom); self->top = gsk_render_node_ref (top); self->blend_mode = blend_mode; graphene_rect_union (&bottom->bounds, &top->bounds, &self->render_node.bounds); return &self->render_node; } GskRenderNode * gsk_blend_node_get_bottom_child (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLEND_NODE), NULL); return self->bottom; } GskRenderNode * gsk_blend_node_get_top_child (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLEND_NODE), NULL); return self->top; } GskBlendMode gsk_blend_node_get_blend_mode (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLEND_NODE), GSK_BLEND_MODE_DEFAULT); return self->blend_mode; } /*** GSK_CROSS_FADE_NODE ***/ typedef struct _GskCrossFadeNode GskCrossFadeNode; struct _GskCrossFadeNode { GskRenderNode render_node; GskRenderNode *start; GskRenderNode *end; double progress; }; static void gsk_cross_fade_node_finalize (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; gsk_render_node_unref (self->start); gsk_render_node_unref (self->end); } static void gsk_cross_fade_node_draw (GskRenderNode *node, cairo_t *cr) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; cairo_push_group (cr); gsk_render_node_draw (self->start, cr); cairo_push_group (cr); gsk_render_node_draw (self->end, cr); cairo_pop_group_to_source (cr); cairo_set_operator (cr, CAIRO_OPERATOR_SOURCE); cairo_paint_with_alpha (cr, self->progress); cairo_pop_group_to_source (cr); /* resets operator */ cairo_paint (cr); } #define GSK_CROSS_FADE_NODE_VARIANT_TYPE "(uvuvd)" static GVariant * gsk_cross_fade_node_serialize (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; return g_variant_new (GSK_CROSS_FADE_NODE_VARIANT_TYPE, (guint32) gsk_render_node_get_node_type (self->start), gsk_render_node_serialize_node (self->start), (guint32) gsk_render_node_get_node_type (self->end), gsk_render_node_serialize_node (self->end), (double) self->progress); } static GskRenderNode * gsk_cross_fade_node_deserialize (GVariant *variant, GError **error) { guint32 start_child_type, end_child_type; GVariant *start_child_variant, *end_child_variant; GskRenderNode *start_child, *end_child, *result; double progress; if (!check_variant_type (variant, GSK_CROSS_FADE_NODE_VARIANT_TYPE, error)) return NULL; g_variant_get (variant, GSK_CROSS_FADE_NODE_VARIANT_TYPE, &start_child_type, &start_child_variant, &end_child_type, &end_child_variant, &progress); start_child = gsk_render_node_deserialize_node (start_child_type, start_child_variant, error); g_variant_unref (start_child_variant); if (start_child == NULL) { g_variant_unref (end_child_variant); return NULL; } end_child = gsk_render_node_deserialize_node (end_child_type, end_child_variant, error); g_variant_unref (end_child_variant); if (end_child == NULL) { gsk_render_node_unref (start_child); return NULL; } result = gsk_cross_fade_node_new (start_child, end_child, progress); gsk_render_node_unref (end_child); gsk_render_node_unref (start_child); return result; } static const GskRenderNodeClass GSK_CROSS_FADE_NODE_CLASS = { GSK_CROSS_FADE_NODE, sizeof (GskCrossFadeNode), "GskCrossFadeNode", gsk_cross_fade_node_finalize, gsk_cross_fade_node_draw, gsk_cross_fade_node_serialize, gsk_cross_fade_node_deserialize }; /** * gsk_cross_fade_node_new: * @start: The start node to be drawn * @end: The node to be cross_fadeed onto the @start node * @progress: How far the fade has progressed from start to end. The value will * be clamped to the range [0 ... 1] * * Creates a #GskRenderNode that will do a cross-fade between @start and @end. * * Returns: A new #GskRenderNode * * Since: 3.90 */ GskRenderNode * gsk_cross_fade_node_new (GskRenderNode *start, GskRenderNode *end, double progress) { GskCrossFadeNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (start), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (end), NULL); self = (GskCrossFadeNode *) gsk_render_node_new (&GSK_CROSS_FADE_NODE_CLASS, 0); self->start = gsk_render_node_ref (start); self->end = gsk_render_node_ref (end); self->progress = CLAMP (progress, 0.0, 1.0); graphene_rect_union (&start->bounds, &end->bounds, &self->render_node.bounds); return &self->render_node; } GskRenderNode * gsk_cross_fade_node_get_start_child (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CROSS_FADE_NODE), NULL); return self->start; } GskRenderNode * gsk_cross_fade_node_get_end_child (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CROSS_FADE_NODE), NULL); return self->end; } double gsk_cross_fade_node_get_progress (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CROSS_FADE_NODE), 0.0); return self->progress; } static const GskRenderNodeClass *klasses[] = { [GSK_CONTAINER_NODE] = &GSK_CONTAINER_NODE_CLASS, [GSK_CAIRO_NODE] = &GSK_CAIRO_NODE_CLASS, [GSK_COLOR_NODE] = &GSK_COLOR_NODE_CLASS, [GSK_LINEAR_GRADIENT_NODE] = &GSK_LINEAR_GRADIENT_NODE_CLASS, [GSK_REPEATING_LINEAR_GRADIENT_NODE] = &GSK_REPEATING_LINEAR_GRADIENT_NODE_CLASS, [GSK_BORDER_NODE] = &GSK_BORDER_NODE_CLASS, [GSK_TEXTURE_NODE] = &GSK_TEXTURE_NODE_CLASS, [GSK_INSET_SHADOW_NODE] = &GSK_INSET_SHADOW_NODE_CLASS, [GSK_OUTSET_SHADOW_NODE] = &GSK_OUTSET_SHADOW_NODE_CLASS, [GSK_TRANSFORM_NODE] = &GSK_TRANSFORM_NODE_CLASS, [GSK_OPACITY_NODE] = &GSK_OPACITY_NODE_CLASS, [GSK_COLOR_MATRIX_NODE] = &GSK_COLOR_MATRIX_NODE_CLASS, [GSK_CLIP_NODE] = &GSK_CLIP_NODE_CLASS, [GSK_ROUNDED_CLIP_NODE] = &GSK_ROUNDED_CLIP_NODE_CLASS, [GSK_SHADOW_NODE] = &GSK_SHADOW_NODE_CLASS, [GSK_BLEND_NODE] = &GSK_BLEND_NODE_CLASS, [GSK_CROSS_FADE_NODE] = &GSK_CROSS_FADE_NODE_CLASS }; GskRenderNode * gsk_render_node_deserialize_node (GskRenderNodeType type, GVariant *variant, GError **error) { const GskRenderNodeClass *klass; GskRenderNode *result; if (type < G_N_ELEMENTS (klasses)) klass = klasses[type]; else klass = NULL; if (klass == NULL) { g_set_error (error, GSK_SERIALIZATION_ERROR, GSK_SERIALIZATION_INVALID_DATA, "Type %u is not a valid node type", type); return NULL; } result = klass->deserialize (variant, error); return result; } GVariant * gsk_render_node_serialize_node (GskRenderNode *node) { return node->node_class->serialize (node); }