GTK v1.2 Tutorial <author> Tony Gale <tt><htmlurl url="mailto:gale@gtk.org" name="<gale@gtk.org>"></tt>, Ian Main <tt><htmlurl url="mailto:imain@gtk.org" name="<imain@gtk.org>"></tt> <date>February 23rd, 2000 <abstract> This is a tutorial on how to use GTK (the GIMP Toolkit) through its C interface. </abstract> <!-- Table of contents --> <!-- Older versions of this tutorial did not have a table of contents, but the tutorial is now so large that having one is very useful. --> <toc> <!-- ***************************************************************** --> <sect>Introduction <!-- ***************************************************************** --> <p> GTK (GIMP Toolkit) is a library for creating graphical user interfaces. It is licensed using the LGPL license, so you can develop open software, free software, or even commercial non-free software using GTK without having to spend anything for licenses or royalties. It's called the GIMP toolkit because it was originally written for developing the GNU Image Manipulation Program (GIMP), but GTK has now been used in a large number of software projects, including the GNU Network Object Model Environment (GNOME) project. GTK is built on top of GDK (GIMP Drawing Kit) which is basically a wrapper around the low-level functions for accessing the underlying windowing functions (Xlib in the case of the X windows system). The primary authors of GTK are: <itemize> <item> Peter Mattis <tt><htmlurl url="mailto:petm@xcf.berkeley.edu" name="petm@xcf.berkeley.edu"></tt> <item> Spencer Kimball <tt><htmlurl url="mailto:spencer@xcf.berkeley.edu" name="spencer@xcf.berkeley.edu"></tt> <item> Josh MacDonald <tt><htmlurl url="mailto:jmacd@xcf.berkeley.edu" name="jmacd@xcf.berkeley.edu"></tt> </itemize> GTK is essentially an object oriented application programmers interface (API). Although written completely in C, it is implemented using the idea of classes and callback functions (pointers to functions). There is also a third component called GLib which contains a few replacements for some standard calls, as well as some additional functions for handling linked lists, etc. The replacement functions are used to increase GTK's portability, as some of the functions implemented here are not available or are nonstandard on other unixes such as g_strerror(). Some also contain enhancements to the libc versions, such as g_malloc that has enhanced debugging utilities. This tutorial describes the C interface to GTK. There are GTK bindings for many other languages including C++, Guile, Perl, Python, TOM, Ada95, Objective C, Free Pascal, and Eiffel. If you intend to use another language's bindings to GTK, look at that binding's documentation first. In some cases that documentation may describe some important conventions (which you should know first) and then refer you back to this tutorial. There are also some cross-platform APIs (such as wxWindows and V) which use GTK as one of their target platforms; again, consult their documentation first. If you're developing your GTK application in C++, a few extra notes are in order. There's a C++ binding to GTK called GTK--, which provides a more C++-like interface to GTK; you should probably look into this instead. If you don't like that approach for whatever reason, there are two alternatives for using GTK. First, you can use only the C subset of C++ when interfacing with GTK and then use the C interface as described in this tutorial. Second, you can use GTK and C++ together by declaring all callbacks as static functions in C++ classes, and again calling GTK using its C interface. If you choose this last approach, you can include as the callback's data value a pointer to the object to be manipulated (the so-called "this" value). Selecting between these options is simply a matter of preference, since in all three approaches you get C++ and GTK. None of these approaches requires the use of a specialized preprocessor, so no matter what you choose you can use standard C++ with GTK. This tutorial is an attempt to document as much as possible of GTK, but it is by no means complete. This tutorial assumes a good understanding of C, and how to create C programs. It would be a great benefit for the reader to have previous X programming experience, but it shouldn't be necessary. If you are learning GTK as your first widget set, please comment on how you found this tutorial, and what you had trouble with. There are also C++, Objective C, ADA, Guile and other language bindings available, but I don't follow these. This document is a "work in progress". Please look for updates on <htmlurl url="http://www.gtk.org/" name="http://www.gtk.org/">. I would very much like to hear of any problems you have learning GTK from this document, and would appreciate input as to how it may be improved. Please see the section on <ref id="sec_Contributing" name="Contributing"> for further information. <!-- ***************************************************************** --> <sect>Getting Started <!-- ***************************************************************** --> <p> The first thing to do, of course, is download the GTK source and install it. You can always get the latest version from ftp.gtk.org in /pub/gtk. You can also view other sources of GTK information on <htmlurl url="http://www.gtk.org/" name="http://www.gtk.org/">. GTK uses GNU autoconf for configuration. Once untar'd, type ./configure --help to see a list of options. The GTK source distribution also contains the complete source to all of the examples used in this tutorial, along with Makefiles to aid compilation. To begin our introduction to GTK, we'll start with the simplest program possible. This program will create a 200x200 pixel window and has no way of exiting except to be killed by using the shell. <tscreen><verb> /* example-start base base.c */ #include <gtk/gtk.h> int main( int argc, char *argv[] ) { GtkWidget *window; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_show (window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> You can compile the above program with gcc using: <tscreen><verb> gcc base.c -o base `gtk-config --cflags --libs` </verb></tscreen> The meaning of the unusual compilation options is explained below in <ref id="sec_compiling" name="Compiling Hello World">. All programs will of course include gtk/gtk.h which declares the variables, functions, structures, etc. that will be used in your GTK application. The next line: <tscreen><verb> gtk_init (&argc, &argv); </verb></tscreen> calls the function gtk_init(gint *argc, gchar ***argv) which will be called in all GTK applications. This sets up a few things for us such as the default visual and color map and then proceeds to call gdk_init(gint *argc, gchar ***argv). This function initializes the library for use, sets up default signal handlers, and checks the arguments passed to your application on the command line, looking for one of the following: <itemize> <item> <tt/--gtk-module/ <item> <tt/--g-fatal-warnings/ <item> <tt/--gtk-debug/ <item> <tt/--gtk-no-debug/ <item> <tt/--gdk-debug/ <item> <tt/--gdk-no-debug/ <item> <tt/--display/ <item> <tt/--sync/ <item> <tt/--no-xshm/ <item> <tt/--name/ <item> <tt/--class/ </itemize> It removes these from the argument list, leaving anything it does not recognize for your application to parse or ignore. This creates a set of standard arguments accepted by all GTK applications. The next two lines of code create and display a window. <tscreen><verb> window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_show (window); </verb></tscreen> The <tt/GTK_WINDOW_TOPLEVEL/ argument specifies that we want the window to undergo window manager decoration and placement. Rather than create a window of 0x0 size, a window without children is set to 200x200 by default so you can still manipulate it. The gtk_widget_show() function lets GTK know that we are done setting the attributes of this widget, and that it can display it. The last line enters the GTK main processing loop. <tscreen><verb> gtk_main (); </verb></tscreen> gtk_main() is another call you will see in every GTK application. When control reaches this point, GTK will sleep waiting for X events (such as button or key presses), timeouts, or file IO notifications to occur. In our simple example, however, events are ignored. <!-- ----------------------------------------------------------------- --> <sect1>Hello World in GTK <p> Now for a program with a widget (a button). It's the classic hello world a la GTK. <tscreen><verb> /* example-start helloworld helloworld.c */ #include <gtk/gtk.h> /* This is a callback function. The data arguments are ignored * in this example. More on callbacks below. */ void hello( GtkWidget *widget, gpointer data ) { g_print ("Hello World\n"); } gint delete_event( GtkWidget *widget, GdkEvent *event, gpointer data ) { /* If you return FALSE in the "delete_event" signal handler, * GTK will emit the "destroy" signal. Returning TRUE means * you don't want the window to be destroyed. * This is useful for popping up 'are you sure you want to quit?' * type dialogs. */ g_print ("delete event occurred\n"); /* Change TRUE to FALSE and the main window will be destroyed with * a "delete_event". */ return(TRUE); } /* Another callback */ void destroy( GtkWidget *widget, gpointer data ) { gtk_main_quit(); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; /* This is called in all GTK applications. Arguments are parsed * from the command line and are returned to the application. */ gtk_init(&argc, &argv); /* create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* When the window is given the "delete_event" signal (this is given * by the window manager, usually by the "close" option, or on the * titlebar), we ask it to call the delete_event () function * as defined above. The data passed to the callback * function is NULL and is ignored in the callback function. */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); /* Here we connect the "destroy" event to a signal handler. * This event occurs when we call gtk_widget_destroy() on the window, * or if we return FALSE in the "delete_event" callback. */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (destroy), NULL); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Creates a new button with the label "Hello World". */ button = gtk_button_new_with_label ("Hello World"); /* When the button receives the "clicked" signal, it will call the * function hello() passing it NULL as its argument. The hello() * function is defined above. */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (hello), NULL); /* This will cause the window to be destroyed by calling * gtk_widget_destroy(window) when "clicked". Again, the destroy * signal could come from here, or the window manager. */ gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); /* This packs the button into the window (a gtk container). */ gtk_container_add (GTK_CONTAINER (window), button); /* The final step is to display this newly created widget. */ gtk_widget_show (button); /* and the window */ gtk_widget_show (window); /* All GTK applications must have a gtk_main(). Control ends here * and waits for an event to occur (like a key press or * mouse event). */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Compiling Hello World <label id="sec_compiling"> <p> To compile use: <tscreen><verb> gcc -Wall -g helloworld.c -o helloworld `gtk-config --cflags` \ `gtk-config --libs` </verb></tscreen> This uses the program <tt/gtk-config/, which comes with GTK. This program "knows" what compiler switches are needed to compile programs that use GTK. <tt/gtk-config --cflags/ will output a list of include directories for the compiler to look in, and <tt>gtk-config --libs</> will output the list of libraries for the compiler to link with and the directories to find them in. In the above example they could have been combined into a single instance, such as <tt/`gtk-config --cflags --libs`/. Note that the type of single quote used in the compile command above is significant. The libraries that are usually linked in are: <itemize> <item>The GTK library (-lgtk), the widget library, based on top of GDK. <item>The GDK library (-lgdk), the Xlib wrapper. <item>The gmodule library (-lgmodule), which is used to load run time extensions. <item>The GLib library (-lglib), containing miscellaneous functions; only g_print() is used in this particular example. GTK is built on top of glib so you will always require this library. See the section on <ref id="sec_glib" name="GLib"> for details. <item>The Xlib library (-lX11) which is used by GDK. <item>The Xext library (-lXext). This contains code for shared memory pixmaps and other X extensions. <item>The math library (-lm). This is used by GTK for various purposes. </itemize> <!-- ----------------------------------------------------------------- --> <sect1>Theory of Signals and Callbacks <p> Before we look in detail at <em>helloworld</em>, we'll discuss signals and callbacks. GTK is an event driven toolkit, which means it will sleep in gtk_main until an event occurs and control is passed to the appropriate function. This passing of control is done using the idea of "signals". (Note that these signals are not the same as the Unix system signals, and are not implemented using them, although the terminology is almost identical.) When an event occurs, such as the press of a mouse button, the appropriate signal will be "emitted" by the widget that was pressed. This is how GTK does most of its useful work. There are signals that all widgets inherit, such as "destroy", and there are signals that are widget specific, such as "toggled" on a toggle button. To make a button perform an action, we set up a signal handler to catch these signals and call the appropriate function. This is done by using a function such as: <tscreen><verb> gint gtk_signal_connect( GtkObject *object, gchar *name, GtkSignalFunc func, gpointer func_data ); </verb></tscreen> where the first argument is the widget which will be emitting the signal, and the second the name of the signal you wish to catch. The third is the function you wish to be called when it is caught, and the fourth, the data you wish to have passed to this function. The function specified in the third argument is called a "callback function", and should generally be of the form <tscreen><verb> void callback_func( GtkWidget *widget, gpointer callback_data ); </verb></tscreen> where the first argument will be a pointer to the widget that emitted the signal, and the second a pointer to the data given as the last argument to the gtk_signal_connect() function as shown above. Note that the above form for a signal callback function declaration is only a general guide, as some widget specific signals generate different calling parameters. For example, the CList "select_row" signal provides both row and column parameters. Another call used in the <em>helloworld</em> example, is: <tscreen><verb> gint gtk_signal_connect_object( GtkObject *object, gchar *name, GtkSignalFunc func, GtkObject *slot_object ); </verb></tscreen> gtk_signal_connect_object() is the same as gtk_signal_connect() except that the callback function only uses one argument, a pointer to a GTK object. So when using this function to connect signals, the callback should be of the form <tscreen><verb> void callback_func( GtkObject *object ); </verb></tscreen> where the object is usually a widget. We usually don't setup callbacks for gtk_signal_connect_object however. They are usually used to call a GTK function that accepts a single widget or object as an argument, as is the case in our <em>helloworld</em> example. The purpose of having two functions to connect signals is simply to allow the callbacks to have a different number of arguments. Many functions in the GTK library accept only a single GtkWidget pointer as an argument, so you want to use the gtk_signal_connect_object() for these, whereas for your functions, you may need to have additional data supplied to the callbacks. <!-- ----------------------------------------------------------------- --> <sect1>Events <p> In addition to the signal mechanism described above, there is a set of <em>events</em> that reflect the X event mechanism. Callbacks may also be attached to these events. These events are: <itemize> <item> event <item> button_press_event <item> button_release_event <item> motion_notify_event <item> delete_event <item> destroy_event <item> expose_event <item> key_press_event <item> key_release_event <item> enter_notify_event <item> leave_notify_event <item> configure_event <item> focus_in_event <item> focus_out_event <item> map_event <item> unmap_event <item> property_notify_event <item> selection_clear_event <item> selection_request_event <item> selection_notify_event <item> proximity_in_event <item> proximity_out_event <item> drag_begin_event <item> drag_request_event <item> drag_end_event <item> drop_enter_event <item> drop_leave_event <item> drop_data_available_event <item> other_event </itemize> In order to connect a callback function to one of these events, you use the function gtk_signal_connect, as described above, using one of the above event names as the <tt/name/ parameter. The callback function for events has a slightly different form than that for signals: <tscreen><verb> void callback_func( GtkWidget *widget, GdkEvent *event, gpointer callback_data ); </verb></tscreen> GdkEvent is a C <tt/union/ structure whose type will depend upon which of the above events has occurred. In order for us to tell which event has been issued each of the possible alternatives has a <tt/type/ parameter which reflects the event being issued. The other components of the event structure will depend upon the type of the event. Possible values for the type are: <tscreen><verb> GDK_NOTHING GDK_DELETE GDK_DESTROY GDK_EXPOSE GDK_MOTION_NOTIFY GDK_BUTTON_PRESS GDK_2BUTTON_PRESS GDK_3BUTTON_PRESS GDK_BUTTON_RELEASE GDK_KEY_PRESS GDK_KEY_RELEASE GDK_ENTER_NOTIFY GDK_LEAVE_NOTIFY GDK_FOCUS_CHANGE GDK_CONFIGURE GDK_MAP GDK_UNMAP GDK_PROPERTY_NOTIFY GDK_SELECTION_CLEAR GDK_SELECTION_REQUEST GDK_SELECTION_NOTIFY GDK_PROXIMITY_IN GDK_PROXIMITY_OUT GDK_DRAG_BEGIN GDK_DRAG_REQUEST GDK_DROP_ENTER GDK_DROP_LEAVE GDK_DROP_DATA_AVAIL GDK_CLIENT_EVENT GDK_VISIBILITY_NOTIFY GDK_NO_EXPOSE GDK_OTHER_EVENT /* Deprecated, use filters instead */ </verb></tscreen> So, to connect a callback function to one of these events we would use something like: <tscreen><verb> gtk_signal_connect( GTK_OBJECT(button), "button_press_event", GTK_SIGNAL_FUNC(button_press_callback), NULL); </verb></tscreen> This assumes that <tt/button/ is a Button widget. Now, when the mouse is over the button and a mouse button is pressed, the function <tt/button_press_callback/ will be called. This function may be declared as: <tscreen><verb> static gint button_press_callback( GtkWidget *widget, GdkEventButton *event, gpointer data ); </verb></tscreen> Note that we can declare the second argument as type <tt/GdkEventButton/ as we know what type of event will occur for this function to be called. The value returned from this function indicates whether the event should be propagated further by the GTK event handling mechanism. Returning TRUE indicates that the event has been handled, and that it should not propagate further. Returning FALSE continues the normal event handling. See the section on <ref id="sec_Adv_Events_and_Signals" name="Advanced Event and Signal Handling"> for more details on this propagation process. For details on the GdkEvent data types, see the appendix entitled <ref id="sec_GDK_Event_Types" name="GDK Event Types">. <!-- ----------------------------------------------------------------- --> <sect1>Stepping Through Hello World <p> Now that we know the theory behind this, let's clarify by walking through the example <em>helloworld</em> program. Here is the callback function that will be called when the button is "clicked". We ignore both the widget and the data in this example, but it is not hard to do things with them. The next example will use the data argument to tell us which button was pressed. <tscreen><verb> void hello( GtkWidget *widget, gpointer data ) { g_print ("Hello World\n"); } </verb></tscreen> The next callback is a bit special. The "delete_event" occurs when the window manager sends this event to the application. We have a choice here as to what to do about these events. We can ignore them, make some sort of response, or simply quit the application. The value you return in this callback lets GTK know what action to take. By returning TRUE, we let it know that we don't want to have the "destroy" signal emitted, keeping our application running. By returning FALSE, we ask that "destroy" be emitted, which in turn will call our "destroy" signal handler. <tscreen><verb> gint delete_event( GtkWidget *widget, GdkEvent *event, gpointer data ) { g_print ("delete event occurred\n"); return (TRUE); } </verb></tscreen> Here is another callback function which causes the program to quit by calling gtk_main_quit(). This function tells GTK that it is to exit from gtk_main when control is returned to it. <tscreen><verb> void destroy( GtkWidget *widget, gpointer data ) { gtk_main_quit (); } </verb></tscreen> I assume you know about the main() function... yes, as with other applications, all GTK applications will also have one of these. <tscreen><verb> int main( int argc, char *argv[] ) { </verb></tscreen> This next part declares pointers to a structure of type GtkWidget. These are used below to create a window and a button. <tscreen><verb> GtkWidget *window; GtkWidget *button; </verb></tscreen> Here is our gtk_init again. As before, this initializes the toolkit, and parses the arguments found on the command line. Any argument it recognizes from the command line, it removes from the list, and modifies argc and argv to make it look like they never existed, allowing your application to parse the remaining arguments. <tscreen><verb> gtk_init (&argc, &argv); </verb></tscreen> Create a new window. This is fairly straightforward. Memory is allocated for the GtkWidget *window structure so it now points to a valid structure. It sets up a new window, but it is not displayed until we call gtk_widget_show(window) near the end of our program. <tscreen><verb> window = gtk_window_new (GTK_WINDOW_TOPLEVEL); </verb></tscreen> Here are two examples of connecting a signal handler to an object, in this case, the window. Here, the "delete_event" and "destroy" signals are caught. The first is emitted when we use the window manager to kill the window, or when we use the gtk_widget_destroy() call passing in the window widget as the object to destroy. The second is emitted when, in the "delete_event" handler, we return FALSE. The <tt/GTK_OBJECT/ and <tt/GTK_SIGNAL_FUNC/ are macros that perform type casting and checking for us, as well as aid the readability of the code. <tscreen><verb> gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (destroy), NULL); </verb></tscreen> This next function is used to set an attribute of a container object. This just sets the window so it has a blank area along the inside of it 10 pixels wide where no widgets will go. There are other similar functions which we will look at in the section on <ref id="sec_setting_widget_attributes" name="Setting Widget Attributes"> And again, <tt/GTK_CONTAINER/ is a macro to perform type casting. <tscreen><verb> gtk_container_set_border_width (GTK_CONTAINER (window), 10); </verb></tscreen> This call creates a new button. It allocates space for a new GtkWidget structure in memory, initializes it, and makes the button pointer point to it. It will have the label "Hello World" on it when displayed. <tscreen><verb> button = gtk_button_new_with_label ("Hello World"); </verb></tscreen> Here, we take this button, and make it do something useful. We attach a signal handler to it so when it emits the "clicked" signal, our hello() function is called. The data is ignored, so we simply pass in NULL to the hello() callback function. Obviously, the "clicked" signal is emitted when we click the button with our mouse pointer. <tscreen><verb> gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (hello), NULL); </verb></tscreen> We are also going to use this button to exit our program. This will illustrate how the "destroy" signal may come from either the window manager, or our program. When the button is "clicked", same as above, it calls the first hello() callback function, and then this one in the order they are set up. You may have as many callback functions as you need, and all will be executed in the order you connected them. Because the gtk_widget_destroy() function accepts only a GtkWidget *widget as an argument, we use the gtk_signal_connect_object() function here instead of straight gtk_signal_connect(). <tscreen><verb> gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); </verb></tscreen> This is a packing call, which will be explained in depth later on in <ref id="sec_packing_widgets" name="Packing Widgets">. But it is fairly easy to understand. It simply tells GTK that the button is to be placed in the window where it will be displayed. Note that a GTK container can only contain one widget. There are other widgets, that are described later, which are designed to layout multiple widgets in various ways. <tscreen><verb> gtk_container_add (GTK_CONTAINER (window), button); </verb></tscreen> Now we have everything set up the way we want it to be. With all the signal handlers in place, and the button placed in the window where it should be, we ask GTK to "show" the widgets on the screen. The window widget is shown last so the whole window will pop up at once rather than seeing the window pop up, and then the button form inside of it. Although with such a simple example, you'd never notice. <tscreen><verb> gtk_widget_show (button); gtk_widget_show (window); </verb></tscreen> And of course, we call gtk_main() which waits for events to come from the X server and will call on the widgets to emit signals when these events come. <tscreen><verb> gtk_main (); </verb></tscreen> And the final return. Control returns here after gtk_quit() is called. <tscreen><verb> return (0); </verb></tscreen> Now, when we click the mouse button on a GTK button, the widget emits a "clicked" signal. In order for us to use this information, our program sets up a signal handler to catch that signal, which dispatches the function of our choice. In our example, when the button we created is "clicked", the hello() function is called with a NULL argument, and then the next handler for this signal is called. This calls the gtk_widget_destroy() function, passing it the window widget as its argument, destroying the window widget. This causes the window to emit the "destroy" signal, which is caught, and calls our destroy() callback function, which simply exits GTK. Another course of events is to use the window manager to kill the window, which will cause the "delete_event" to be emitted. This will call our "delete_event" handler. If we return TRUE here, the window will be left as is and nothing will happen. Returning FALSE will cause GTK to emit the "destroy" signal which of course calls the "destroy" callback, exiting GTK. <!-- ***************************************************************** --> <sect>Moving On <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Data Types <p> There are a few things you probably noticed in the previous examples that need explaining. The gint, gchar, etc. that you see are typedefs to int and char, respectively, that are part of the GLlib system. This is done to get around that nasty dependency on the size of simple data types when doing calculations. A good example is "gint32" which will be typedef'd to a 32 bit integer for any given platform, whether it be the 64 bit alpha, or the 32 bit i386. The typedefs are very straightforward and intuitive. They are all defined in glib/glib.h (which gets included from gtk.h). You'll also notice GTK's ability to use GtkWidget when the function calls for an Object. GTK is an object oriented design, and a widget is an object. <!-- ----------------------------------------------------------------- --> <sect1>More on Signal Handlers <p> Lets take another look at the gtk_signal_connect declaration. <tscreen><verb> gint gtk_signal_connect( GtkObject *object, gchar *name, GtkSignalFunc func, gpointer func_data ); </verb></tscreen> Notice the gint return value? This is a tag that identifies your callback function. As stated above, you may have as many callbacks per signal and per object as you need, and each will be executed in turn, in the order they were attached. This tag allows you to remove this callback from the list by using: <tscreen><verb> void gtk_signal_disconnect( GtkObject *object, gint id ); </verb></tscreen> So, by passing in the widget you wish to remove the handler from, and the tag returned by one of the signal_connect functions, you can disconnect a signal handler. You can also temporarily disable signal handlers with the gtk_signal_handler_block() and gtk_signal_handler_unblock() family of functions. <tscreen><verb> void gtk_signal_handler_block( GtkObject *object, guint handler_id ); void gtk_signal_handler_block_by_func( GtkObject *object, GtkSignalFunc func, gpointer data ); void gtk_signal_handler_block_by_data( GtkObject *object, gpointer data ); void gtk_signal_handler_unblock( GtkObject *object, guint handler_id ); void gtk_signal_handler_unblock_by_func( GtkObject *object, GtkSignalFunc func, gpointer data ); void gtk_signal_handler_unblock_by_data( GtkObject *object, gpointer data); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>An Upgraded Hello World <p> Let's take a look at a slightly improved <em>helloworld</em> with better examples of callbacks. This will also introduce us to our next topic, packing widgets. <tscreen><verb> /* example-start helloworld2 helloworld2.c */ #include <gtk/gtk.h> /* Our new improved callback. The data passed to this function * is printed to stdout. */ void callback( GtkWidget *widget, gpointer data ) { g_print ("Hello again - %s was pressed\n", (char *) data); } /* another callback */ gint delete_event( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit(); return(FALSE); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; GtkWidget *box1; /* This is called in all GTK applications. Arguments are parsed * from the command line and are returned to the application. */ gtk_init (&argc, &argv); /* Create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* This is a new call, which just sets the title of our * new window to "Hello Buttons!" */ gtk_window_set_title (GTK_WINDOW (window), "Hello Buttons!"); /* Here we just set a handler for delete_event that immediately * exits GTK. */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* We create a box to pack widgets into. This is described in detail * in the "packing" section. The box is not really visible, it * is just used as a tool to arrange widgets. */ box1 = gtk_hbox_new(FALSE, 0); /* Put the box into the main window. */ gtk_container_add (GTK_CONTAINER (window), box1); /* Creates a new button with the label "Button 1". */ button = gtk_button_new_with_label ("Button 1"); /* Now when the button is clicked, we call the "callback" function * with a pointer to "button 1" as its argument */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 1"); /* Instead of gtk_container_add, we pack this button into the invisible * box, which has been packed into the window. */ gtk_box_pack_start(GTK_BOX(box1), button, TRUE, TRUE, 0); /* Always remember this step, this tells GTK that our preparation for * this button is complete, and it can now be displayed. */ gtk_widget_show(button); /* Do these same steps again to create a second button */ button = gtk_button_new_with_label ("Button 2"); /* Call the same callback function with a different argument, * passing a pointer to "button 2" instead. */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 2"); gtk_box_pack_start(GTK_BOX(box1), button, TRUE, TRUE, 0); /* The order in which we show the buttons is not really important, but I * recommend showing the window last, so it all pops up at once. */ gtk_widget_show(button); gtk_widget_show(box1); gtk_widget_show (window); /* Rest in gtk_main and wait for the fun to begin! */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> Compile this program using the same linking arguments as our first example. You'll notice this time there is no easy way to exit the program, you have to use your window manager or command line to kill it. A good exercise for the reader would be to insert a third "Quit" button that will exit the program. You may also wish to play with the options to gtk_box_pack_start() while reading the next section. Try resizing the window, and observe the behavior. Just as a side note, there is another useful define for gtk_window_new() - <tt/GTK_WINDOW_DIALOG/. This interacts with the window manager a little differently and should be used for transient windows. <!-- ***************************************************************** --> <sect>Packing Widgets <label id="sec_packing_widgets"> <!-- ***************************************************************** --> <p> When creating an application, you'll want to put more than one widget inside a window. Our first <em>helloworld</em> example only used one widget so we could simply use a gtk_container_add call to "pack" the widget into the window. But when you want to put more than one widget into a window, how do you control where that widget is positioned? This is where packing comes in. <!-- ----------------------------------------------------------------- --> <sect1>Theory of Packing Boxes <p> Most packing is done by creating boxes as in the example above. These are invisible widget containers that we can pack our widgets into which come in two forms, a horizontal box, and a vertical box. When packing widgets into a horizontal box, the objects are inserted horizontally from left to right or right to left depending on the call used. In a vertical box, widgets are packed from top to bottom or vice versa. You may use any combination of boxes inside or beside other boxes to create the desired effect. To create a new horizontal box, we use a call to gtk_hbox_new(), and for vertical boxes, gtk_vbox_new(). The gtk_box_pack_start() and gtk_box_pack_end() functions are used to place objects inside of these containers. The gtk_box_pack_start() function will start at the top and work its way down in a vbox, and pack left to right in an hbox. gtk_box_pack_end() will do the opposite, packing from bottom to top in a vbox, and right to left in an hbox. Using these functions allows us to right justify or left justify our widgets and may be mixed in any way to achieve the desired effect. We will use gtk_box_pack_start() in most of our examples. An object may be another container or a widget. In fact, many widgets are actually containers themselves, including the button, but we usually only use a label inside a button. By using these calls, GTK knows where you want to place your widgets so it can do automatic resizing and other nifty things. There are also a number of options as to how your widgets should be packed. As you can imagine, this method gives us a quite a bit of flexibility when placing and creating widgets. <!-- ----------------------------------------------------------------- --> <sect1>Details of Boxes <p> Because of this flexibility, packing boxes in GTK can be confusing at first. There are a lot of options, and it's not immediately obvious how they all fit together. In the end, however, there are basically five different styles. <? <CENTER> > <? <IMG SRC="gtk_tut_packbox1.gif" VSPACE="15" HSPACE="10" WIDTH="528" HEIGHT="235" ALT="Box Packing Example Image"> > <? </CENTER> > Each line contains one horizontal box (hbox) with several buttons. The call to gtk_box_pack is shorthand for the call to pack each of the buttons into the hbox. Each of the buttons is packed into the hbox the same way (i.e., same arguments to the gtk_box_pack_start() function). This is the declaration of the gtk_box_pack_start function. <tscreen><verb> void gtk_box_pack_start( GtkBox *box, GtkWidget *child, gint expand, gint fill, gint padding ); </verb></tscreen> The first argument is the box you are packing the object into, the second is the object. The objects will all be buttons for now, so we'll be packing buttons into boxes. The expand argument to gtk_box_pack_start() and gtk_box_pack_end() controls whether the widgets are laid out in the box to fill in all the extra space in the box so the box is expanded to fill the area allotted to it (TRUE); or the box is shrunk to just fit the widgets (FALSE). Setting expand to FALSE will allow you to do right and left justification of your widgets. Otherwise, they will all expand to fit into the box, and the same effect could be achieved by using only one of gtk_box_pack_start or gtk_box_pack_end. The fill argument to the gtk_box_pack functions control whether the extra space is allocated to the objects themselves (TRUE), or as extra padding in the box around these objects (FALSE). It only has an effect if the expand argument is also TRUE. When creating a new box, the function looks like this: <tscreen><verb> GtkWidget *gtk_hbox_new (gint homogeneous, gint spacing); </verb></tscreen> The homogeneous argument to gtk_hbox_new (and the same for gtk_vbox_new) controls whether each object in the box has the same size (i.e., the same width in an hbox, or the same height in a vbox). If it is set, the gtk_box_pack routines function essentially as if the <tt/expand/ argument was always turned on. What's the difference between spacing (set when the box is created) and padding (set when elements are packed)? Spacing is added between objects, and padding is added on either side of an object. The following figure should make it clearer: <? <CENTER> > <? <IMG ALIGN="center" SRC="gtk_tut_packbox2.gif" WIDTH="509" HEIGHT="213" VSPACE="15" HSPACE="10" ALT="Box Packing Example Image"> > <? </CENTER> > Here is the code used to create the above images. I've commented it fairly heavily so I hope you won't have any problems following it. Compile it yourself and play with it. <!-- ----------------------------------------------------------------- --> <sect1>Packing Demonstration Program <p> <tscreen><verb> /* example-start packbox packbox.c */ #include <stdio.h> #include <stdlib.h> #include "gtk/gtk.h" gint delete_event( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit(); return(FALSE); } /* Make a new hbox filled with button-labels. Arguments for the * variables we're interested are passed in to this function. * We do not show the box, but do show everything inside. */ GtkWidget *make_box( gint homogeneous, gint spacing, gint expand, gint fill, gint padding ) { GtkWidget *box; GtkWidget *button; char padstr[80]; /* Create a new hbox with the appropriate homogeneous * and spacing settings */ box = gtk_hbox_new (homogeneous, spacing); /* Create a series of buttons with the appropriate settings */ button = gtk_button_new_with_label ("gtk_box_pack"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); button = gtk_button_new_with_label ("(box,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); button = gtk_button_new_with_label ("button,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); /* Create a button with the label depending on the value of * expand. */ if (expand == TRUE) button = gtk_button_new_with_label ("TRUE,"); else button = gtk_button_new_with_label ("FALSE,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); /* This is the same as the button creation for "expand" * above, but uses the shorthand form. */ button = gtk_button_new_with_label (fill ? "TRUE," : "FALSE,"); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); sprintf (padstr, "%d);", padding); button = gtk_button_new_with_label (padstr); gtk_box_pack_start (GTK_BOX (box), button, expand, fill, padding); gtk_widget_show (button); return box; } int main( int argc, char *argv[]) { GtkWidget *window; GtkWidget *button; GtkWidget *box1; GtkWidget *box2; GtkWidget *separator; GtkWidget *label; GtkWidget *quitbox; int which; /* Our init, don't forget this! :) */ gtk_init (&argc, &argv); if (argc != 2) { fprintf (stderr, "usage: packbox num, where num is 1, 2, or 3.\n"); /* This just does cleanup in GTK and exits with an exit status of 1. */ gtk_exit (1); } which = atoi (argv[1]); /* Create our window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* You should always remember to connect the delete_event signal * to the main window. This is very important for proper intuitive * behavior */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* We create a vertical box (vbox) to pack the horizontal boxes into. * This allows us to stack the horizontal boxes filled with buttons one * on top of the other in this vbox. */ box1 = gtk_vbox_new (FALSE, 0); /* which example to show. These correspond to the pictures above. */ switch (which) { case 1: /* create a new label. */ label = gtk_label_new ("gtk_hbox_new (FALSE, 0);"); /* Align the label to the left side. We'll discuss this function and * others in the section on Widget Attributes. */ gtk_misc_set_alignment (GTK_MISC (label), 0, 0); /* Pack the label into the vertical box (vbox box1). Remember that * widgets added to a vbox will be packed one on top of the other in * order. */ gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); /* Show the label */ gtk_widget_show (label); /* Call our make box function - homogeneous = FALSE, spacing = 0, * expand = FALSE, fill = FALSE, padding = 0 */ box2 = make_box (FALSE, 0, FALSE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Call our make box function - homogeneous = FALSE, spacing = 0, * expand = TRUE, fill = FALSE, padding = 0 */ box2 = make_box (FALSE, 0, TRUE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 0, TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Creates a separator, we'll learn more about these later, * but they are quite simple. */ separator = gtk_hseparator_new (); /* Pack the separator into the vbox. Remember each of these * widgets is being packed into a vbox, so they'll be stacked * vertically. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); /* Create another new label, and show it. */ label = gtk_label_new ("gtk_hbox_new (TRUE, 0);"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); gtk_widget_show (label); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (TRUE, 0, TRUE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (TRUE, 0, TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Another new separator. */ separator = gtk_hseparator_new (); /* The last 3 arguments to gtk_box_pack_start are: * expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); break; case 2: /* Create a new label, remember box1 is a vbox as created * near the beginning of main() */ label = gtk_label_new ("gtk_hbox_new (FALSE, 10);"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); gtk_widget_show (label); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 10, TRUE, FALSE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 10, TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); separator = gtk_hseparator_new (); /* The last 3 arguments to gtk_box_pack_start are: * expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); label = gtk_label_new ("gtk_hbox_new (FALSE, 0);"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 0); gtk_widget_show (label); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 0, TRUE, FALSE, 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* Args are: homogeneous, spacing, expand, fill, padding */ box2 = make_box (FALSE, 0, TRUE, TRUE, 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); separator = gtk_hseparator_new (); /* The last 3 arguments to gtk_box_pack_start are: expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); break; case 3: /* This demonstrates the ability to use gtk_box_pack_end() to * right justify widgets. First, we create a new box as before. */ box2 = make_box (FALSE, 0, FALSE, FALSE, 0); /* Create the label that will be put at the end. */ label = gtk_label_new ("end"); /* Pack it using gtk_box_pack_end(), so it is put on the right * side of the hbox created in the make_box() call. */ gtk_box_pack_end (GTK_BOX (box2), label, FALSE, FALSE, 0); /* Show the label. */ gtk_widget_show (label); /* Pack box2 into box1 (the vbox remember ? :) */ gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, FALSE, 0); gtk_widget_show (box2); /* A separator for the bottom. */ separator = gtk_hseparator_new (); /* This explicitly sets the separator to 400 pixels wide by 5 pixels * high. This is so the hbox we created will also be 400 pixels wide, * and the "end" label will be separated from the other labels in the * hbox. Otherwise, all the widgets in the hbox would be packed as * close together as possible. */ gtk_widget_set_usize (separator, 400, 5); /* pack the separator into the vbox (box1) created near the start * of main() */ gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 5); gtk_widget_show (separator); } /* Create another new hbox.. remember we can use as many as we need! */ quitbox = gtk_hbox_new (FALSE, 0); /* Our quit button. */ button = gtk_button_new_with_label ("Quit"); /* Setup the signal to terminate the program when the button is clicked */ gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_main_quit), GTK_OBJECT (window)); /* Pack the button into the quitbox. * The last 3 arguments to gtk_box_pack_start are: * expand, fill, padding. */ gtk_box_pack_start (GTK_BOX (quitbox), button, TRUE, FALSE, 0); /* pack the quitbox into the vbox (box1) */ gtk_box_pack_start (GTK_BOX (box1), quitbox, FALSE, FALSE, 0); /* Pack the vbox (box1) which now contains all our widgets, into the * main window. */ gtk_container_add (GTK_CONTAINER (window), box1); /* And show everything left */ gtk_widget_show (button); gtk_widget_show (quitbox); gtk_widget_show (box1); /* Showing the window last so everything pops up at once. */ gtk_widget_show (window); /* And of course, our main function. */ gtk_main (); /* Control returns here when gtk_main_quit() is called, but not when * gtk_exit is used. */ return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Packing Using Tables <p> Let's take a look at another way of packing - Tables. These can be extremely useful in certain situations. Using tables, we create a grid that we can place widgets in. The widgets may take up as many spaces as we specify. The first thing to look at, of course, is the gtk_table_new function: <tscreen><verb> GtkWidget *gtk_table_new( gint rows, gint columns, gint homogeneous ); </verb></tscreen> The first argument is the number of rows to make in the table, while the second, obviously, is the number of columns. The homogeneous argument has to do with how the table's boxes are sized. If homogeneous is TRUE, the table boxes are resized to the size of the largest widget in the table. If homogeneous is FALSE, the size of a table boxes is dictated by the tallest widget in its same row, and the widest widget in its column. The rows and columns are laid out from 0 to n, where n was the number specified in the call to gtk_table_new. So, if you specify rows = 2 and columns = 2, the layout would look something like this: <tscreen><verb> 0 1 2 0+----------+----------+ | | | 1+----------+----------+ | | | 2+----------+----------+ </verb></tscreen> Note that the coordinate system starts in the upper left hand corner. To place a widget into a box, use the following function: <tscreen><verb> void gtk_table_attach( GtkTable *table, GtkWidget *child, gint left_attach, gint right_attach, gint top_attach, gint bottom_attach, gint xoptions, gint yoptions, gint xpadding, gint ypadding ); </verb></tscreen> The first argument ("table") is the table you've created and the second ("child") the widget you wish to place in the table. The left and right attach arguments specify where to place the widget, and how many boxes to use. If you want a button in the lower right table entry of our 2x2 table, and want it to fill that entry ONLY, left_attach would be = 1, right_attach = 2, top_attach = 1, bottom_attach = 2. Now, if you wanted a widget to take up the whole top row of our 2x2 table, you'd use left_attach = 0, right_attach = 2, top_attach = 0, bottom_attach = 1. The xoptions and yoptions are used to specify packing options and may be bitwise OR'ed together to allow multiple options. These options are: <itemize> <item><tt/GTK_FILL/ - If the table box is larger than the widget, and <tt/GTK_FILL/ is specified, the widget will expand to use all the room available. <item><tt/GTK_SHRINK/ - If the table widget was allocated less space then was requested (usually by the user resizing the window), then the widgets would normally just be pushed off the bottom of the window and disappear. If <tt/GTK_SHRINK/ is specified, the widgets will shrink with the table. <item><tt/GTK_EXPAND/ - This will cause the table to expand to use up any remaining space in the window. </itemize> Padding is just like in boxes, creating a clear area around the widget specified in pixels. gtk_table_attach() has a LOT of options. So, there's a shortcut: <tscreen><verb> void gtk_table_attach_defaults( GtkTable *table, GtkWidget *widget, gint left_attach, gint right_attach, gint top_attach, gint bottom_attach ); </verb></tscreen> The X and Y options default to <tt/GTK_FILL | GTK_EXPAND/, and X and Y padding are set to 0. The rest of the arguments are identical to the previous function. We also have gtk_table_set_row_spacing() and gtk_table_set_col_spacing(). These places spacing between the rows at the specified row or column. <tscreen><verb> void gtk_table_set_row_spacing( GtkTable *table, gint row, gint spacing ); </verb></tscreen> and <tscreen><verb> void gtk_table_set_col_spacing ( GtkTable *table, gint column, gint spacing ); </verb></tscreen> Note that for columns, the space goes to the right of the column, and for rows, the space goes below the row. You can also set a consistent spacing of all rows and/or columns with: <tscreen><verb> void gtk_table_set_row_spacings( GtkTable *table, gint spacing ); </verb></tscreen> And, <tscreen><verb> void gtk_table_set_col_spacings( GtkTable *table, gint spacing ); </verb></tscreen> Note that with these calls, the last row and last column do not get any spacing. <!-- ----------------------------------------------------------------- --> <sect1>Table Packing Example <p> Here we make a window with three buttons in a 2x2 table. The first two buttons will be placed in the upper row. A third, quit button, is placed in the lower row, spanning both columns. Which means it should look something like this: <? <CENTER> > <? <IMG SRC="gtk_tut_table.gif" VSPACE="15" HSPACE="10" ALT="Table Packing Example Image" WIDTH="180" HEIGHT="120"> > <? </CENTER> > Here's the source code: <tscreen><verb> /* example-start table table.c */ #include <gtk/gtk.h> /* Our callback. * The data passed to this function is printed to stdout */ void callback( GtkWidget *widget, gpointer data ) { g_print ("Hello again - %s was pressed\n", (char *) data); } /* This callback quits the program */ gint delete_event( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit (); return(FALSE); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *button; GtkWidget *table; gtk_init (&argc, &argv); /* Create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); /* Set the window title */ gtk_window_set_title (GTK_WINDOW (window), "Table"); /* Set a handler for delete_event that immediately * exits GTK. */ gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete_event), NULL); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 20); /* Create a 2x2 table */ table = gtk_table_new (2, 2, TRUE); /* Put the table in the main window */ gtk_container_add (GTK_CONTAINER (window), table); /* Create first button */ button = gtk_button_new_with_label ("button 1"); /* When the button is clicked, we call the "callback" function * with a pointer to "button 1" as its argument */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 1"); /* Insert button 1 into the upper left quadrant of the table */ gtk_table_attach_defaults (GTK_TABLE(table), button, 0, 1, 0, 1); gtk_widget_show (button); /* Create second button */ button = gtk_button_new_with_label ("button 2"); /* When the button is clicked, we call the "callback" function * with a pointer to "button 2" as its argument */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "button 2"); /* Insert button 2 into the upper right quadrant of the table */ gtk_table_attach_defaults (GTK_TABLE(table), button, 1, 2, 0, 1); gtk_widget_show (button); /* Create "Quit" button */ button = gtk_button_new_with_label ("Quit"); /* When the button is clicked, we call the "delete_event" function * and the program exits */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (delete_event), NULL); /* Insert the quit button into the both * lower quadrants of the table */ gtk_table_attach_defaults (GTK_TABLE(table), button, 0, 2, 1, 2); gtk_widget_show (button); gtk_widget_show (table); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect>Widget Overview <!-- ***************************************************************** --> <p> The general steps to creating a widget in GTK are: <enum> <item> gtk_*_new - one of various functions to create a new widget. These are all detailed in this section. <item> Connect all signals and events we wish to use to the appropriate handlers. <item> Set the attributes of the widget. <item> Pack the widget into a container using the appropriate call such as gtk_container_add() or gtk_box_pack_start(). <item> gtk_widget_show() the widget. </enum> gtk_widget_show() lets GTK know that we are done setting the attributes of the widget, and it is ready to be displayed. You may also use gtk_widget_hide to make it disappear again. The order in which you show the widgets is not important, but I suggest showing the window last so the whole window pops up at once rather than seeing the individual widgets come up on the screen as they're formed. The children of a widget (a window is a widget too) will not be displayed until the window itself is shown using the gtk_widget_show() function. <!-- ----------------------------------------------------------------- --> <sect1> Casting <p> You'll notice as you go on that GTK uses a type casting system. This is always done using macros that both test the ability to cast the given item, and perform the cast. Some common ones you will see are: <tscreen><verb> GTK_WIDGET(widget) GTK_OBJECT(object) GTK_SIGNAL_FUNC(function) GTK_CONTAINER(container) GTK_WINDOW(window) GTK_BOX(box) </verb></tscreen> These are all used to cast arguments in functions. You'll see them in the examples, and can usually tell when to use them simply by looking at the function's declaration. As you can see below in the class hierarchy, all GtkWidgets are derived from the Object base class. This means you can use a widget in any place the function asks for an object - simply use the <tt/GTK_OBJECT()/ macro. For example: <tscreen><verb> gtk_signal_connect( GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(callback_function), callback_data); </verb></tscreen> This casts the button into an object, and provides a cast for the function pointer to the callback. Many widgets are also containers. If you look in the class hierarchy below, you'll notice that many widgets derive from the Container class. Any one of these widgets may be used with the <tt/GTK_CONTAINER/ macro to pass them to functions that ask for containers. Unfortunately, these macros are not extensively covered in the tutorial, but I recommend taking a look through the GTK header files. It can be very educational. In fact, it's not difficult to learn how a widget works just by looking at the function declarations. <!-- ----------------------------------------------------------------- --> <sect1>Widget Hierarchy <p> For your reference, here is the class hierarchy tree used to implement widgets. <tscreen><verb> GtkObject +GtkWidget | +GtkMisc | | +GtkLabel | | | +GtkAccelLabel | | | `GtkTipsQuery | | +GtkArrow | | +GtkImage | | `GtkPixmap | +GtkContainer | | +GtkBin | | | +GtkAlignment | | | +GtkFrame | | | | `GtkAspectFrame | | | +GtkButton | | | | +GtkToggleButton | | | | | `GtkCheckButton | | | | | `GtkRadioButton | | | | `GtkOptionMenu | | | +GtkItem | | | | +GtkMenuItem | | | | | +GtkCheckMenuItem | | | | | | `GtkRadioMenuItem | | | | | `GtkTearoffMenuItem | | | | +GtkListItem | | | | `GtkTreeItem | | | +GtkWindow | | | | +GtkColorSelectionDialog | | | | +GtkDialog | | | | | `GtkInputDialog | | | | +GtkDrawWindow | | | | +GtkFileSelection | | | | +GtkFontSelectionDialog | | | | `GtkPlug | | | +GtkEventBox | | | +GtkHandleBox | | | +GtkScrolledWindow | | | `GtkViewport | | +GtkBox | | | +GtkButtonBox | | | | +GtkHButtonBox | | | | `GtkVButtonBox | | | +GtkVBox | | | | +GtkColorSelection | | | | `GtkGammaCurve | | | `GtkHBox | | | +GtkCombo | | | `GtkStatusbar | | +GtkCList | | | `GtkCTree | | +GtkFixed | | +GtkNotebook | | | `GtkFontSelection | | +GtkPaned | | | +GtkHPaned | | | `GtkVPaned | | +GtkLayout | | +GtkList | | +GtkMenuShell | | | +GtkMenuBar | | | `GtkMenu | | +GtkPacker | | +GtkSocket | | +GtkTable | | +GtkToolbar | | `GtkTree | +GtkCalendar | +GtkDrawingArea | | `GtkCurve | +GtkEditable | | +GtkEntry | | | `GtkSpinButton | | `GtkText | +GtkRuler | | +GtkHRuler | | `GtkVRuler | +GtkRange | | +GtkScale | | | +GtkHScale | | | `GtkVScale | | `GtkScrollbar | | +GtkHScrollbar | | `GtkVScrollbar | +GtkSeparator | | +GtkHSeparator | | `GtkVSeparator | +GtkPreview | `GtkProgress | `GtkProgressBar +GtkData | +GtkAdjustment | `GtkTooltips `GtkItemFactory </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Widgets Without Windows <p> The following widgets do not have an associated window. If you want to capture events, you'll have to use the EventBox. See the section on the <ref id="sec_EventBox" name="EventBox"> widget. <tscreen><verb> GtkAlignment GtkArrow GtkBin GtkBox GtkImage GtkItem GtkLabel GtkPixmap GtkScrolledWindow GtkSeparator GtkTable GtkAspectFrame GtkFrame GtkVBox GtkHBox GtkVSeparator GtkHSeparator </verb></tscreen> We'll further our exploration of GTK by examining each widget in turn, creating a few simple functions to display them. Another good source is the testgtk.c program that comes with GTK. It can be found in gtk/testgtk.c. <!-- ***************************************************************** --> <sect>The Button Widget <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Normal Buttons <p> We've almost seen all there is to see of the button widget. It's pretty simple. There are however two ways to create a button. You can use the gtk_button_new_with_label() to create a button with a label, or use gtk_button_new() to create a blank button. It's then up to you to pack a label or pixmap into this new button. To do this, create a new box, and then pack your objects into this box using the usual gtk_box_pack_start, and then use gtk_container_add to pack the box into the button. Here's an example of using gtk_button_new to create a button with a picture and a label in it. I've broken up the code to create a box from the rest so you can use it in your programs. There are further examples of using pixmaps later in the tutorial. <tscreen><verb> /* example-start buttons buttons.c */ #include <gtk/gtk.h> /* Create a new hbox with an image and a label packed into it * and return the box. */ GtkWidget *xpm_label_box( GtkWidget *parent, gchar *xpm_filename, gchar *label_text ) { GtkWidget *box1; GtkWidget *label; GtkWidget *pixmapwid; GdkPixmap *pixmap; GdkBitmap *mask; GtkStyle *style; /* Create box for xpm and label */ box1 = gtk_hbox_new (FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (box1), 2); /* Get the style of the button to get the * background color. */ style = gtk_widget_get_style(parent); /* Now on to the xpm stuff */ pixmap = gdk_pixmap_create_from_xpm (parent->window, &mask, &style->bg[GTK_STATE_NORMAL], xpm_filename); pixmapwid = gtk_pixmap_new (pixmap, mask); /* Create a label for the button */ label = gtk_label_new (label_text); /* Pack the pixmap and label into the box */ gtk_box_pack_start (GTK_BOX (box1), pixmapwid, FALSE, FALSE, 3); gtk_box_pack_start (GTK_BOX (box1), label, FALSE, FALSE, 3); gtk_widget_show(pixmapwid); gtk_widget_show(label); return(box1); } /* Our usual callback function */ void callback( GtkWidget *widget, gpointer data ) { g_print ("Hello again - %s was pressed\n", (char *) data); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; GtkWidget *box1; gtk_init (&argc, &argv); /* Create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Pixmap'd Buttons!"); /* It's a good idea to do this for all windows. */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 10); gtk_widget_realize(window); /* Create a new button */ button = gtk_button_new (); /* Connect the "clicked" signal of the button to our callback */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (callback), (gpointer) "cool button"); /* This calls our box creating function */ box1 = xpm_label_box(window, "info.xpm", "cool button"); /* Pack and show all our widgets */ gtk_widget_show(box1); gtk_container_add (GTK_CONTAINER (button), box1); gtk_widget_show(button); gtk_container_add (GTK_CONTAINER (window), button); gtk_widget_show (window); /* Rest in gtk_main and wait for the fun to begin! */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> The xpm_label_box function could be used to pack xpm's and labels into any widget that can be a container. Notice in <tt/xpm_label_box/ how there is a call to <tt/gtk_widget_get_style/. Every widget has a "style", consisting of foreground and background colors for a variety of situations, font selection, and other graphics data relevant to a widget. These style values are defaulted in each widget, and are required by many GDK function calls, such as <tt/gdk_pixmap_create_from_xpm/, which here is given the "normal" background color. The style data of widgets may be customized, using <ref id="sec_gtkrc_files" name="GTK's rc files">. Also notice the call to <tt/gtk_widget_realize/ after setting the window's border width. This function uses GDK to create the X windows related to the widget. The function is automatically called when you invoke <tt/gtk_widget_show/ for a widget, and so has not been shown in earlier examples. But the call to <tt/gdk_pixmap_create_from_xpm/ requires that its <tt/window/ argument refer to a real X window, so it is necessary to realize the widget before this GDK call. The Button widget has the following signals: <itemize> <item><tt/pressed/ - emitted when pointer button is pressed within Button widget <item><tt/released/ - emitted when pointer button is released within Button widget <item><tt/clicked/ - emitted when pointer button is pressed and then released within Button widget <item><tt/enter/ - emitted when pointer enters Button widget <item><tt/leave/ - emitted when pointer leaves Button widget </itemize> <!-- ----------------------------------------------------------------- --> <sect1> Toggle Buttons <p> Toggle buttons are derived from normal buttons and are very similar, except they will always be in one of two states, alternated by a click. They may be depressed, and when you click again, they will pop back up. Click again, and they will pop back down. Toggle buttons are the basis for check buttons and radio buttons, as such, many of the calls used for toggle buttons are inherited by radio and check buttons. I will point these out when we come to them. Creating a new toggle button: <tscreen><verb> GtkWidget *gtk_toggle_button_new( void ); GtkWidget *gtk_toggle_button_new_with_label( gchar *label ); </verb></tscreen> As you can imagine, these work identically to the normal button widget calls. The first creates a blank toggle button, and the second, a button with a label widget already packed into it. To retrieve the state of the toggle widget, including radio and check buttons, we use a construct as shown in our example below. This tests the state of the toggle, by accessing the <tt/active/ field of the toggle widget's structure, after first using the <tt/GTK_TOGGLE_BUTTON/ macro to cast the widget pointer into a toggle widget pointer. The signal of interest to us emitted by toggle buttons (the toggle button, check button, and radio button widgets) is the "toggled" signal. To check the state of these buttons, set up a signal handler to catch the toggled signal, and access the structure to determine its state. The callback will look something like: <tscreen><verb> void toggle_button_callback (GtkWidget *widget, gpointer data) { if (GTK_TOGGLE_BUTTON (widget)->active) { /* If control reaches here, the toggle button is down */ } else { /* If control reaches here, the toggle button is up */ } } </verb></tscreen> To force the state of a toggle button, and its children, the radio and check buttons, use this function: <tscreen><verb> void gtk_toggle_button_set_active( GtkToggleButton *toggle_button, gint state ); </verb></tscreen> The above call can be used to set the state of the toggle button, and its children the radio and check buttons. Passing in your created button as the first argument, and a TRUE or FALSE for the second state argument to specify whether it should be down (depressed) or up (released). Default is up, or FALSE. Note that when you use the gtk_toggle_button_set_active() function, and the state is actually changed, it causes the "clicked" signal to be emitted from the button. <tscreen><verb> void gtk_toggle_button_toggled (GtkToggleButton *toggle_button); </verb></tscreen> This simply toggles the button, and emits the "toggled" signal. <!-- ----------------------------------------------------------------- --> <sect1> Check Buttons <p> Check buttons inherit many properties and functions from the the toggle buttons above, but look a little different. Rather than being buttons with text inside them, they are small squares with the text to the right of them. These are often used for toggling options on and off in applications. The two creation functions are similar to those of the normal button. <tscreen><verb> GtkWidget *gtk_check_button_new( void ); GtkWidget *gtk_check_button_new_with_label ( gchar *label ); </verb></tscreen> The new_with_label function creates a check button with a label beside it. Checking the state of the check button is identical to that of the toggle button. <!-- ----------------------------------------------------------------- --> <sect1> Radio Buttons <label id="sec_Radio_Buttons"> <p> Radio buttons are similar to check buttons except they are grouped so that only one may be selected/depressed at a time. This is good for places in your application where you need to select from a short list of options. Creating a new radio button is done with one of these calls: <tscreen><verb> GtkWidget *gtk_radio_button_new( GSList *group ); GtkWidget *gtk_radio_button_new_with_label( GSList *group, gchar *label ); </verb></tscreen> You'll notice the extra argument to these calls. They require a group to perform their duty properly. The first call to gtk_radio_button_new_with_label or gtk_radio_button_new_with_label should pass NULL as the first argument. Then create a group using: <tscreen><verb> GSList *gtk_radio_button_group( GtkRadioButton *radio_button ); </verb></tscreen> The important thing to remember is that gtk_radio_button_group must be called for each new button added to the group, with the previous button passed in as an argument. The result is then passed into the next call to gtk_radio_button_new or gtk_radio_button_new_with_label. This allows a chain of buttons to be established. The example below should make this clear. You can shorten this slightly by using the following syntax, which removes the need for a variable to hold the list of buttons. This form is used in the example to create the third button: <tscreen><verb> button2 = gtk_radio_button_new_with_label( gtk_radio_button_group (GTK_RADIO_BUTTON (button1)), "button2"); </verb></tscreen> It is also a good idea to explicitly set which button should be the default depressed button with: <tscreen><verb> void gtk_toggle_button_set_active( GtkToggleButton *toggle_button, gint state ); </verb></tscreen> This is described in the section on toggle buttons, and works in exactly the same way. Once the radio buttons are grouped together, only one of the group may be active at a time. If the user clicks on one radio button, and then on another, the first radio button will first emit a "toggled" signal (to report becoming inactive), and then the second will emit its "toggled" signal (to report becoming active). The following example creates a radio button group with three buttons. <tscreen><verb> /* example-start radiobuttons radiobuttons.c */ #include <gtk/gtk.h> #include <glib.h> gint close_application( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit(); return(FALSE); } int main( int argc, char *argv[] ) { GtkWidget *window = NULL; GtkWidget *box1; GtkWidget *box2; GtkWidget *button; GtkWidget *separator; GSList *group; gtk_init(&argc,&argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC(close_application), NULL); gtk_window_set_title (GTK_WINDOW (window), "radio buttons"); gtk_container_set_border_width (GTK_CONTAINER (window), 0); box1 = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), box1); gtk_widget_show (box1); box2 = gtk_vbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); button = gtk_radio_button_new_with_label (NULL, "button1"); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); group = gtk_radio_button_group (GTK_RADIO_BUTTON (button)); button = gtk_radio_button_new_with_label(group, "button2"); gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); button = gtk_radio_button_new_with_label( gtk_radio_button_group (GTK_RADIO_BUTTON (button)), "button3"); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); separator = gtk_hseparator_new (); gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 0); gtk_widget_show (separator); box2 = gtk_vbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0); gtk_widget_show (box2); button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(close_application), GTK_OBJECT (window)); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show (window); gtk_main(); return(0); } /* example-end */ </verb></tscreen> <!-- TODO: check out gtk_radio_button_new_from_widget function - TRG --> <!-- ***************************************************************** --> <sect> Adjustments <label id="sec_Adjustment"> <!-- ***************************************************************** --> <p> GTK has various widgets that can be visually adjusted by the user using the mouse or the keyboard, such as the range widgets, described in the <ref id="sec_Range_Widgets" name="Range Widgets"> section. There are also a few widgets that display some adjustable portion of a larger area of data, such as the text widget and the viewport widget. Obviously, an application needs to be able to react to changes the user makes in range widgets. One way to do this would be to have each widget emit its own type of signal when its adjustment changes, and either pass the new value to the signal handler, or require it to look inside the widget's data structure in order to ascertain the value. But you may also want to connect the adjustments of several widgets together, so that adjusting one adjusts the others. The most obvious example of this is connecting a scrollbar to a panning viewport or a scrolling text area. If each widget has its own way of setting or getting the adjustment value, then the programmer may have to write their own signal handlers to translate between the output of one widget's signal and the "input" of another's adjustment setting function. GTK solves this problem using the Adjustment object, which is not a widget but a way for widgets to store and pass adjustment information in an abstract and flexible form. The most obvious use of Adjustment is to store the configuration parameters and values of range widgets, such as scrollbars and scale controls. However, since Adjustments are derived from Object, they have some special powers beyond those of normal data structures. Most importantly, they can emit signals, just like widgets, and these signals can be used not only to allow your program to react to user input on adjustable widgets, but also to propagate adjustment values transparently between adjustable widgets. You will see how adjustments fit in when you see the other widgets that incorporate them: <ref id="sec_ProgressBar" name="Progress Bars">, <ref id="sec_Viewports" name="Viewports">, <ref id="sec_ScrolledWindow" name="Scrolled Windows">, and others. <sect1> Creating an Adjustment <p> Many of the widgets which use adjustment objects do so automatically, but some cases will be shown in later examples where you may need to create one yourself. You create an adjustment using: <tscreen><verb> GtkObject *gtk_adjustment_new( gfloat value, gfloat lower, gfloat upper, gfloat step_increment, gfloat page_increment, gfloat page_size ); </verb></tscreen> The <tt/value/ argument is the initial value you want to give to the adjustment, usually corresponding to the topmost or leftmost position of an adjustable widget. The <tt/lower/ argument specifies the lowest value which the adjustment can hold. The <tt/step_increment/ argument specifies the "smaller" of the two increments by which the user can change the value, while the <tt/page_increment/ is the "larger" one. The <tt/page_size/ argument usually corresponds somehow to the visible area of a panning widget. The <tt/upper/ argument is used to represent the bottom most or right most coordinate in a panning widget's child. Therefore it is <em/not/ always the largest number that <tt/value/ can take, since the <tt/page_size/ of such widgets is usually non-zero. <!-- ----------------------------------------------------------------- --> <sect1> Using Adjustments the Easy Way <p> The adjustable widgets can be roughly divided into those which use and require specific units for these values and those which treat them as arbitrary numbers. The group which treats the values as arbitrary numbers includes the range widgets (scrollbars and scales, the progress bar widget, and the spin button widget). These widgets are all the widgets which are typically "adjusted" directly by the user with the mouse or keyboard. They will treat the <tt/lower/ and <tt/upper/ values of an adjustment as a range within which the user can manipulate the adjustment's <tt/value/. By default, they will only modify the <tt/value/ of an adjustment. The other group includes the text widget, the viewport widget, the compound list widget, and the scrolled window widget. All of these widgets use pixel values for their adjustments. These are also all widgets which are typically "adjusted" indirectly using scrollbars. While all widgets which use adjustments can either create their own adjustments or use ones you supply, you'll generally want to let this particular category of widgets create its own adjustments. Usually, they will eventually override all the values except the <tt/value/ itself in whatever adjustments you give them, but the results are, in general, undefined (meaning, you'll have to read the source code to find out, and it may be different from widget to widget). Now, you're probably thinking, since text widgets and viewports insist on setting everything except the <tt/value/ of their adjustments, while scrollbars will <em/only/ touch the adjustment's <tt/value/, if you <em/share/ an adjustment object between a scrollbar and a text widget, manipulating the scrollbar will automagically adjust the text widget? Of course it will! Just like this: <tscreen><verb> /* creates its own adjustments */ text = gtk_text_new (NULL, NULL); /* uses the newly-created adjustment for the scrollbar as well */ vscrollbar = gtk_vscrollbar_new (GTK_TEXT(text)->vadj); </verb></tscreen> </sect1> <!-- ----------------------------------------------------------------- --> <sect1> Adjustment Internals <p> Ok, you say, that's nice, but what if I want to create my own handlers to respond when the user adjusts a range widget or a spin button, and how do I get at the value of the adjustment in these handlers? To answer these questions and more, let's start by taking a look at <tt>struct _GtkAdjustment</tt> itself: <tscreen><verb> struct _GtkAdjustment { GtkData data; gfloat lower; gfloat upper; gfloat value; gfloat step_increment; gfloat page_increment; gfloat page_size; }; </verb></tscreen> The first thing you should know is that there aren't any handy-dandy macros or accessor functions for getting the <tt/value/ out of an Adjustment, so you'll have to (horror of horrors) do it like a <em/real/ C programmer. Don't worry - the <tt>GTK_ADJUSTMENT (Object)</tt> macro does run-time type checking (as do all the GTK type-casting macros, actually). Since, when you set the <tt/value/ of an adjustment, you generally want the change to be reflected by every widget that uses this adjustment, GTK provides this convenience function to do this: <tscreen><verb> void gtk_adjustment_set_value( GtkAdjustment *adjustment, gfloat value ); </verb></tscreen> As mentioned earlier, Adjustment is a subclass of Object just like all the various widgets, and thus it is able to emit signals. This is, of course, why updates happen automagically when you share an adjustment object between a scrollbar and another adjustable widget; all adjustable widgets connect signal handlers to their adjustment's <tt/value_changed/ signal, as can your program. Here's the definition of this signal in <tt/struct _GtkAdjustmentClass/: <tscreen><verb> void (* value_changed) (GtkAdjustment *adjustment); </verb></tscreen> The various widgets that use the Adjustment object will emit this signal on an adjustment whenever they change its value. This happens both when user input causes the slider to move on a range widget, as well as when the program explicitly changes the value with <tt/gtk_adjustment_set_value()/. So, for example, if you have a scale widget, and you want to change the rotation of a picture whenever its value changes, you would create a callback like this: <tscreen><verb> void cb_rotate_picture (GtkAdjustment *adj, GtkWidget *picture) { set_picture_rotation (picture, adj->value); ... </verb></tscreen> and connect it to the scale widget's adjustment like this: <tscreen><verb> gtk_signal_connect (GTK_OBJECT (adj), "value_changed", GTK_SIGNAL_FUNC (cb_rotate_picture), picture); </verb></tscreen> What about when a widget reconfigures the <tt/upper/ or <tt/lower/ fields of its adjustment, such as when a user adds more text to a text widget? In this case, it emits the <tt/changed/ signal, which looks like this: <tscreen><verb> void (* changed) (GtkAdjustment *adjustment); </verb></tscreen> Range widgets typically connect a handler to this signal, which changes their appearance to reflect the change - for example, the size of the slider in a scrollbar will grow or shrink in inverse proportion to the difference between the <tt/lower/ and <tt/upper/ values of its adjustment. You probably won't ever need to attach a handler to this signal, unless you're writing a new type of range widget. However, if you change any of the values in a Adjustment directly, you should emit this signal on it to reconfigure whatever widgets are using it, like this: <tscreen><verb> gtk_signal_emit_by_name (GTK_OBJECT (adjustment), "changed"); </verb></tscreen> Now go forth and adjust! </sect1> </sect> <!-- ***************************************************************** --> <sect> Range Widgets<label id="sec_Range_Widgets"> <!-- ***************************************************************** --> <p> The category of range widgets includes the ubiquitous scrollbar widget and the less common "scale" widget. Though these two types of widgets are generally used for different purposes, they are quite similar in function and implementation. All range widgets share a set of common graphic elements, each of which has its own X window and receives events. They all contain a "trough" and a "slider" (what is sometimes called a "thumbwheel" in other GUI environments). Dragging the slider with the pointer moves it back and forth within the trough, while clicking in the trough advances the slider towards the location of the click, either completely, or by a designated amount, depending on which mouse button is used. As mentioned in <ref id="sec_Adjustment" name="Adjustments"> above, all range widgets are associated with an adjustment object, from which they calculate the length of the slider and its position within the trough. When the user manipulates the slider, the range widget will change the value of the adjustment. <!-- ----------------------------------------------------------------- --> <sect1> Scrollbar Widgets <p> These are your standard, run-of-the-mill scrollbars. These should be used only for scrolling some other widget, such as a list, a text box, or a viewport (and it's generally easier to use the scrolled window widget in most cases). For other purposes, you should use scale widgets, as they are friendlier and more featureful. There are separate types for horizontal and vertical scrollbars. There really isn't much to say about these. You create them with the following functions, defined in <tt><gtk/gtkhscrollbar.h></tt> and <tt><gtk/gtkvscrollbar.h></tt>: <tscreen><verb> GtkWidget *gtk_hscrollbar_new( GtkAdjustment *adjustment ); GtkWidget *gtk_vscrollbar_new( GtkAdjustment *adjustment ); </verb></tscreen> and that's about it (if you don't believe me, look in the header files!). The <tt/adjustment/ argument can either be a pointer to an existing Adjustment, or NULL, in which case one will be created for you. Specifying NULL might actually be useful in this case, if you wish to pass the newly-created adjustment to the constructor function of some other widget which will configure it for you, such as a text widget. </sect1> <!-- ----------------------------------------------------------------- --> <sect1> Scale Widgets <p> Scale widgets are used to allow the user to visually select and manipulate a value within a specific range. You might want to use a scale widget, for example, to adjust the magnification level on a zoomed preview of a picture, or to control the brightness of a color, or to specify the number of minutes of inactivity before a screensaver takes over the screen. <!-- ----------------------------------------------------------------- --> <sect2>Creating a Scale Widget <p> As with scrollbars, there are separate widget types for horizontal and vertical scale widgets. (Most programmers seem to favour horizontal scale widgets.) Since they work essentially the same way, there's no need to treat them separately here. The following functions, defined in <tt><gtk/gtkvscale.h></tt> and <tt><gtk/gtkhscale.h></tt>, create vertical and horizontal scale widgets, respectively: <tscreen> <verb> GtkWidget *gtk_vscale_new( GtkAdjustment *adjustment ); GtkWidget *gtk_hscale_new( GtkAdjustment *adjustment ); </verb> </tscreen> The <tt/adjustment/ argument can either be an adjustment which has already been created with <tt/gtk_adjustment_new()/, or <tt/NULL/, in which case, an anonymous Adjustment is created with all of its values set to <tt/0.0/ (which isn't very useful in this case). In order to avoid confusing yourself, you probably want to create your adjustment with a <tt/page_size/ of <tt/0.0/ so that its <tt/upper/ value actually corresponds to the highest value the user can select. (If you're <em/already/ thoroughly confused, read the section on <ref id="sec_Adjustment" name="Adjustments"> again for an explanation of what exactly adjustments do and how to create and manipulate them.) <!-- ----------------------------------------------------------------- --> <sect2> Functions and Signals (well, functions, at least) <p> Scale widgets can display their current value as a number beside the trough. The default behaviour is to show the value, but you can change this with this function: <tscreen><verb> void gtk_scale_set_draw_value( GtkScale *scale, gint draw_value ); </verb></tscreen> As you might have guessed, <tt/draw_value/ is either <tt/TRUE/ or <tt/FALSE/, with predictable consequences for either one. The value displayed by a scale widget is rounded to one decimal point by default, as is the <tt/value/ field in its GtkAdjustment. You can change this with: <tscreen> <verb> void gtk_scale_set_digits( GtkScale *scale, gint digits ); </verb> </tscreen> where <tt/digits/ is the number of decimal places you want. You can set <tt/digits/ to anything you like, but no more than 13 decimal places will actually be drawn on screen. Finally, the value can be drawn in different positions relative to the trough: <tscreen> <verb> void gtk_scale_set_value_pos( GtkScale *scale, GtkPositionType pos ); </verb> </tscreen> The argument <tt/pos/ is of type <tt>GtkPositionType</tt>, which is defined in <tt><gtk/gtkenums.h></tt>, and can take one of the following values: <tscreen><verb> GTK_POS_LEFT GTK_POS_RIGHT GTK_POS_TOP GTK_POS_BOTTOM </verb></tscreen> If you position the value on the "side" of the trough (e.g., on the top or bottom of a horizontal scale widget), then it will follow the slider up and down the trough. All the preceding functions are defined in <tt><gtk/gtkscale.h></tt>. The header files for all GTK widgets are automatically included when you include <tt><gtk/gtk.h></tt>. But you should look over the header files of all widgets that interest you, </sect2> </sect1> <!-- ----------------------------------------------------------------- --> <sect1> Common Range Functions <label id="sec_Range_Functions"> <p> The Range widget class is fairly complicated internally, but, like all the "base class" widgets, most of its complexity is only interesting if you want to hack on it. Also, almost all of the functions and signals it defines are only really used in writing derived widgets. There are, however, a few useful functions that are defined in <tt><gtk/gtkrange.h></tt> and will work on all range widgets. <!-- ----------------------------------------------------------------- --> <sect2> Setting the Update Policy <p> The "update policy" of a range widget defines at what points during user interaction it will change the <tt/value/ field of its Adjustment and emit the "value_changed" signal on this Adjustment. The update policies, defined in <tt><gtk/gtkenums.h></tt> as type <tt>enum GtkUpdateType</tt>, are: <itemize> <item>GTK_UPDATE_POLICY_CONTINUOUS - This is the default. The "value_changed" signal is emitted continuously, i.e., whenever the slider is moved by even the tiniest amount. </item> <item>GTK_UPDATE_POLICY_DISCONTINUOUS - The "value_changed" signal is only emitted once the slider has stopped moving and the user has released the mouse button. </item> <item>GTK_UPDATE_POLICY_DELAYED - The "value_changed" signal is emitted when the user releases the mouse button, or if the slider stops moving for a short period of time. </item> </itemize> The update policy of a range widget can be set by casting it using the <tt>GTK_RANGE (Widget)</tt> macro and passing it to this function: <tscreen><verb> void gtk_range_set_update_policy( GtkRange *range, GtkUpdateType policy) ; </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2>Getting and Setting Adjustments <p> Getting and setting the adjustment for a range widget "on the fly" is done, predictably, with: <tscreen><verb> GtkAdjustment* gtk_range_get_adjustment( GtkRange *range ); void gtk_range_set_adjustment( GtkRange *range, GtkAdjustment *adjustment ); </verb></tscreen> <tt/gtk_range_get_adjustment()/ returns a pointer to the adjustment to which <tt/range/ is connected. <tt/gtk_range_set_adjustment()/ does absolutely nothing if you pass it the adjustment that <tt/range/ is already using, regardless of whether you changed any of its fields or not. If you pass it a new Adjustment, it will unreference the old one if it exists (possibly destroying it), connect the appropriate signals to the new one, and call the private function <tt/gtk_range_adjustment_changed()/, which will (or at least, is supposed to...) recalculate the size and/or position of the slider and redraw if necessary. As mentioned in the section on adjustments, if you wish to reuse the same Adjustment, when you modify its values directly, you should emit the "changed" signal on it, like this: <tscreen><verb> gtk_signal_emit_by_name (GTK_OBJECT (adjustment), "changed"); </verb></tscreen> </sect2> </sect1> <!-- ----------------------------------------------------------------- --> <sect1> Key and Mouse bindings <p> All of the GTK range widgets react to mouse clicks in more or less the same way. Clicking button-1 in the trough will cause its adjustment's <tt/page_increment/ to be added or subtracted from its <tt/value/, and the slider to be moved accordingly. Clicking mouse button-2 in the trough will jump the slider to the point at which the button was clicked. Clicking any button on a scrollbar's arrows will cause its adjustment's value to change <tt/step_increment/ at a time. It may take a little while to get used to, but by default, scrollbars as well as scale widgets can take the keyboard focus in GTK. If you think your users will find this too confusing, you can always disable this by unsetting the <tt/GTK_CAN_FOCUS/ flag on the scrollbar, like this: <tscreen><verb> GTK_WIDGET_UNSET_FLAGS (scrollbar, GTK_CAN_FOCUS); </verb></tscreen> The key bindings (which are, of course, only active when the widget has focus) are slightly different between horizontal and vertical range widgets, for obvious reasons. They are also not quite the same for scale widgets as they are for scrollbars, for somewhat less obvious reasons (possibly to avoid confusion between the keys for horizontal and vertical scrollbars in scrolled windows, where both operate on the same area). <sect2> Vertical Range Widgets <p> All vertical range widgets can be operated with the up and down arrow keys, as well as with the <tt/Page Up/ and <tt/Page Down/ keys. The arrows move the slider up and down by <tt/step_increment/, while <tt/Page Up/ and <tt/Page Down/ move it by <tt/page_increment/. The user can also move the slider all the way to one end or the other of the trough using the keyboard. With the VScale widget, this is done with the <tt/Home/ and <tt/End/ keys, whereas with the VScrollbar widget, this is done by typing <tt>Control-Page Up</tt> and <tt>Control-Page Down</tt>. <!-- ----------------------------------------------------------------- --> <sect2> Horizontal Range Widgets <p> The left and right arrow keys work as you might expect in these widgets, moving the slider back and forth by <tt/step_increment/. The <tt/Home/ and <tt/End/ keys move the slider to the ends of the trough. For the HScale widget, moving the slider by <tt/page_increment/ is accomplished with <tt>Control-Left</tt> and <tt>Control-Right</tt>, while for HScrollbar, it's done with <tt>Control-Home</tt> and <tt>Control-End</tt>. </sect2> </sect1> <!-- ----------------------------------------------------------------- --> <sect1> Example<label id="sec_Range_Example"> <p> This example is a somewhat modified version of the "range controls" test from <tt/testgtk.c/. It basically puts up a window with three range widgets all connected to the same adjustment, and a couple of controls for adjusting some of the parameters mentioned above and in the section on adjustments, so you can see how they affect the way these widgets work for the user. <tscreen><verb> /* example-start rangewidgets rangewidgets.c */ #include <gtk/gtk.h> GtkWidget *hscale, *vscale; void cb_pos_menu_select( GtkWidget *item, GtkPositionType pos ) { /* Set the value position on both scale widgets */ gtk_scale_set_value_pos (GTK_SCALE (hscale), pos); gtk_scale_set_value_pos (GTK_SCALE (vscale), pos); } void cb_update_menu_select( GtkWidget *item, GtkUpdateType policy ) { /* Set the update policy for both scale widgets */ gtk_range_set_update_policy (GTK_RANGE (hscale), policy); gtk_range_set_update_policy (GTK_RANGE (vscale), policy); } void cb_digits_scale( GtkAdjustment *adj ) { /* Set the number of decimal places to which adj->value is rounded */ gtk_scale_set_digits (GTK_SCALE (hscale), (gint) adj->value); gtk_scale_set_digits (GTK_SCALE (vscale), (gint) adj->value); } void cb_page_size( GtkAdjustment *get, GtkAdjustment *set ) { /* Set the page size and page increment size of the sample * adjustment to the value specified by the "Page Size" scale */ set->page_size = get->value; set->page_increment = get->value; /* Now emit the "changed" signal to reconfigure all the widgets that * are attached to this adjustment */ gtk_signal_emit_by_name (GTK_OBJECT (set), "changed"); } void cb_draw_value( GtkToggleButton *button ) { /* Turn the value display on the scale widgets off or on depending * on the state of the checkbutton */ gtk_scale_set_draw_value (GTK_SCALE (hscale), button->active); gtk_scale_set_draw_value (GTK_SCALE (vscale), button->active); } /* Convenience functions */ GtkWidget *make_menu_item( gchar *name, GtkSignalFunc callback, gpointer data ) { GtkWidget *item; item = gtk_menu_item_new_with_label (name); gtk_signal_connect (GTK_OBJECT (item), "activate", callback, data); gtk_widget_show (item); return(item); } void scale_set_default_values( GtkScale *scale ) { gtk_range_set_update_policy (GTK_RANGE (scale), GTK_UPDATE_CONTINUOUS); gtk_scale_set_digits (scale, 1); gtk_scale_set_value_pos (scale, GTK_POS_TOP); gtk_scale_set_draw_value (scale, TRUE); } /* makes the sample window */ void create_range_controls( void ) { GtkWidget *window; GtkWidget *box1, *box2, *box3; GtkWidget *button; GtkWidget *scrollbar; GtkWidget *separator; GtkWidget *opt, *menu, *item; GtkWidget *label; GtkWidget *scale; GtkObject *adj1, *adj2; /* Standard window-creating stuff */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); gtk_window_set_title (GTK_WINDOW (window), "range controls"); box1 = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), box1); gtk_widget_show (box1); box2 = gtk_hbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); /* value, lower, upper, step_increment, page_increment, page_size */ /* Note that the page_size value only makes a difference for * scrollbar widgets, and the highest value you'll get is actually * (upper - page_size). */ adj1 = gtk_adjustment_new (0.0, 0.0, 101.0, 0.1, 1.0, 1.0); vscale = gtk_vscale_new (GTK_ADJUSTMENT (adj1)); scale_set_default_values (GTK_SCALE (vscale)); gtk_box_pack_start (GTK_BOX (box2), vscale, TRUE, TRUE, 0); gtk_widget_show (vscale); box3 = gtk_vbox_new (FALSE, 10); gtk_box_pack_start (GTK_BOX (box2), box3, TRUE, TRUE, 0); gtk_widget_show (box3); /* Reuse the same adjustment */ hscale = gtk_hscale_new (GTK_ADJUSTMENT (adj1)); gtk_widget_set_usize (GTK_WIDGET (hscale), 200, 30); scale_set_default_values (GTK_SCALE (hscale)); gtk_box_pack_start (GTK_BOX (box3), hscale, TRUE, TRUE, 0); gtk_widget_show (hscale); /* Reuse the same adjustment again */ scrollbar = gtk_hscrollbar_new (GTK_ADJUSTMENT (adj1)); /* Notice how this causes the scales to always be updated * continuously when the scrollbar is moved */ gtk_range_set_update_policy (GTK_RANGE (scrollbar), GTK_UPDATE_CONTINUOUS); gtk_box_pack_start (GTK_BOX (box3), scrollbar, TRUE, TRUE, 0); gtk_widget_show (scrollbar); box2 = gtk_hbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); /* A checkbutton to control whether the value is displayed or not */ button = gtk_check_button_new_with_label("Display value on scale widgets"); gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE); gtk_signal_connect (GTK_OBJECT (button), "toggled", GTK_SIGNAL_FUNC(cb_draw_value), NULL); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); gtk_widget_show (button); box2 = gtk_hbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); /* An option menu to change the position of the value */ label = gtk_label_new ("Scale Value Position:"); gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0); gtk_widget_show (label); opt = gtk_option_menu_new(); menu = gtk_menu_new(); item = make_menu_item ("Top", GTK_SIGNAL_FUNC(cb_pos_menu_select), GINT_TO_POINTER (GTK_POS_TOP)); gtk_menu_append (GTK_MENU (menu), item); item = make_menu_item ("Bottom", GTK_SIGNAL_FUNC (cb_pos_menu_select), GINT_TO_POINTER (GTK_POS_BOTTOM)); gtk_menu_append (GTK_MENU (menu), item); item = make_menu_item ("Left", GTK_SIGNAL_FUNC (cb_pos_menu_select), GINT_TO_POINTER (GTK_POS_LEFT)); gtk_menu_append (GTK_MENU (menu), item); item = make_menu_item ("Right", GTK_SIGNAL_FUNC (cb_pos_menu_select), GINT_TO_POINTER (GTK_POS_RIGHT)); gtk_menu_append (GTK_MENU (menu), item); gtk_option_menu_set_menu (GTK_OPTION_MENU (opt), menu); gtk_box_pack_start (GTK_BOX (box2), opt, TRUE, TRUE, 0); gtk_widget_show (opt); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); box2 = gtk_hbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); /* Yet another option menu, this time for the update policy of the * scale widgets */ label = gtk_label_new ("Scale Update Policy:"); gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0); gtk_widget_show (label); opt = gtk_option_menu_new(); menu = gtk_menu_new(); item = make_menu_item ("Continuous", GTK_SIGNAL_FUNC (cb_update_menu_select), GINT_TO_POINTER (GTK_UPDATE_CONTINUOUS)); gtk_menu_append (GTK_MENU (menu), item); item = make_menu_item ("Discontinuous", GTK_SIGNAL_FUNC (cb_update_menu_select), GINT_TO_POINTER (GTK_UPDATE_DISCONTINUOUS)); gtk_menu_append (GTK_MENU (menu), item); item = make_menu_item ("Delayed", GTK_SIGNAL_FUNC (cb_update_menu_select), GINT_TO_POINTER (GTK_UPDATE_DELAYED)); gtk_menu_append (GTK_MENU (menu), item); gtk_option_menu_set_menu (GTK_OPTION_MENU (opt), menu); gtk_box_pack_start (GTK_BOX (box2), opt, TRUE, TRUE, 0); gtk_widget_show (opt); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); box2 = gtk_hbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); /* An HScale widget for adjusting the number of digits on the * sample scales. */ label = gtk_label_new ("Scale Digits:"); gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0); gtk_widget_show (label); adj2 = gtk_adjustment_new (1.0, 0.0, 5.0, 1.0, 1.0, 0.0); gtk_signal_connect (GTK_OBJECT (adj2), "value_changed", GTK_SIGNAL_FUNC (cb_digits_scale), NULL); scale = gtk_hscale_new (GTK_ADJUSTMENT (adj2)); gtk_scale_set_digits (GTK_SCALE (scale), 0); gtk_box_pack_start (GTK_BOX (box2), scale, TRUE, TRUE, 0); gtk_widget_show (scale); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); box2 = gtk_hbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); /* And, one last HScale widget for adjusting the page size of the * scrollbar. */ label = gtk_label_new ("Scrollbar Page Size:"); gtk_box_pack_start (GTK_BOX (box2), label, FALSE, FALSE, 0); gtk_widget_show (label); adj2 = gtk_adjustment_new (1.0, 1.0, 101.0, 1.0, 1.0, 0.0); gtk_signal_connect (GTK_OBJECT (adj2), "value_changed", GTK_SIGNAL_FUNC (cb_page_size), adj1); scale = gtk_hscale_new (GTK_ADJUSTMENT (adj2)); gtk_scale_set_digits (GTK_SCALE (scale), 0); gtk_box_pack_start (GTK_BOX (box2), scale, TRUE, TRUE, 0); gtk_widget_show (scale); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); separator = gtk_hseparator_new (); gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 0); gtk_widget_show (separator); box2 = gtk_vbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0); gtk_widget_show (box2); button = gtk_button_new_with_label ("Quit"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show (window); } int main( int argc, char *argv[] ) { gtk_init(&argc, &argv); create_range_controls(); gtk_main(); return(0); } /* example-end */ </verb></tscreen> You will notice that the program does not call <tt/gtk_signal_connect/ for the "delete_event", but only for the "destroy" signal. This will still perform the desired function, because an unhandled "delete_event" will result in a "destroy" signal being given to the window. </sect1> </sect> <!-- ***************************************************************** --> <sect> Miscellaneous Widgets <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Labels <p> Labels are used a lot in GTK, and are relatively simple. Labels emit no signals as they do not have an associated X window. If you need to catch signals, or do clipping, place it inside a <ref id="sec_EventBox" name="EventBox"> widget or a Button widget. To create a new label, use: <tscreen><verb> GtkWidget *gtk_label_new( char *str ); </verb></tscreen> The sole argument is the string you wish the label to display. To change the label's text after creation, use the function: <tscreen><verb> void gtk_label_set_text( GtkLabel *label, char *str ); </verb></tscreen> The first argument is the label you created previously (cast using the <tt/GTK_LABEL()/ macro), and the second is the new string. The space needed for the new string will be automatically adjusted if needed. You can produce multi-line labels by putting line breaks in the label string. To retrieve the current string, use: <tscreen><verb> void gtk_label_get( GtkLabel *label, char **str ); </verb></tscreen> The first argument is the label you've created, and the second, the return for the string. Do not free the return string, as it is used internally by GTK. The label text can be justified using: <tscreen><verb> void gtk_label_set_justify( GtkLabel *label, GtkJustification jtype ); </verb></tscreen> Values for <tt/jtype/ are: <tscreen><verb> GTK_JUSTIFY_LEFT GTK_JUSTIFY_RIGHT GTK_JUSTIFY_CENTER (the default) GTK_JUSTIFY_FILL </verb></tscreen> The label widget is also capable of line wrapping the text automatically. This can be activated using: <tscreen><verb> void gtk_label_set_line_wrap (GtkLabel *label, gboolean wrap); </verb></tscreen> The <tt/wrap/ argument takes a TRUE or FALSE value. If you want your label underlined, then you can set a pattern on the label: <tscreen><verb> void gtk_label_set_pattern (GtkLabel *label, const gchar *pattern); </verb></tscreen> The pattern argument indicates how the underlining should look. It consists of a string of underscore and space characters. An underscore indicates that the corresponding character in the label should be underlined. For example, the string <verb/"__ __"/ would underline the first two characters and eight and ninth characters. Below is a short example to illustrate these functions. This example makes use of the Frame widget to better demonstrate the label styles. You can ignore this for now as the <ref id="sec_Frames" name="Frame"> widget is explained later on. <tscreen><verb> /* example-start label label.c */ #include <gtk/gtk.h> int main( int argc, char *argv[] ) { static GtkWidget *window = NULL; GtkWidget *hbox; GtkWidget *vbox; GtkWidget *frame; GtkWidget *label; /* Initialise GTK */ gtk_init(&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); gtk_window_set_title (GTK_WINDOW (window), "Label"); vbox = gtk_vbox_new (FALSE, 5); hbox = gtk_hbox_new (FALSE, 5); gtk_container_add (GTK_CONTAINER (window), hbox); gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (window), 5); frame = gtk_frame_new ("Normal Label"); label = gtk_label_new ("This is a Normal label"); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); frame = gtk_frame_new ("Multi-line Label"); label = gtk_label_new ("This is a Multi-line label.\nSecond line\n" \ "Third line"); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); frame = gtk_frame_new ("Left Justified Label"); label = gtk_label_new ("This is a Left-Justified\n" \ "Multi-line label.\nThird line"); gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_LEFT); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); frame = gtk_frame_new ("Right Justified Label"); label = gtk_label_new ("This is a Right-Justified\nMulti-line label.\n" \ "Fourth line, (j/k)"); gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_RIGHT); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); vbox = gtk_vbox_new (FALSE, 5); gtk_box_pack_start (GTK_BOX (hbox), vbox, FALSE, FALSE, 0); frame = gtk_frame_new ("Line wrapped label"); label = gtk_label_new ("This is an example of a line-wrapped label. It " \ "should not be taking up the entire " /* big space to test spacing */\ "width allocated to it, but automatically " \ "wraps the words to fit. " \ "The time has come, for all good men, to come to " \ "the aid of their party. " \ "The sixth sheik's six sheep's sick.\n" \ " It supports multiple paragraphs correctly, " \ "and correctly adds "\ "many extra spaces. "); gtk_label_set_line_wrap (GTK_LABEL (label), TRUE); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); frame = gtk_frame_new ("Filled, wrapped label"); label = gtk_label_new ("This is an example of a line-wrapped, filled label. " \ "It should be taking "\ "up the entire width allocated to it. " \ "Here is a sentence to prove "\ "my point. Here is another sentence. "\ "Here comes the sun, do de do de do.\n"\ " This is a new paragraph.\n"\ " This is another newer, longer, better " \ "paragraph. It is coming to an end, "\ "unfortunately."); gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_FILL); gtk_label_set_line_wrap (GTK_LABEL (label), TRUE); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); frame = gtk_frame_new ("Underlined label"); label = gtk_label_new ("This label is underlined!\n" "This one is underlined in quite a funky fashion"); gtk_label_set_justify (GTK_LABEL (label), GTK_JUSTIFY_LEFT); gtk_label_set_pattern (GTK_LABEL (label), "_________________________ _ _________ _ ______ __ _______ ___"); gtk_container_add (GTK_CONTAINER (frame), label); gtk_box_pack_start (GTK_BOX (vbox), frame, FALSE, FALSE, 0); gtk_widget_show_all (window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Arrows <p> The Arrow widget draws an arrowhead, facing in a number of possible directions and having a number of possible styles. It can be very useful when placed on a button in many applications. Like the Label widget, it emits no signals. There are only two functions for manipulating an Arrow widget: <tscreen><verb> GtkWidget *gtk_arrow_new( GtkArrowType arrow_type, GtkShadowType shadow_type ); void gtk_arrow_set( GtkArrow *arrow, GtkArrowType arrow_type, GtkShadowType shadow_type ); </verb></tscreen> The first creates a new arrow widget with the indicated type and appearance. The second allows these values to be altered retrospectively. The <tt/arrow_type/ argument may take one of the following values: <tscreen><verb> GTK_ARROW_UP GTK_ARROW_DOWN GTK_ARROW_LEFT GTK_ARROW_RIGHT </verb></tscreen> These values obviously indicate the direction in which the arrow will point. The <tt/shadow_type/ argument may take one of these values: <tscreen><verb> GTK_SHADOW_IN GTK_SHADOW_OUT (the default) GTK_SHADOW_ETCHED_IN GTK_SHADOW_ETCHED_OUT </verb></tscreen> Here's a brief example to illustrate their use. <tscreen><verb> /* example-start arrow arrow.c */ #include <gtk/gtk.h> /* Create an Arrow widget with the specified parameters * and pack it into a button */ GtkWidget *create_arrow_button( GtkArrowType arrow_type, GtkShadowType shadow_type ) { GtkWidget *button; GtkWidget *arrow; button = gtk_button_new(); arrow = gtk_arrow_new (arrow_type, shadow_type); gtk_container_add (GTK_CONTAINER (button), arrow); gtk_widget_show(button); gtk_widget_show(arrow); return(button); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *button; GtkWidget *box; /* Initialize the toolkit */ gtk_init (&argc, &argv); /* Create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Arrow Buttons"); /* It's a good idea to do this for all windows. */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create a box to hold the arrows/buttons */ box = gtk_hbox_new (FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (box), 2); gtk_container_add (GTK_CONTAINER (window), box); /* Pack and show all our widgets */ gtk_widget_show(box); button = create_arrow_button(GTK_ARROW_UP, GTK_SHADOW_IN); gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3); button = create_arrow_button(GTK_ARROW_DOWN, GTK_SHADOW_OUT); gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3); button = create_arrow_button(GTK_ARROW_LEFT, GTK_SHADOW_ETCHED_IN); gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3); button = create_arrow_button(GTK_ARROW_RIGHT, GTK_SHADOW_ETCHED_OUT); gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 3); gtk_widget_show (window); /* Rest in gtk_main and wait for the fun to begin! */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>The Tooltips Object <p> These are the little text strings that pop up when you leave your pointer over a button or other widget for a few seconds. They are easy to use, so I will just explain them without giving an example. If you want to see some code, take a look at the testgtk.c program distributed with GTK. Widgets that do not receive events (widgets that do not have their own window) will not work with tooltips. The first call you will use creates a new tooltip. You only need to do this once for a set of tooltips as the <tt/GtkTooltips/ object this function returns can be used to create multiple tooltips. <tscreen><verb> GtkTooltips *gtk_tooltips_new( void ); </verb></tscreen> Once you have created a new tooltip, and the widget you wish to use it on, simply use this call to set it: <tscreen><verb> void gtk_tooltips_set_tip( GtkTooltips *tooltips, GtkWidget *widget, const gchar *tip_text, const gchar *tip_private ); </verb></tscreen> The first argument is the tooltip you've already created, followed by the widget you wish to have this tooltip pop up for, and the text you wish it to say. The last argument is a text string that can be used as an identifier when using GtkTipsQuery to implement context sensitive help. For now, you can set it to NULL. <!-- TODO: sort out what how to do the context sensitive help --> Here's a short example: <tscreen><verb> GtkTooltips *tooltips; GtkWidget *button; . . . tooltips = gtk_tooltips_new (); button = gtk_button_new_with_label ("button 1"); . . . gtk_tooltips_set_tip (tooltips, button, "This is button 1", NULL); </verb></tscreen> There are other calls that can be used with tooltips. I will just list them with a brief description of what they do. <tscreen><verb> void gtk_tooltips_enable( GtkTooltips *tooltips ); </verb></tscreen> Enable a disabled set of tooltips. <tscreen><verb> void gtk_tooltips_disable( GtkTooltips *tooltips ); </verb></tscreen> Disable an enabled set of tooltips. <tscreen><verb> void gtk_tooltips_set_delay( GtkTooltips *tooltips, gint delay ); </verb></tscreen> Sets how many milliseconds you have to hold your pointer over the widget before the tooltip will pop up. The default is 500 milliseconds (half a second). <tscreen><verb> void gtk_tooltips_set_colors( GtkTooltips *tooltips, GdkColor *background, GdkColor *foreground ); </verb></tscreen> Set the foreground and background color of the tooltips. And that's all the functions associated with tooltips. More than you'll ever want to know :-) <!-- ----------------------------------------------------------------- --> <sect1> Progress Bars <label id="sec_ProgressBar"> <p> Progress bars are used to show the status of an operation. They are pretty easy to use, as you will see with the code below. But first lets start out with the calls to create a new progress bar. There are two ways to create a progress bar, one simple that takes no arguments, and one that takes an Adjustment object as an argument. If the former is used, the progress bar creates its own adjustment object. <tscreen><verb> GtkWidget *gtk_progress_bar_new( void ); GtkWidget *gtk_progress_bar_new_with_adjustment( GtkAdjustment *adjustment ); </verb></tscreen> The second method has the advantage that we can use the adjustment object to specify our own range parameters for the progress bar. The adjustment of a progress object can be changed dynamically using: <tscreen><verb> void gtk_progress_set_adjustment( GtkProgress *progress, GtkAdjustment *adjustment ); </verb></tscreen> Now that the progress bar has been created we can use it. <tscreen><verb> void gtk_progress_bar_update( GtkProgressBar *pbar, gfloat percentage ); </verb></tscreen> The first argument is the progress bar you wish to operate on, and the second argument is the amount "completed", meaning the amount the progress bar has been filled from 0-100%. This is passed to the function as a real number ranging from 0 to 1. GTK v1.2 has added new functionality to the progress bar that enables it to display its value in different ways, and to inform the user of its current value and its range. A progress bar may be set to one of a number of orientations using the function <tscreen><verb> void gtk_progress_bar_set_orientation( GtkProgressBar *pbar, GtkProgressBarOrientation orientation ); </verb></tscreen> The <tt/orientation/ argument may take one of the following values to indicate the direction in which the progress bar moves: <tscreen><verb> GTK_PROGRESS_LEFT_TO_RIGHT GTK_PROGRESS_RIGHT_TO_LEFT GTK_PROGRESS_BOTTOM_TO_TOP GTK_PROGRESS_TOP_TO_BOTTOM </verb></tscreen> When used as a measure of how far a process has progressed, the ProgressBar can be set to display its value in either a continuous or discrete mode. In continuous mode, the progress bar is updated for each value. In discrete mode, the progress bar is updated in a number of discrete blocks. The number of blocks is also configurable. The style of a progress bar can be set using the following function. <tscreen><verb> void gtk_progress_bar_set_bar_style( GtkProgressBar *pbar, GtkProgressBarStyle style ); </verb></tscreen> The <tt/style/ parameter can take one of two values: <tscreen><verb> GTK_PROGRESS_CONTINUOUS GTK_PROGRESS_DISCRETE </verb></tscreen> The number of discrete blocks can be set by calling <tscreen><verb> void gtk_progress_bar_set_discrete_blocks( GtkProgressBar *pbar, guint blocks ); </verb></tscreen> As well as indicating the amount of progress that has occured, the progress bar may be set to just indicate that there is some activity. This can be useful in situations where progress cannot be measured against a value range. Activity mode is not affected by the bar style that is described above, and overrides it. This mode is either TRUE or FALSE, and is selected by the following function. <tscreen><verb> void gtk_progress_set_activity_mode( GtkProgress *progress, guint activity_mode ); </verb></tscreen> The step size of the activity indicator, and the number of blocks are set using the following functions. <tscreen><verb> void gtk_progress_bar_set_activity_step( GtkProgressBar *pbar, guint step ); void gtk_progress_bar_set_activity_blocks( GtkProgressBar *pbar, guint blocks ); </verb></tscreen> When in continuous mode, the progress bar can also display a configurable text string within its trough, using the following function. <tscreen><verb> void gtk_progress_set_format_string( GtkProgress *progress, gchar *format); </verb></tscreen> The <tt/format/ argument is similiar to one that would be used in a C <tt/printf/ statement. The following directives may be used within the format string: <itemize> <item> %p - percentage <item> %v - value <item> %l - lower range value <item> %u - upper range value </itemize> The displaying of this text string can be toggled using: <tscreen><verb> void gtk_progress_set_show_text( GtkProgress *progress, gint show_text ); </verb></tscreen> The <tt/show_text/ argument is a boolean TRUE/FALSE value. The appearance of the text can be modified further using: <tscreen><verb> void gtk_progress_set_text_alignment( GtkProgress *progress, gfloat x_align, gfloat y_align ); </verb></tscreen> The <tt/x_align/ and <tt/y_align/ arguments take values between 0.0 and 1.0. Their values indicate the position of the text string within the trough. Values of 0.0 for both would place the string in the top left hand corner; values of 0.5 (the default) centres the text, and values of 1.0 places the text in the lower right hand corner. The current text setting of a progress object can be retrieved using the current or a specified adjustment value using the following two functions. The character string returned by these functions should be freed by the application (using the g_free() function). These functions return the formatted string that would be displayed within the trough. <tscreen><verb> gchar *gtk_progress_get_current_text( GtkProgress *progress ); gchar *gtk_progress_get_text_from_value( GtkProgress *progress, gfloat value ); </verb></tscreen> There is yet another way to change the range and value of a progress object using the following function: <tscreen><verb> void gtk_progress_configure( GtkProgress *progress, gfloat value, gfloat min, gfloat max ); </verb></tscreen> This function provides quite a simple interface to the range and value of a progress object. The remaining functions can be used to get and set the current value of a progess object in various types and formats: <tscreen><verb> void gtk_progress_set_percentage( GtkProgress *progress, gfloat percentage ); void gtk_progress_set_value( GtkProgress *progress, gfloat value ); gfloat gtk_progress_get_value( GtkProgress *progress ); gfloat gtk_progress_get_current_percentage( GtkProgress *progress ); gfloat gtk_progress_get_percentage_from_value( GtkProgress *progress, gfloat value ); </verb></tscreen> These functions are pretty self explanatory. The last function uses the the adjustment of the specified progess object to compute the percentage value of the given range value. Progress Bars are usually used with timeouts or other such functions (see section on <ref id="sec_timeouts" name="Timeouts, I/O and Idle Functions">) to give the illusion of multitasking. All will employ the gtk_progress_bar_update function in the same manner. Here is an example of the progress bar, updated using timeouts. This code also shows you how to reset the Progress Bar. <tscreen><verb> /* example-start progressbar progressbar.c */ #include <gtk/gtk.h> typedef struct _ProgressData { GtkWidget *window; GtkWidget *pbar; int timer; } ProgressData; /* Update the value of the progress bar so that we get * some movement */ gint progress_timeout( gpointer data ) { gfloat new_val; GtkAdjustment *adj; /* Calculate the value of the progress bar using the * value range set in the adjustment object */ new_val = gtk_progress_get_value( GTK_PROGRESS(data) ) + 1; adj = GTK_PROGRESS (data)->adjustment; if (new_val > adj->upper) new_val = adj->lower; /* Set the new value */ gtk_progress_set_value (GTK_PROGRESS (data), new_val); /* As this is a timeout function, return TRUE so that it * continues to get called */ return(TRUE); } /* Callback that toggles the text display within the progress * bar trough */ void toggle_show_text( GtkWidget *widget, ProgressData *pdata ) { gtk_progress_set_show_text (GTK_PROGRESS (pdata->pbar), GTK_TOGGLE_BUTTON (widget)->active); } /* Callback that toggles the activity mode of the progress * bar */ void toggle_activity_mode( GtkWidget *widget, ProgressData *pdata ) { gtk_progress_set_activity_mode (GTK_PROGRESS (pdata->pbar), GTK_TOGGLE_BUTTON (widget)->active); } /* Callback that toggles the continuous mode of the progress * bar */ void set_continuous_mode( GtkWidget *widget, ProgressData *pdata ) { gtk_progress_bar_set_bar_style (GTK_PROGRESS_BAR (pdata->pbar), GTK_PROGRESS_CONTINUOUS); } /* Callback that toggles the discrete mode of the progress * bar */ void set_discrete_mode( GtkWidget *widget, ProgressData *pdata ) { gtk_progress_bar_set_bar_style (GTK_PROGRESS_BAR (pdata->pbar), GTK_PROGRESS_DISCRETE); } /* Clean up allocated memory and remove the timer */ void destroy_progress( GtkWidget *widget, ProgressData *pdata) { gtk_timeout_remove (pdata->timer); pdata->timer = 0; pdata->window = NULL; g_free(pdata); gtk_main_quit(); } int main( int argc, char *argv[]) { ProgressData *pdata; GtkWidget *align; GtkWidget *separator; GtkWidget *table; GtkAdjustment *adj; GtkWidget *button; GtkWidget *check; GtkWidget *vbox; gtk_init (&argc, &argv); /* Allocate memory for the data that is passwd to the callbacks */ pdata = g_malloc( sizeof(ProgressData) ); pdata->window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_policy (GTK_WINDOW (pdata->window), FALSE, FALSE, TRUE); gtk_signal_connect (GTK_OBJECT (pdata->window), "destroy", GTK_SIGNAL_FUNC (destroy_progress), pdata); gtk_window_set_title (GTK_WINDOW (pdata->window), "GtkProgressBar"); gtk_container_set_border_width (GTK_CONTAINER (pdata->window), 0); vbox = gtk_vbox_new (FALSE, 5); gtk_container_set_border_width (GTK_CONTAINER (vbox), 10); gtk_container_add (GTK_CONTAINER (pdata->window), vbox); gtk_widget_show(vbox); /* Create a centering alignment object */ align = gtk_alignment_new (0.5, 0.5, 0, 0); gtk_box_pack_start (GTK_BOX (vbox), align, FALSE, FALSE, 5); gtk_widget_show(align); /* Create a Adjusment object to hold the range of the * progress bar */ adj = (GtkAdjustment *) gtk_adjustment_new (0, 1, 150, 0, 0, 0); /* Create the GtkProgressBar using the adjustment */ pdata->pbar = gtk_progress_bar_new_with_adjustment (adj); /* Set the format of the string that can be displayed in the * trough of the progress bar: * %p - percentage * %v - value * %l - lower range value * %u - upper range value */ gtk_progress_set_format_string (GTK_PROGRESS (pdata->pbar), "%v from [%l-%u] (=%p%%)"); gtk_container_add (GTK_CONTAINER (align), pdata->pbar); gtk_widget_show(pdata->pbar); /* Add a timer callback to update the value of the progress bar */ pdata->timer = gtk_timeout_add (100, progress_timeout, pdata->pbar); separator = gtk_hseparator_new (); gtk_box_pack_start (GTK_BOX (vbox), separator, FALSE, FALSE, 0); gtk_widget_show(separator); /* rows, columns, homogeneous */ table = gtk_table_new (2, 3, FALSE); gtk_box_pack_start (GTK_BOX (vbox), table, FALSE, TRUE, 0); gtk_widget_show(table); /* Add a check button to select displaying of the trough text */ check = gtk_check_button_new_with_label ("Show text"); gtk_table_attach (GTK_TABLE (table), check, 0, 1, 0, 1, GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL, 5, 5); gtk_signal_connect (GTK_OBJECT (check), "clicked", GTK_SIGNAL_FUNC (toggle_show_text), pdata); gtk_widget_show(check); /* Add a check button to toggle activity mode */ check = gtk_check_button_new_with_label ("Activity mode"); gtk_table_attach (GTK_TABLE (table), check, 0, 1, 1, 2, GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL, 5, 5); gtk_signal_connect (GTK_OBJECT (check), "clicked", GTK_SIGNAL_FUNC (toggle_activity_mode), pdata); gtk_widget_show(check); separator = gtk_vseparator_new (); gtk_table_attach (GTK_TABLE (table), separator, 1, 2, 0, 2, GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL, 5, 5); gtk_widget_show(separator); /* Add a radio button to select continuous display mode */ button = gtk_radio_button_new_with_label (NULL, "Continuous"); gtk_table_attach (GTK_TABLE (table), button, 2, 3, 0, 1, GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL, 5, 5); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (set_continuous_mode), pdata); gtk_widget_show (button); /* Add a radio button to select discrete display mode */ button = gtk_radio_button_new_with_label( gtk_radio_button_group (GTK_RADIO_BUTTON (button)), "Discrete"); gtk_table_attach (GTK_TABLE (table), button, 2, 3, 1, 2, GTK_EXPAND | GTK_FILL, GTK_EXPAND | GTK_FILL, 5, 5); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (set_discrete_mode), pdata); gtk_widget_show (button); separator = gtk_hseparator_new (); gtk_box_pack_start (GTK_BOX (vbox), separator, FALSE, FALSE, 0); gtk_widget_show(separator); /* Add a button to exit the program */ button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_widget_destroy, GTK_OBJECT (pdata->window)); gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0); /* This makes it so the button is the default. */ GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); /* This grabs this button to be the default button. Simply hitting * the "Enter" key will cause this button to activate. */ gtk_widget_grab_default (button); gtk_widget_show(button); gtk_widget_show (pdata->window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Dialogs <p> The Dialog widget is very simple, and is actually just a window with a few things pre-packed into it for you. The structure for a Dialog is: <tscreen><verb> struct GtkDialog { GtkWindow window; GtkWidget *vbox; GtkWidget *action_area; }; </verb></tscreen> So you see, it simply creates a window, and then packs a vbox into the top, which contains a separator and then an hbox called the "action_area". The Dialog widget can be used for pop-up messages to the user, and other similar tasks. It is really basic, and there is only one function for the dialog box, which is: <tscreen><verb> GtkWidget *gtk_dialog_new( void ); </verb></tscreen> So to create a new dialog box, use, <tscreen><verb> GtkWidget *window; window = gtk_dialog_new (); </verb></tscreen> This will create the dialog box, and it is now up to you to use it. You could pack a button in the action_area by doing something like this: <tscreen><verb> button = ... gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->action_area), button, TRUE, TRUE, 0); gtk_widget_show (button); </verb></tscreen> And you could add to the vbox area by packing, for instance, a label in it, try something like this: <tscreen><verb> label = gtk_label_new ("Dialogs are groovy"); gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->vbox), label, TRUE, TRUE, 0); gtk_widget_show (label); </verb></tscreen> As an example in using the dialog box, you could put two buttons in the action_area, a Cancel button and an Ok button, and a label in the vbox area, asking the user a question or giving an error etc. Then you could attach a different signal to each of the buttons and perform the operation the user selects. If the simple functionality provided by the default vertical and horizontal boxes in the two areas doesn't give you enough control for your application, then you can simply pack another layout widget into the boxes provided. For example, you could pack a table into the vertical box. <!-- ----------------------------------------------------------------- --> <sect1> Pixmaps <label id="sec_Pixmaps"> <p> Pixmaps are data structures that contain pictures. These pictures can be used in various places, but most commonly as icons on the X desktop, or as cursors. A pixmap which only has 2 colors is called a bitmap, and there are a few additional routines for handling this common special case. To understand pixmaps, it would help to understand how X window system works. Under X, applications do not need to be running on the same computer that is interacting with the user. Instead, the various applications, called "clients", all communicate with a program which displays the graphics and handles the keyboard and mouse. This program which interacts directly with the user is called a "display server" or "X server." Since the communication might take place over a network, it's important to keep some information with the X server. Pixmaps, for example, are stored in the memory of the X server. This means that once pixmap values are set, they don't need to keep getting transmitted over the network; instead a command is sent to "display pixmap number XYZ here." Even if you aren't using X with GTK currently, using constructs such as Pixmaps will make your programs work acceptably under X. To use pixmaps in GTK, we must first build a GdkPixmap structure using routines from the GDK layer. Pixmaps can either be created from in-memory data, or from data read from a file. We'll go through each of the calls to create a pixmap. <tscreen><verb> GdkPixmap *gdk_bitmap_create_from_data( GdkWindow *window, gchar *data, gint width, gint height ); </verb></tscreen> This routine is used to create a single-plane pixmap (2 colors) from data in memory. Each bit of the data represents whether that pixel is off or on. Width and height are in pixels. The GdkWindow pointer is to the current window, since a pixmap's resources are meaningful only in the context of the screen where it is to be displayed. <tscreen><verb> GdkPixmap *gdk_pixmap_create_from_data( GdkWindow *window, gchar *data, gint width, gint height, gint depth, GdkColor *fg, GdkColor *bg ); </verb></tscreen> This is used to create a pixmap of the given depth (number of colors) from the bitmap data specified. <tt/fg/ and <tt/bg/ are the foreground and background color to use. <tscreen><verb> GdkPixmap *gdk_pixmap_create_from_xpm( GdkWindow *window, GdkBitmap **mask, GdkColor *transparent_color, const gchar *filename ); </verb></tscreen> XPM format is a readable pixmap representation for the X Window System. It is widely used and many different utilities are available for creating image files in this format. The file specified by filename must contain an image in that format and it is loaded into the pixmap structure. The mask specifies which bits of the pixmap are opaque. All other bits are colored using the color specified by transparent_color. An example using this follows below. <tscreen><verb> GdkPixmap *gdk_pixmap_create_from_xpm_d( GdkWindow *window, GdkBitmap **mask, GdkColor *transparent_color, gchar **data ); </verb></tscreen> Small images can be incorporated into a program as data in the XPM format. A pixmap is created using this data, instead of reading it from a file. An example of such data is <tscreen><verb> /* XPM */ static const char * xpm_data[] = { "16 16 3 1", " c None", ". c #000000000000", "X c #FFFFFFFFFFFF", " ", " ...... ", " .XXX.X. ", " .XXX.XX. ", " .XXX.XXX. ", " .XXX..... ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " ......... ", " ", " "}; </verb></tscreen> When we're done using a pixmap and not likely to reuse it again soon, it is a good idea to release the resource using gdk_pixmap_unref(). Pixmaps should be considered a precious resource, because they take up memory in the end-user's X server process. Even though the X client you write may run on a powerful "server" computer, the user may be running the X server on a small personal computer. Once we've created a pixmap, we can display it as a GTK widget. We must create a GTK pixmap widget to contain the GDK pixmap. This is done using <tscreen><verb> GtkWidget *gtk_pixmap_new( GdkPixmap *pixmap, GdkBitmap *mask ); </verb></tscreen> The other pixmap widget calls are <tscreen><verb> guint gtk_pixmap_get_type( void ); void gtk_pixmap_set( GtkPixmap *pixmap, GdkPixmap *val, GdkBitmap *mask ); void gtk_pixmap_get( GtkPixmap *pixmap, GdkPixmap **val, GdkBitmap **mask); </verb></tscreen> gtk_pixmap_set is used to change the pixmap that the widget is currently managing. Val is the pixmap created using GDK. The following is an example of using a pixmap in a button. <tscreen><verb> /* example-start pixmap pixmap.c */ #include <gtk/gtk.h> /* XPM data of Open-File icon */ static const char * xpm_data[] = { "16 16 3 1", " c None", ". c #000000000000", "X c #FFFFFFFFFFFF", " ", " ...... ", " .XXX.X. ", " .XXX.XX. ", " .XXX.XXX. ", " .XXX..... ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " .XXXXXXX. ", " ......... ", " ", " "}; /* when invoked (via signal delete_event), terminates the application. */ gint close_application( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit(); return(FALSE); } /* is invoked when the button is clicked. It just prints a message. */ void button_clicked( GtkWidget *widget, gpointer data ) { g_print( "button clicked\n" ); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window, *pixmapwid, *button; GdkPixmap *pixmap; GdkBitmap *mask; GtkStyle *style; /* create the main window, and attach delete_event signal to terminating the application */ gtk_init( &argc, &argv ); window = gtk_window_new( GTK_WINDOW_TOPLEVEL ); gtk_signal_connect( GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (close_application), NULL ); gtk_container_set_border_width( GTK_CONTAINER (window), 10 ); gtk_widget_show( window ); /* now for the pixmap from gdk */ style = gtk_widget_get_style( window ); pixmap = gdk_pixmap_create_from_xpm_d( window->window, &mask, &style->bg[GTK_STATE_NORMAL], (gchar **)xpm_data ); /* a pixmap widget to contain the pixmap */ pixmapwid = gtk_pixmap_new( pixmap, mask ); gtk_widget_show( pixmapwid ); /* a button to contain the pixmap widget */ button = gtk_button_new(); gtk_container_add( GTK_CONTAINER(button), pixmapwid ); gtk_container_add( GTK_CONTAINER(window), button ); gtk_widget_show( button ); gtk_signal_connect( GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(button_clicked), NULL ); /* show the window */ gtk_main (); return 0; } /* example-end */ </verb></tscreen> To load a file from an XPM data file called icon0.xpm in the current directory, we would have created the pixmap thus <tscreen><verb> /* load a pixmap from a file */ pixmap = gdk_pixmap_create_from_xpm( window->window, &mask, &style->bg[GTK_STATE_NORMAL], "./icon0.xpm" ); pixmapwid = gtk_pixmap_new( pixmap, mask ); gtk_widget_show( pixmapwid ); gtk_container_add( GTK_CONTAINER(window), pixmapwid ); </verb></tscreen> A disadvantage of using pixmaps is that the displayed object is always rectangular, regardless of the image. We would like to create desktops and applications with icons that have more natural shapes. For example, for a game interface, we would like to have round buttons to push. The way to do this is using shaped windows. A shaped window is simply a pixmap where the background pixels are transparent. This way, when the background image is multi-colored, we don't overwrite it with a rectangular, non-matching border around our icon. The following example displays a full wheelbarrow image on the desktop. <tscreen><verb> /* example-start wheelbarrow wheelbarrow.c */ #include <gtk/gtk.h> /* XPM */ static char * WheelbarrowFull_xpm[] = { "48 48 64 1", " c None", ". c #DF7DCF3CC71B", "X c #965875D669A6", "o c #71C671C671C6", "O c #A699A289A699", "+ c #965892489658", "@ c #8E38410330C2", "# c #D75C7DF769A6", "$ c #F7DECF3CC71B", "% c #96588A288E38", "& c #A69992489E79", "* c #8E3886178E38", "= c #104008200820", "- c #596510401040", "; c #C71B30C230C2", ": c #C71B9A699658", "> c #618561856185", ", c #20811C712081", "< c #104000000000", "1 c #861720812081", "2 c #DF7D4D344103", "3 c #79E769A671C6", "4 c #861782078617", "5 c #41033CF34103", "6 c #000000000000", "7 c #49241C711040", "8 c #492445144924", "9 c #082008200820", "0 c #69A618611861", "q c #B6DA71C65144", "w c #410330C238E3", "e c #CF3CBAEAB6DA", "r c #71C6451430C2", "t c #EFBEDB6CD75C", "y c #28A208200820", "u c #186110401040", "i c #596528A21861", "p c #71C661855965", "a c #A69996589658", "s c #30C228A230C2", "d c #BEFBA289AEBA", "f c #596545145144", "g c #30C230C230C2", "h c #8E3882078617", "j c #208118612081", "k c #38E30C300820", "l c #30C2208128A2", "z c #38E328A238E3", "x c #514438E34924", "c c #618555555965", "v c #30C2208130C2", "b c #38E328A230C2", "n c #28A228A228A2", "m c #41032CB228A2", "M c #104010401040", "N c #492438E34103", "B c #28A2208128A2", "V c #A699596538E3", "C c #30C21C711040", "Z c #30C218611040", "A c #965865955965", "S c #618534D32081", "D c #38E31C711040", "F c #082000000820", " ", " .XoO ", " +@#$%o& ", " *=-;#::o+ ", " >,<12#:34 ", " 45671#:X3 ", " +89<02qwo ", "e* >,67;ro ", "ty> 459@>+&& ", "$2u+ ><ipas8* ", "%$;=* *3:.Xa.dfg> ", "Oh$;ya *3d.a8j,Xe.d3g8+ ", " Oh$;ka *3d$a8lz,,xxc:.e3g54 ", " Oh$;kO *pd$%svbzz,sxxxxfX..&wn> ", " Oh$@mO *3dthwlsslszjzxxxxxxx3:td8M4 ", " Oh$@g& *3d$XNlvvvlllm,mNwxxxxxxxfa.:,B* ", " Oh$@,Od.czlllllzlmmqV@V#V@fxxxxxxxf:%j5& ", " Oh$1hd5lllslllCCZrV#r#:#2AxxxxxxxxxcdwM* ", " OXq6c.%8vvvllZZiqqApA:mq:Xxcpcxxxxxfdc9* ", " 2r<6gde3bllZZrVi7S@SV77A::qApxxxxxxfdcM ", " :,q-6MN.dfmZZrrSS:#riirDSAX@Af5xxxxxfevo", " +A26jguXtAZZZC7iDiCCrVVii7Cmmmxxxxxx%3g", " *#16jszN..3DZZZZrCVSA2rZrV7Dmmwxxxx&en", " p2yFvzssXe:fCZZCiiD7iiZDiDSSZwwxx8e*>", " OA1<jzxwwc:$d%NDZZZZCCCZCCZZCmxxfd.B ", " 3206Bwxxszx%et.eaAp77m77mmmf3&eeeg* ", " @26MvzxNzvlbwfpdettttttttttt.c,n& ", " *;16=lsNwwNwgsvslbwwvccc3pcfu<o ", " p;<69BvwwsszslllbBlllllllu<5+ ", " OS0y6FBlvvvzvzss,u=Blllj=54 ", " c1-699Blvlllllu7k96MMMg4 ", " *10y8n6FjvllllB<166668 ", " S-kg+>666<M<996-y6n<8* ", " p71=4 m69996kD8Z-66698&& ", " &i0ycm6n4 ogk17,0<6666g ", " N-k-<> >=01-kuu666> ", " ,6ky& &46-10ul,66, ", " Ou0<> o66y<ulw<66& ", " *kk5 >66By7=xu664 ", " <<M4 466lj<Mxu66o ", " *>> +66uv,zN666* ", " 566,xxj669 ", " 4666FF666> ", " >966666M ", " oM6668+ ", " *4 ", " ", " "}; /* When invoked (via signal delete_event), terminates the application */ gint close_application( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit(); return(FALSE); } int main (int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window, *pixmap, *fixed; GdkPixmap *gdk_pixmap; GdkBitmap *mask; GtkStyle *style; GdkGC *gc; /* Create the main window, and attach delete_event signal to terminate * the application. Note that the main window will not have a titlebar * since we're making it a popup. */ gtk_init (&argc, &argv); window = gtk_window_new( GTK_WINDOW_POPUP ); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (close_application), NULL); gtk_widget_show (window); /* Now for the pixmap and the pixmap widget */ style = gtk_widget_get_default_style(); gc = style->black_gc; gdk_pixmap = gdk_pixmap_create_from_xpm_d( window->window, &mask, &style->bg[GTK_STATE_NORMAL], WheelbarrowFull_xpm ); pixmap = gtk_pixmap_new( gdk_pixmap, mask ); gtk_widget_show( pixmap ); /* To display the pixmap, we use a fixed widget to place the pixmap */ fixed = gtk_fixed_new(); gtk_widget_set_usize( fixed, 200, 200 ); gtk_fixed_put( GTK_FIXED(fixed), pixmap, 0, 0 ); gtk_container_add( GTK_CONTAINER(window), fixed ); gtk_widget_show( fixed ); /* This masks out everything except for the image itself */ gtk_widget_shape_combine_mask( window, mask, 0, 0 ); /* show the window */ gtk_widget_set_uposition( window, 20, 400 ); gtk_widget_show( window ); gtk_main (); return(0); } /* example-end */ </verb></tscreen> To make the wheelbarrow image sensitive, we could attach the button press event signal to make it do something. The following few lines would make the picture sensitive to a mouse button being pressed which makes the application terminate. <tscreen><verb> gtk_widget_set_events( window, gtk_widget_get_events( window ) | GDK_BUTTON_PRESS_MASK ); gtk_signal_connect( GTK_OBJECT(window), "button_press_event", GTK_SIGNAL_FUNC(close_application), NULL ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Rulers <p> Ruler widgets are used to indicate the location of the mouse pointer in a given window. A window can have a vertical ruler spanning across the width and a horizontal ruler spanning down the height. A small triangular indicator on the ruler shows the exact location of the pointer relative to the ruler. A ruler must first be created. Horizontal and vertical rulers are created using <tscreen><verb> GtkWidget *gtk_hruler_new( void ); /* horizontal ruler */ GtkWidget *gtk_vruler_new( void ); /* vertical ruler */ </verb></tscreen> Once a ruler is created, we can define the unit of measurement. Units of measure for rulers can be<tt/GTK_PIXELS/, <tt/GTK_INCHES/ or <tt/GTK_CENTIMETERS/. This is set using <tscreen><verb> void gtk_ruler_set_metric( GtkRuler *ruler, GtkMetricType metric ); </verb></tscreen> The default measure is <tt/GTK_PIXELS/. <tscreen><verb> gtk_ruler_set_metric( GTK_RULER(ruler), GTK_PIXELS ); </verb></tscreen> Other important characteristics of a ruler are how to mark the units of scale and where the position indicator is initially placed. These are set for a ruler using <tscreen><verb> void gtk_ruler_set_range( GtkRuler *ruler, gfloat lower, gfloat upper, gfloat position, gfloat max_size ); </verb></tscreen> The lower and upper arguments define the extent of the ruler, and max_size is the largest possible number that will be displayed. Position defines the initial position of the pointer indicator within the ruler. A vertical ruler can span an 800 pixel wide window thus <tscreen><verb> gtk_ruler_set_range( GTK_RULER(vruler), 0, 800, 0, 800); </verb></tscreen> The markings displayed on the ruler will be from 0 to 800, with a number for every 100 pixels. If instead we wanted the ruler to range from 7 to 16, we would code <tscreen><verb> gtk_ruler_set_range( GTK_RULER(vruler), 7, 16, 0, 20); </verb></tscreen> The indicator on the ruler is a small triangular mark that indicates the position of the pointer relative to the ruler. If the ruler is used to follow the mouse pointer, the motion_notify_event signal should be connected to the motion_notify_event method of the ruler. To follow all mouse movements within a window area, we would use <tscreen><verb> #define EVENT_METHOD(i, x) GTK_WIDGET_CLASS(GTK_OBJECT(i)->klass)->x gtk_signal_connect_object( GTK_OBJECT(area), "motion_notify_event", (GtkSignalFunc)EVENT_METHOD(ruler, motion_notify_event), GTK_OBJECT(ruler) ); </verb></tscreen> The following example creates a drawing area with a horizontal ruler above it and a vertical ruler to the left of it. The size of the drawing area is 600 pixels wide by 400 pixels high. The horizontal ruler spans from 7 to 13 with a mark every 100 pixels, while the vertical ruler spans from 0 to 400 with a mark every 100 pixels. Placement of the drawing area and the rulers is done using a table. <tscreen><verb> /* example-start rulers rulers.c */ #include <gtk/gtk.h> #define EVENT_METHOD(i, x) GTK_WIDGET_CLASS(GTK_OBJECT(i)->klass)->x #define XSIZE 600 #define YSIZE 400 /* This routine gets control when the close button is clicked */ gint close_application( GtkWidget *widget, GdkEvent *event, gpointer data ) { gtk_main_quit(); return(FALSE); } /* The main routine */ int main( int argc, char *argv[] ) { GtkWidget *window, *table, *area, *hrule, *vrule; /* Initialize GTK and create the main window */ gtk_init( &argc, &argv ); window = gtk_window_new( GTK_WINDOW_TOPLEVEL ); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC( close_application ), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create a table for placing the ruler and the drawing area */ table = gtk_table_new( 3, 2, FALSE ); gtk_container_add( GTK_CONTAINER(window), table ); area = gtk_drawing_area_new(); gtk_drawing_area_size( (GtkDrawingArea *)area, XSIZE, YSIZE ); gtk_table_attach( GTK_TABLE(table), area, 1, 2, 1, 2, GTK_EXPAND|GTK_FILL, GTK_FILL, 0, 0 ); gtk_widget_set_events( area, GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK ); /* The horizontal ruler goes on top. As the mouse moves across the * drawing area, a motion_notify_event is passed to the * appropriate event handler for the ruler. */ hrule = gtk_hruler_new(); gtk_ruler_set_metric( GTK_RULER(hrule), GTK_PIXELS ); gtk_ruler_set_range( GTK_RULER(hrule), 7, 13, 0, 20 ); gtk_signal_connect_object( GTK_OBJECT(area), "motion_notify_event", (GtkSignalFunc)EVENT_METHOD(hrule, motion_notify_event), GTK_OBJECT(hrule) ); /* GTK_WIDGET_CLASS(GTK_OBJECT(hrule)->klass)->motion_notify_event, */ gtk_table_attach( GTK_TABLE(table), hrule, 1, 2, 0, 1, GTK_EXPAND|GTK_SHRINK|GTK_FILL, GTK_FILL, 0, 0 ); /* The vertical ruler goes on the left. As the mouse moves across * the drawing area, a motion_notify_event is passed to the * appropriate event handler for the ruler. */ vrule = gtk_vruler_new(); gtk_ruler_set_metric( GTK_RULER(vrule), GTK_PIXELS ); gtk_ruler_set_range( GTK_RULER(vrule), 0, YSIZE, 10, YSIZE ); gtk_signal_connect_object( GTK_OBJECT(area), "motion_notify_event", (GtkSignalFunc) GTK_WIDGET_CLASS(GTK_OBJECT(vrule)->klass)-> motion_notify_event, GTK_OBJECT(vrule) ); gtk_table_attach( GTK_TABLE(table), vrule, 0, 1, 1, 2, GTK_FILL, GTK_EXPAND|GTK_SHRINK|GTK_FILL, 0, 0 ); /* Now show everything */ gtk_widget_show( area ); gtk_widget_show( hrule ); gtk_widget_show( vrule ); gtk_widget_show( table ); gtk_widget_show( window ); gtk_main(); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Statusbars <p> Statusbars are simple widgets used to display a text message. They keep a stack of the messages pushed onto them, so that popping the current message will re-display the previous text message. In order to allow different parts of an application to use the same statusbar to display messages, the statusbar widget issues Context Identifiers which are used to identify different "users". The message on top of the stack is the one displayed, no matter what context it is in. Messages are stacked in last-in-first-out order, not context identifier order. A statusbar is created with a call to: <tscreen><verb> GtkWidget *gtk_statusbar_new( void ); </verb></tscreen> A new Context Identifier is requested using a call to the following function with a short textual description of the context: <tscreen><verb> guint gtk_statusbar_get_context_id( GtkStatusbar *statusbar, const gchar *context_description ); </verb></tscreen> There are three functions that can operate on statusbars: <tscreen><verb> guint gtk_statusbar_push( GtkStatusbar *statusbar, guint context_id, gchar *text ); void gtk_statusbar_pop( GtkStatusbar *statusbar) guint context_id ); void gtk_statusbar_remove( GtkStatusbar *statusbar, guint context_id, guint message_id ); </verb></tscreen> The first, gtk_statusbar_push, is used to add a new message to the statusbar. It returns a Message Identifier, which can be passed later to the function gtk_statusbar_remove to remove the message with the given Message and Context Identifiers from the statusbar's stack. The function gtk_statusbar_pop removes the message highest in the stack with the given Context Identifier. The following example creates a statusbar and two buttons, one for pushing items onto the statusbar, and one for popping the last item back off. <tscreen><verb> /* example-start statusbar statusbar.c */ #include <gtk/gtk.h> #include <glib.h> GtkWidget *status_bar; void push_item( GtkWidget *widget, gpointer data ) { static int count = 1; char buff[20]; g_snprintf(buff, 20, "Item %d", count++); gtk_statusbar_push( GTK_STATUSBAR(status_bar), GPOINTER_TO_INT(data), buff); return; } void pop_item( GtkWidget *widget, gpointer data ) { gtk_statusbar_pop( GTK_STATUSBAR(status_bar), GPOINTER_TO_INT(data) ); return; } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *vbox; GtkWidget *button; gint context_id; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize( GTK_WIDGET (window), 200, 100); gtk_window_set_title(GTK_WINDOW (window), "GTK Statusbar Example"); gtk_signal_connect(GTK_OBJECT (window), "delete_event", (GtkSignalFunc) gtk_exit, NULL); vbox = gtk_vbox_new(FALSE, 1); gtk_container_add(GTK_CONTAINER(window), vbox); gtk_widget_show(vbox); status_bar = gtk_statusbar_new(); gtk_box_pack_start (GTK_BOX (vbox), status_bar, TRUE, TRUE, 0); gtk_widget_show (status_bar); context_id = gtk_statusbar_get_context_id( GTK_STATUSBAR(status_bar), "Statusbar example"); button = gtk_button_new_with_label("push item"); gtk_signal_connect(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC (push_item), GINT_TO_POINTER(context_id) ); gtk_box_pack_start(GTK_BOX(vbox), button, TRUE, TRUE, 2); gtk_widget_show(button); button = gtk_button_new_with_label("pop last item"); gtk_signal_connect(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC (pop_item), GINT_TO_POINTER(context_id) ); gtk_box_pack_start(GTK_BOX(vbox), button, TRUE, TRUE, 2); gtk_widget_show(button); /* always display the window as the last step so it all splashes on * the screen at once. */ gtk_widget_show(window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Text Entries <p> The Entry widget allows text to be typed and displayed in a single line text box. The text may be set with function calls that allow new text to replace, prepend or append the current contents of the Entry widget. There are two functions for creating Entry widgets: <tscreen><verb> GtkWidget *gtk_entry_new( void ); GtkWidget *gtk_entry_new_with_max_length( guint16 max ); </verb></tscreen> The first just creates a new Entry widget, whilst the second creates a new Entry and sets a limit on the length of the text within the Entry. There are several functions for altering the text which is currently within the Entry widget. <tscreen><verb> void gtk_entry_set_text( GtkEntry *entry, const gchar *text ); void gtk_entry_append_text( GtkEntry *entry, const gchar *text ); void gtk_entry_prepend_text( GtkEntry *entry, const gchar *text ); </verb></tscreen> The function gtk_entry_set_text sets the contents of the Entry widget, replacing the current contents. The functions gtk_entry_append_text and gtk_entry_prepend_text allow the current contents to be appended and prepended to. The next function allows the current insertion point to be set. <tscreen><verb> void gtk_entry_set_position( GtkEntry *entry, gint position ); </verb></tscreen> The contents of the Entry can be retrieved by using a call to the following function. This is useful in the callback functions described below. <tscreen><verb> gchar *gtk_entry_get_text( GtkEntry *entry ); </verb></tscreen> The value returned by this function is used internally, and must not be freed using either free() or g_free() If we don't want the contents of the Entry to be changed by someone typing into it, we can change its editable state. <tscreen><verb> void gtk_entry_set_editable( GtkEntry *entry, gboolean editable ); </verb></tscreen> The function above allows us to toggle the editable state of the Entry widget by passing in a TRUE or FALSE value for the <tt/editable/ argument. If we are using the Entry where we don't want the text entered to be visible, for example when a password is being entered, we can use the following function, which also takes a boolean flag. <tscreen><verb> void gtk_entry_set_visibility( GtkEntry *entry, gboolean visible ); </verb></tscreen> A region of the text may be set as selected by using the following function. This would most often be used after setting some default text in an Entry, making it easy for the user to remove it. <tscreen><verb> void gtk_entry_select_region( GtkEntry *entry, gint start, gint end ); </verb></tscreen> If we want to catch when the user has entered text, we can connect to the <tt/activate/ or <tt/changed/ signal. Activate is raised when the user hits the enter key within the Entry widget. Changed is raised when the text changes at all, e.g., for every character entered or removed. The following code is an example of using an Entry widget. <tscreen><verb> /* example-start entry entry.c */ #include <stdio.h> #include <gtk/gtk.h> void enter_callback( GtkWidget *widget, GtkWidget *entry ) { gchar *entry_text; entry_text = gtk_entry_get_text(GTK_ENTRY(entry)); printf("Entry contents: %s\n", entry_text); } void entry_toggle_editable( GtkWidget *checkbutton, GtkWidget *entry ) { gtk_entry_set_editable(GTK_ENTRY(entry), GTK_TOGGLE_BUTTON(checkbutton)->active); } void entry_toggle_visibility( GtkWidget *checkbutton, GtkWidget *entry ) { gtk_entry_set_visibility(GTK_ENTRY(entry), GTK_TOGGLE_BUTTON(checkbutton)->active); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *vbox, *hbox; GtkWidget *entry; GtkWidget *button; GtkWidget *check; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize( GTK_WIDGET (window), 200, 100); gtk_window_set_title(GTK_WINDOW (window), "GTK Entry"); gtk_signal_connect(GTK_OBJECT (window), "delete_event", (GtkSignalFunc) gtk_exit, NULL); vbox = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), vbox); gtk_widget_show (vbox); entry = gtk_entry_new_with_max_length (50); gtk_signal_connect(GTK_OBJECT(entry), "activate", GTK_SIGNAL_FUNC(enter_callback), entry); gtk_entry_set_text (GTK_ENTRY (entry), "hello"); gtk_entry_append_text (GTK_ENTRY (entry), " world"); gtk_entry_select_region (GTK_ENTRY (entry), 0, GTK_ENTRY(entry)->text_length); gtk_box_pack_start (GTK_BOX (vbox), entry, TRUE, TRUE, 0); gtk_widget_show (entry); hbox = gtk_hbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (vbox), hbox); gtk_widget_show (hbox); check = gtk_check_button_new_with_label("Editable"); gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, 0); gtk_signal_connect (GTK_OBJECT(check), "toggled", GTK_SIGNAL_FUNC(entry_toggle_editable), entry); gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(check), TRUE); gtk_widget_show (check); check = gtk_check_button_new_with_label("Visible"); gtk_box_pack_start (GTK_BOX (hbox), check, TRUE, TRUE, 0); gtk_signal_connect (GTK_OBJECT(check), "toggled", GTK_SIGNAL_FUNC(entry_toggle_visibility), entry); gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(check), TRUE); gtk_widget_show (check); button = gtk_button_new_with_label ("Close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(gtk_exit), GTK_OBJECT (window)); gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show(window); gtk_main(); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Spin Buttons <p> The Spin Button widget is generally used to allow the user to select a value from a range of numeric values. It consists of a text entry box with up and down arrow buttons attached to the side. Selecting one of the buttons causes the value to "spin" up and down the range of possible values. The entry box may also be edited directly to enter a specific value. The Spin Button allows the value to have zero or a number of decimal places and to be incremented/decremented in configurable steps. The action of holding down one of the buttons optionally results in an acceleration of change in the value according to how long it is depressed. The Spin Button uses an <ref id="sec_Adjustment" name="Adjustment"> object to hold information about the range of values that the spin button can take. This makes for a powerful Spin Button widget. Recall that an adjustment widget is created with the following function, which illustrates the information that it holds: <tscreen><verb> GtkObject *gtk_adjustment_new( gfloat value, gfloat lower, gfloat upper, gfloat step_increment, gfloat page_increment, gfloat page_size ); </verb></tscreen> These attributes of an Adjustment are used by the Spin Button in the following way: <itemize> <item> <tt/value/: initial value for the Spin Button <item> <tt/lower/: lower range value <item> <tt/upper/: upper range value <item> <tt/step_increment/: value to increment/decrement when pressing mouse button 1 on a button <item> <tt/page_increment/: value to increment/decrement when pressing mouse button 2 on a button <item> <tt/page_size/: unused </itemize> Additionally, mouse button 3 can be used to jump directly to the <tt/upper/ or <tt/lower/ values when used to select one of the buttons. Lets look at how to create a Spin Button: <tscreen><verb> GtkWidget *gtk_spin_button_new( GtkAdjustment *adjustment, gfloat climb_rate, guint digits ); </verb></tscreen> The <tt/climb_rate/ argument take a value between 0.0 and 1.0 and indicates the amount of acceleration that the Spin Button has. The <tt/digits/ argument specifies the number of decimal places to which the value will be displayed. A Spin Button can be reconfigured after creation using the following function: <tscreen><verb> void gtk_spin_button_configure( GtkSpinButton *spin_button, GtkAdjustment *adjustment, gfloat climb_rate, guint digits ); </verb></tscreen> The <tt/spin_button/ argument specifies the Spin Button widget that is to be reconfigured. The other arguments are as specified above. The adjustment can be set and retrieved independantly using the following two functions: <tscreen><verb> void gtk_spin_button_set_adjustment( GtkSpinButton *spin_button, GtkAdjustment *adjustment ); GtkAdjustment *gtk_spin_button_get_adjustment( GtkSpinButton *spin_button ); </verb></tscreen> The number of decimal places can also be altered using: <tscreen><verb> void gtk_spin_button_set_digits( GtkSpinButton *spin_button, guint digits) ; </verb></tscreen> The value that a Spin Button is currently displaying can be changed using the following function: <tscreen><verb> void gtk_spin_button_set_value( GtkSpinButton *spin_button, gfloat value ); </verb></tscreen> The current value of a Spin Button can be retrieved as either a floating point or integer value with the following functions: <tscreen><verb> gfloat gtk_spin_button_get_value_as_float( GtkSpinButton *spin_button ); gint gtk_spin_button_get_value_as_int( GtkSpinButton *spin_button ); </verb></tscreen> If you want to alter the value of a Spin Value relative to its current value, then the following function can be used: <tscreen><verb> void gtk_spin_button_spin( GtkSpinButton *spin_button, GtkSpinType direction, gfloat increment ); </verb></tscreen> The <tt/direction/ parameter can take one of the following values: <tscreen><verb> GTK_SPIN_STEP_FORWARD GTK_SPIN_STEP_BACKWARD GTK_SPIN_PAGE_FORWARD GTK_SPIN_PAGE_BACKWARD GTK_SPIN_HOME GTK_SPIN_END GTK_SPIN_USER_DEFINED </verb></tscreen> This function packs in quite a bit of functionality, which I will attempt to clearly explain. Many of these settings use values from the Adjustment object that is associated with a Spin Button. <tt/GTK_SPIN_STEP_FORWARD/ and <tt/GTK_SPIN_STEP_BACKWARD/ change the value of the Spin Button by the amount specified by <tt/increment/, unless <tt/increment/ is equal to 0, in which case the value is changed by the value of <tt/step_increment/ in theAdjustment. <tt/GTK_SPIN_PAGE_FORWARD/ and <tt/GTK_SPIN_PAGE_BACKWARD/ simply alter the value of the Spin Button by <tt/increment/. <tt/GTK_SPIN_HOME/ sets the value of the Spin Button to the bottom of the Adjustments range. <tt/GTK_SPIN_END/ sets the value of the Spin Button to the top of the Adjustments range. <tt/GTK_SPIN_USER_DEFINED/ simply alters the value of the Spin Button by the specified amount. We move away from functions for setting and retreving the range attributes of the Spin Button now, and move onto functions that affect the appearance and behaviour of the Spin Button widget itself. The first of these functions is used to constrain the text box of the Spin Button such that it may only contain a numeric value. This prevents a user from typing anything other than numeric values into the text box of a Spin Button: <tscreen><verb> void gtk_spin_button_set_numeric( GtkSpinButton *spin_button, gboolean numeric ); </verb></tscreen> You can set whether a Spin Button will wrap around between the upper and lower range values with the following function: <tscreen><verb> void gtk_spin_button_set_wrap( GtkSpinButton *spin_button, gboolean wrap ); </verb></tscreen> You can set a Spin Button to round the value to the nearest <tt/step_increment/, which is set within the Adjustment object used with the Spin Button. This is accomplished with the following function: <tscreen><verb> void gtk_spin_button_set_snap_to_ticks( GtkSpinButton *spin_button, gboolean snap_to_ticks ); </verb></tscreen> The update policy of a Spin Button can be changed with the following function: <tscreen><verb> void gtk_spin_button_set_update_policy( GtkSpinButton *spin_button, GtkSpinButtonUpdatePolicy policy ); </verb></tscreen> <!-- TODO: find out what this does - TRG --> The possible values of <tt/policy/ are either <tt/GTK_UPDATE_ALWAYS/ or <tt/GTK_UPDATE_IF_VALID/. These policies affect the behavior of a Spin Button when parsing inserted text and syncing its value with the values of the Adjustment. In the case of <tt/GTK_UPDATE_IF_VALID/ the Spin Button only value gets changed if the text input is a numeric value that is within the range specified by the Adjustment. Otherwise the text is reset to the current value. In case of <tt/GTK_UPDATE_ALWAYS/ we ignore errors while converting text into a numeric value. The appearance of the buttons used in a Spin Button can be changed using the following function: <tscreen><verb> void gtk_spin_button_set_shadow_type( GtkSpinButton *spin_button, GtkShadowType shadow_type ); </verb></tscreen> As usual, the <tt/shadow_type/ can be one of: <tscreen><verb> GTK_SHADOW_IN GTK_SHADOW_OUT GTK_SHADOW_ETCHED_IN GTK_SHADOW_ETCHED_OUT </verb></tscreen> Finally, you can explicitly request that a Spin Button update itself: <tscreen><verb> void gtk_spin_button_update( GtkSpinButton *spin_button ); </verb></tscreen> It's example time again. <tscreen><verb> /* example-start spinbutton spinbutton.c */ #include <stdio.h> #include <gtk/gtk.h> static GtkWidget *spinner1; void toggle_snap( GtkWidget *widget, GtkSpinButton *spin ) { gtk_spin_button_set_snap_to_ticks (spin, GTK_TOGGLE_BUTTON (widget)->active); } void toggle_numeric( GtkWidget *widget, GtkSpinButton *spin ) { gtk_spin_button_set_numeric (spin, GTK_TOGGLE_BUTTON (widget)->active); } void change_digits( GtkWidget *widget, GtkSpinButton *spin ) { gtk_spin_button_set_digits (GTK_SPIN_BUTTON (spinner1), gtk_spin_button_get_value_as_int (spin)); } void get_value( GtkWidget *widget, gpointer data ) { gchar buf[32]; GtkLabel *label; GtkSpinButton *spin; spin = GTK_SPIN_BUTTON (spinner1); label = GTK_LABEL (gtk_object_get_user_data (GTK_OBJECT (widget))); if (GPOINTER_TO_INT (data) == 1) sprintf (buf, "%d", gtk_spin_button_get_value_as_int (spin)); else sprintf (buf, "%0.*f", spin->digits, gtk_spin_button_get_value_as_float (spin)); gtk_label_set_text (label, buf); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *frame; GtkWidget *hbox; GtkWidget *main_vbox; GtkWidget *vbox; GtkWidget *vbox2; GtkWidget *spinner2; GtkWidget *spinner; GtkWidget *button; GtkWidget *label; GtkWidget *val_label; GtkAdjustment *adj; /* Initialise GTK */ gtk_init(&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); gtk_window_set_title (GTK_WINDOW (window), "Spin Button"); main_vbox = gtk_vbox_new (FALSE, 5); gtk_container_set_border_width (GTK_CONTAINER (main_vbox), 10); gtk_container_add (GTK_CONTAINER (window), main_vbox); frame = gtk_frame_new ("Not accelerated"); gtk_box_pack_start (GTK_BOX (main_vbox), frame, TRUE, TRUE, 0); vbox = gtk_vbox_new (FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (vbox), 5); gtk_container_add (GTK_CONTAINER (frame), vbox); /* Day, month, year spinners */ hbox = gtk_hbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (vbox), hbox, TRUE, TRUE, 5); vbox2 = gtk_vbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5); label = gtk_label_new ("Day :"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5); gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0); adj = (GtkAdjustment *) gtk_adjustment_new (1.0, 1.0, 31.0, 1.0, 5.0, 0.0); spinner = gtk_spin_button_new (adj, 0, 0); gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), TRUE); gtk_spin_button_set_shadow_type (GTK_SPIN_BUTTON (spinner), GTK_SHADOW_OUT); gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0); vbox2 = gtk_vbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5); label = gtk_label_new ("Month :"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5); gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0); adj = (GtkAdjustment *) gtk_adjustment_new (1.0, 1.0, 12.0, 1.0, 5.0, 0.0); spinner = gtk_spin_button_new (adj, 0, 0); gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), TRUE); gtk_spin_button_set_shadow_type (GTK_SPIN_BUTTON (spinner), GTK_SHADOW_ETCHED_IN); gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0); vbox2 = gtk_vbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5); label = gtk_label_new ("Year :"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5); gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0); adj = (GtkAdjustment *) gtk_adjustment_new (1998.0, 0.0, 2100.0, 1.0, 100.0, 0.0); spinner = gtk_spin_button_new (adj, 0, 0); gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner), FALSE); gtk_spin_button_set_shadow_type (GTK_SPIN_BUTTON (spinner), GTK_SHADOW_IN); gtk_widget_set_usize (spinner, 55, 0); gtk_box_pack_start (GTK_BOX (vbox2), spinner, FALSE, TRUE, 0); frame = gtk_frame_new ("Accelerated"); gtk_box_pack_start (GTK_BOX (main_vbox), frame, TRUE, TRUE, 0); vbox = gtk_vbox_new (FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (vbox), 5); gtk_container_add (GTK_CONTAINER (frame), vbox); hbox = gtk_hbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5); vbox2 = gtk_vbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5); label = gtk_label_new ("Value :"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5); gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0); adj = (GtkAdjustment *) gtk_adjustment_new (0.0, -10000.0, 10000.0, 0.5, 100.0, 0.0); spinner1 = gtk_spin_button_new (adj, 1.0, 2); gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner1), TRUE); gtk_widget_set_usize (spinner1, 100, 0); gtk_box_pack_start (GTK_BOX (vbox2), spinner1, FALSE, TRUE, 0); vbox2 = gtk_vbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (hbox), vbox2, TRUE, TRUE, 5); label = gtk_label_new ("Digits :"); gtk_misc_set_alignment (GTK_MISC (label), 0, 0.5); gtk_box_pack_start (GTK_BOX (vbox2), label, FALSE, TRUE, 0); adj = (GtkAdjustment *) gtk_adjustment_new (2, 1, 5, 1, 1, 0); spinner2 = gtk_spin_button_new (adj, 0.0, 0); gtk_spin_button_set_wrap (GTK_SPIN_BUTTON (spinner2), TRUE); gtk_signal_connect (GTK_OBJECT (adj), "value_changed", GTK_SIGNAL_FUNC (change_digits), (gpointer) spinner2); gtk_box_pack_start (GTK_BOX (vbox2), spinner2, FALSE, TRUE, 0); hbox = gtk_hbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5); button = gtk_check_button_new_with_label ("Snap to 0.5-ticks"); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (toggle_snap), spinner1); gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0); gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE); button = gtk_check_button_new_with_label ("Numeric only input mode"); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (toggle_numeric), spinner1); gtk_box_pack_start (GTK_BOX (vbox), button, TRUE, TRUE, 0); gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (button), TRUE); val_label = gtk_label_new (""); hbox = gtk_hbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, TRUE, 5); button = gtk_button_new_with_label ("Value as Int"); gtk_object_set_user_data (GTK_OBJECT (button), val_label); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (get_value), GINT_TO_POINTER (1)); gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5); button = gtk_button_new_with_label ("Value as Float"); gtk_object_set_user_data (GTK_OBJECT (button), val_label); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (get_value), GINT_TO_POINTER (2)); gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5); gtk_box_pack_start (GTK_BOX (vbox), val_label, TRUE, TRUE, 0); gtk_label_set_text (GTK_LABEL (val_label), "0"); hbox = gtk_hbox_new (FALSE, 0); gtk_box_pack_start (GTK_BOX (main_vbox), hbox, FALSE, TRUE, 0); button = gtk_button_new_with_label ("Close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); gtk_box_pack_start (GTK_BOX (hbox), button, TRUE, TRUE, 5); gtk_widget_show_all (window); /* Enter the event loop */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Combo Box <p> The combo box is another fairly simple widget that is really just a collection of other widgets. From the user's point of view, the widget consists of a text entry box and a pull down menu from which the user can select one of a set of predefined entries. Alternatively, the user can type a different option directly into the text box. The following extract from the structure that defines a Combo Box identifies several of the components: <tscreen><verb> struct _GtkCombo { GtkHBox hbox; GtkWidget *entry; GtkWidget *button; GtkWidget *popup; GtkWidget *popwin; GtkWidget *list; ... }; </verb></tscreen> As you can see, the Combo Box has two principal parts that you really care about: an entry and a list. First off, to create a combo box, use: <tscreen><verb> GtkWidget *gtk_combo_new( void ); </verb></tscreen> Now, if you want to set the string in the entry section of the combo box, this is done by manipulating the <tt/entry/ widget directly: <tscreen><verb> gtk_entry_set_text(GTK_ENTRY(GTK_COMBO(combo)->entry), "My String."); </verb></tscreen> To set the values in the popdown list, one uses the function: <tscreen><verb> void gtk_combo_set_popdown_strings( GtkCombo *combo, GList *strings ); </verb></tscreen> Before you can do this, you have to assemble a GList of the strings that you want. GList is a linked list implementation that is part of <ref id="sec_glib" name="GLib">, a library supporing GTK. For the moment, the quick and dirty explanation is that you need to set up a GList pointer, set it equal to NULL, then append strings to it with <tscreen><verb> GList *g_list_append( GList *glist, gpointer data ); </verb></tscreen> It is important that you set the initial GList pointer to NULL. The value returned from the g_list_append function must be used as the new pointer to the GList. Here's a typical code segment for creating a set of options: <tscreen><verb> GList *glist=NULL; glist = g_list_append(glist, "String 1"); glist = g_list_append(glist, "String 2"); glist = g_list_append(glist, "String 3"); glist = g_list_append(glist, "String 4"); gtk_combo_set_popdown_strings( GTK_COMBO(combo), glist) ; </verb></tscreen> The combo widget makes a copy of the strings passed to it in the glist structure. As a result, you need to make sure you free the memory used by the list if that is appropriate for your application. At this point you have a working combo box that has been set up. There are a few aspects of its behavior that you can change. These are accomplished with the functions: <tscreen><verb> void gtk_combo_set_use_arrows( GtkCombo *combo, gint val ); void gtk_combo_set_use_arrows_always( GtkCombo *combo, gint val ); void gtk_combo_set_case_sensitive( GtkCombo *combo, gint val ); </verb></tscreen> <tt/gtk_combo_set_use_arrows()/ lets the user change the value in the entry using the up/down arrow keys. This doesn't bring up the list, but rather replaces the current text in the entry with the next list entry (up or down, as your key choice indicates). It does this by searching in the list for the item corresponding to the current value in the entry and selecting the previous/next item accordingly. Usually in an entry the arrow keys are used to change focus (you can do that anyway using TAB). Note that when the current item is the last of the list and you press arrow-down it changes the focus (the same applies with the first item and arrow-up). If the current value in the entry is not in the list, then the function of <tt/gtk_combo_set_use_arrows()/ is disabled. <tt/gtk_combo_set_use_arrows_always()/ similarly allows the use the the up/down arrow keys to cycle through the choices in the dropdown list, except that it wraps around the values in the list, completely disabling the use of the up and down arrow keys for changing focus. <tt/gtk_combo_set_case_sensitive()/ toggles whether or not GTK searches for entries in a case sensitive manner. This is used when the Combo widget is asked to find a value from the list using the current entry in the text box. This completion can be performed in either a case sensitive or insensitive manner, depending upon the use of this function. The Combo widget can also simply complete the current entry if the user presses the key combination MOD-1 and "Tab". MOD-1 is often mapped to the "Alt" key, by the <tt/xmodmap/ utility. Note, however that some window managers also use this key combination, which will override its use within GTK. Now that we have a combo box, tailored to look and act how we want it, all that remains is being able to get data from the combo box. This is relatively straightforward. The majority of the time, all you are going to care about getting data from is the entry. The entry is accessed simply by <tt>GTK_ENTRY(GTK_COMBO(combo)->entry)</tt>. The two principal things that you are going to want to do with it are attach to the activate signal, which indicates that the user has pressed the Return or Enter key, and read the text. The first is accomplished using something like: <tscreen><verb> gtk_signal_connect(GTK_OBJECT(GTK_COMB(combo)->entry), "activate", GTK_SIGNAL_FUNC (my_callback_function), my_data); </verb></tscreen> Getting the text at any arbitrary time is accomplished by simply using the entry function: <tscreen><verb> gchar *gtk_entry_get_text(GtkEntry *entry); </verb></tscreen> Such as: <tscreen><verb> char *string; string = gtk_entry_get_text(GTK_ENTRY(GTK_COMBO(combo)->entry)); </verb></tscreen> That's about all there is to it. There is a function <tscreen><verb> void gtk_combo_disable_activate(GtkCombo *combo); </verb></tscreen> that will disable the activate signal on the entry widget in the combo box. Personally, I can't think of why you'd want to use it, but it does exist. <!-- There is also a function to set the string on a particular item, void gtk_combo_set_item_string(GtkCombo *combo, GtkItem *item, const gchar *item_value), but this requires that you have a pointer to the appropriate Item. Frankly, I have no idea how to do that. --> <!-- ----------------------------------------------------------------- --> <sect1> Calendar <p> The Calendar widget is an effective way to display and retrieve monthly date related information. It is a very simple widget to create and work with. Creating a GtkCalendar widget is a simple as: <tscreen><verb> GtkWidget *gtk_calendar_new(); </verb></tscreen> There might be times where you need to change a lot of information within this widget and the following functions allow you to make multiple change to a Calendar widget without the user seeing multiple on-screen updates. <tscreen><verb> void gtk_calendar_freeze( GtkCalendar *Calendar ); void gtk_calendar_thaw ( GtkCalendar *Calendar ); </verb></tscreen> They work just like the freeze/thaw functions of every other widget. The Calendar widget has a few options that allow you to change the way the widget both looks and operates by using the function <tscreen><verb> void gtk_calendar_display_options( GtkCalendar *calendar, GtkCalendarDisplayOptions flags ); </verb></tscreen> The <tt/flags/ argument can be formed by combining either of the following five options using the logical bitwise OR (|) operation: <itemize> <item> GTK_CALENDAR_SHOW_HEADING - this option specifies that the month and year should be shown when drawing the calendar. <item> GTK_CALENDAR_SHOW_DAY_NAMES - this option specifies that the three letter descriptions should be displayed for each day (eg MON,TUE...). <item> GTK_CALENDAR_NO_MONTH_CHANGE - this option states that the user should not and can not change the currently displayed month. This can be good if you only need to display a particular month such as if you are displaying 12 calendar widgets for every month in a particular year. <item> GTK_CALENDAR_SHOW_WEEK_NUMBERS - this option specifies that the number for each week should be displayed down the left side of the calendar. (eg. Jan 1 = Week 1,Dec 31 = Week 52). <item> GTK_CALENDAR_WEEK_START_MONDAY - this option states that the calander week will start on Monday instead of Sunday which is the default. This only affects the order in which days are displayed from left to right. </itemize> The following functions are used to set the the currently displayed date: <tscreen><verb> gint gtk_calendar_select_month( GtkCalendar *calendar, guint month, guint year ); void gtk_calendar_select_day( GtkCalendar *calendar, guint day ); </verb></tscreen> The return value from <tt/gtk_calendar_select_month()/ is a boolean value indicating whether the selection was successful. With <tt/gtk_calendar_select_day()/ the specified day number is selected within the current month, if that is possible. A <tt/day/ value of 0 will deselect any current selection. In addition to having a day selected, any number of days in the month may be "marked". A marked day is highlighted within the calendar display. The following functions are provided to manipulate marked days: <tscreen><verb> gint gtk_calendar_mark_day( GtkCalendar *calendar, guint day); gint gtk_calendar_unmark_day( GtkCalendar *calendar, guint day); void gtk_calendar_clear_marks( GtkCalendar *calendar); </verb></tscreen> The currently marked days are stored within an array within the GtkCalendar structure. This array is 31 elements long so to test whether a particular day is currently marked, you need to access the corresponding element of the array (don't forget in C that array elements are numbered 0 to n-1). For example: <tscreen><verb> GtkCalendar *calendar; calendar = gtk_calendar_new(); ... /* Is day 7 marked? */ if (calendar->marked_date[7-1]) /* day is marked */ </verb></tscreen> Note that marks are persistent across month and year changes. The final Calendar widget function is used to retrieve the currently selected date, month and/or year. <tscreen><verb> void gtk_calendar_get_date( GtkCalendar *calendar, guint *year, guint *month, guint *day ); </verb></tscreen> This function requires you to pass the addresses of <tt/guint/ variables, into which the result will be placed. Passing <tt/NULL/ as a value will result in the corresponding value not being returned. The Calendar widget can generate a number of signals indicating date selection and change. The names of these signals are self explanatory, and are: <itemize> <item> <tt/month_changed/ <item> <tt/day_selected/ <item> <tt/day_selected_double_click/ <item> <tt/prev_month/ <item> <tt/next_month/ <item> <tt/prev_year/ <item> <tt/next_year/ </itemize> That just leaves us with the need to put all of this together into example code. <tscreen><verb> /* example-start calendar calendar.c */ /* * Copyright (C) 1998 Cesar Miquel, Shawn T. Amundson, Mattias Grönlund * Copyright (C) 2000 Tony Gale * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <gtk/gtk.h> #include <stdio.h> #include <string.h> #include <time.h> #define DEF_PAD 10 #define DEF_PAD_SMALL 5 #define TM_YEAR_BASE 1900 typedef struct _CalendarData { GtkWidget *flag_checkboxes[5]; gboolean settings[5]; gchar *font; GtkWidget *font_dialog; GtkWidget *window; GtkWidget *prev2_sig; GtkWidget *prev_sig; GtkWidget *last_sig; GtkWidget *month; } CalendarData; enum { calendar_show_header, calendar_show_days, calendar_month_change, calendar_show_week, calendar_monday_first }; /* * GtkCalendar */ void calendar_date_to_string( CalendarData *data, char *buffer, gint buff_len ) { struct tm tm; time_t time; memset (&tm, 0, sizeof (tm)); gtk_calendar_get_date (GTK_CALENDAR(data->window), &tm.tm_year, &tm.tm_mon, &tm.tm_mday); tm.tm_year -= TM_YEAR_BASE; time = mktime(&tm); strftime (buffer, buff_len-1, "%x", gmtime(&time)); } void calendar_set_signal_strings( char *sig_str, CalendarData *data) { gchar *prev_sig; gtk_label_get (GTK_LABEL (data->prev_sig), &prev_sig); gtk_label_set (GTK_LABEL (data->prev2_sig), prev_sig); gtk_label_get (GTK_LABEL (data->last_sig), &prev_sig); gtk_label_set (GTK_LABEL (data->prev_sig), prev_sig); gtk_label_set (GTK_LABEL (data->last_sig), sig_str); } void calendar_month_changed( GtkWidget *widget, CalendarData *data ) { char buffer[256] = "month_changed: "; calendar_date_to_string (data, buffer+15, 256-15); calendar_set_signal_strings (buffer, data); } void calendar_day_selected( GtkWidget *widget, CalendarData *data ) { char buffer[256] = "day_selected: "; calendar_date_to_string (data, buffer+14, 256-14); calendar_set_signal_strings (buffer, data); } void calendar_day_selected_double_click( GtkWidget *widget, CalendarData *data ) { struct tm tm; char buffer[256] = "day_selected_double_click: "; calendar_date_to_string (data, buffer+27, 256-27); calendar_set_signal_strings (buffer, data); memset (&tm, 0, sizeof (tm)); gtk_calendar_get_date (GTK_CALENDAR(data->window), &tm.tm_year, &tm.tm_mon, &tm.tm_mday); tm.tm_year -= TM_YEAR_BASE; if(GTK_CALENDAR(data->window)->marked_date[tm.tm_mday-1] == 0) { gtk_calendar_mark_day(GTK_CALENDAR(data->window),tm.tm_mday); } else { gtk_calendar_unmark_day(GTK_CALENDAR(data->window),tm.tm_mday); } } void calendar_prev_month( GtkWidget *widget, CalendarData *data ) { char buffer[256] = "prev_month: "; calendar_date_to_string (data, buffer+12, 256-12); calendar_set_signal_strings (buffer, data); } void calendar_next_month( GtkWidget *widget, CalendarData *data ) { char buffer[256] = "next_month: "; calendar_date_to_string (data, buffer+12, 256-12); calendar_set_signal_strings (buffer, data); } void calendar_prev_year( GtkWidget *widget, CalendarData *data ) { char buffer[256] = "prev_year: "; calendar_date_to_string (data, buffer+11, 256-11); calendar_set_signal_strings (buffer, data); } void calendar_next_year( GtkWidget *widget, CalendarData *data ) { char buffer[256] = "next_year: "; calendar_date_to_string (data, buffer+11, 256-11); calendar_set_signal_strings (buffer, data); } void calendar_set_flags( CalendarData *calendar ) { gint i; gint options=0; for (i=0;i<5;i++) if (calendar->settings[i]) { options=options + (1<<i); } if (calendar->window) gtk_calendar_display_options (GTK_CALENDAR (calendar->window), options); } void calendar_toggle_flag( GtkWidget *toggle, CalendarData *calendar ) { gint i; gint j; j=0; for (i=0; i<5; i++) if (calendar->flag_checkboxes[i] == toggle) j = i; calendar->settings[j]=!calendar->settings[j]; calendar_set_flags(calendar); } void calendar_font_selection_ok( GtkWidget *button, CalendarData *calendar ) { GtkStyle *style; GdkFont *font; calendar->font = gtk_font_selection_dialog_get_font_name( GTK_FONT_SELECTION_DIALOG (calendar->font_dialog)); if (calendar->window) { font = gtk_font_selection_dialog_get_font(GTK_FONT_SELECTION_DIALOG(calendar->font_dialog)); if (font) { style = gtk_style_copy (gtk_widget_get_style (calendar->window)); gdk_font_unref (style->font); style->font = font; gdk_font_ref (style->font); gtk_widget_set_style (calendar->window, style); } } } void calendar_select_font( GtkWidget *button, CalendarData *calendar ) { GtkWidget *window; if (!calendar->font_dialog) { window = gtk_font_selection_dialog_new ("Font Selection Dialog"); g_return_if_fail(GTK_IS_FONT_SELECTION_DIALOG(window)); calendar->font_dialog = window; gtk_window_position (GTK_WINDOW (window), GTK_WIN_POS_MOUSE); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_widget_destroyed), &calendar->font_dialog); gtk_signal_connect (GTK_OBJECT (GTK_FONT_SELECTION_DIALOG (window)->ok_button), "clicked", GTK_SIGNAL_FUNC(calendar_font_selection_ok), calendar); gtk_signal_connect_object (GTK_OBJECT (GTK_FONT_SELECTION_DIALOG (window)->cancel_button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (calendar->font_dialog)); } window=calendar->font_dialog; if (!GTK_WIDGET_VISIBLE (window)) gtk_widget_show (window); else gtk_widget_destroy (window); } void create_calendar() { GtkWidget *window; GtkWidget *vbox, *vbox2, *vbox3; GtkWidget *hbox; GtkWidget *hbbox; GtkWidget *calendar; GtkWidget *toggle; GtkWidget *button; GtkWidget *frame; GtkWidget *separator; GtkWidget *label; GtkWidget *bbox; static CalendarData calendar_data; gint i; struct { char *label; } flags[] = { { "Show Heading" }, { "Show Day Names" }, { "No Month Change" }, { "Show Week Numbers" }, { "Week Start Monday" } }; calendar_data.window = NULL; calendar_data.font = NULL; calendar_data.font_dialog = NULL; for (i=0; i<5; i++) { calendar_data.settings[i]=0; } window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title(GTK_WINDOW(window), "GtkCalendar Example"); gtk_container_border_width (GTK_CONTAINER (window), 5); gtk_signal_connect(GTK_OBJECT(window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); gtk_signal_connect(GTK_OBJECT(window), "delete-event", GTK_SIGNAL_FUNC(gtk_false), NULL); gtk_window_set_policy(GTK_WINDOW(window), FALSE, FALSE, TRUE); vbox = gtk_vbox_new(FALSE, DEF_PAD); gtk_container_add (GTK_CONTAINER (window), vbox); /* * The top part of the window, Calendar, flags and fontsel. */ hbox = gtk_hbox_new(FALSE, DEF_PAD); gtk_box_pack_start (GTK_BOX(vbox), hbox, TRUE, TRUE, DEF_PAD); hbbox = gtk_hbutton_box_new(); gtk_box_pack_start(GTK_BOX(hbox), hbbox, FALSE, FALSE, DEF_PAD); gtk_button_box_set_layout(GTK_BUTTON_BOX(hbbox), GTK_BUTTONBOX_SPREAD); gtk_button_box_set_spacing(GTK_BUTTON_BOX(hbbox), 5); /* Calendar widget */ frame = gtk_frame_new("Calendar"); gtk_box_pack_start(GTK_BOX(hbbox), frame, FALSE, TRUE, DEF_PAD); calendar=gtk_calendar_new(); calendar_data.window = calendar; calendar_set_flags(&calendar_data); gtk_calendar_mark_day ( GTK_CALENDAR(calendar), 19); gtk_container_add( GTK_CONTAINER( frame), calendar); gtk_signal_connect (GTK_OBJECT (calendar), "month_changed", GTK_SIGNAL_FUNC (calendar_month_changed), &calendar_data); gtk_signal_connect (GTK_OBJECT (calendar), "day_selected", GTK_SIGNAL_FUNC (calendar_day_selected), &calendar_data); gtk_signal_connect (GTK_OBJECT (calendar), "day_selected_double_click", GTK_SIGNAL_FUNC (calendar_day_selected_double_click), &calendar_data); gtk_signal_connect (GTK_OBJECT (calendar), "prev_month", GTK_SIGNAL_FUNC (calendar_prev_month), &calendar_data); gtk_signal_connect (GTK_OBJECT (calendar), "next_month", GTK_SIGNAL_FUNC (calendar_next_month), &calendar_data); gtk_signal_connect (GTK_OBJECT (calendar), "prev_year", GTK_SIGNAL_FUNC (calendar_prev_year), &calendar_data); gtk_signal_connect (GTK_OBJECT (calendar), "next_year", GTK_SIGNAL_FUNC (calendar_next_year), &calendar_data); separator = gtk_vseparator_new (); gtk_box_pack_start (GTK_BOX (hbox), separator, FALSE, TRUE, 0); vbox2 = gtk_vbox_new(FALSE, DEF_PAD); gtk_box_pack_start(GTK_BOX(hbox), vbox2, FALSE, FALSE, DEF_PAD); /* Build the Right frame with the flags in */ frame = gtk_frame_new("Flags"); gtk_box_pack_start(GTK_BOX(vbox2), frame, TRUE, TRUE, DEF_PAD); vbox3 = gtk_vbox_new(TRUE, DEF_PAD_SMALL); gtk_container_add(GTK_CONTAINER(frame), vbox3); for (i = 0; i < 5; i++) { toggle = gtk_check_button_new_with_label(flags[i].label); gtk_signal_connect (GTK_OBJECT (toggle), "toggled", GTK_SIGNAL_FUNC(calendar_toggle_flag), &calendar_data); gtk_box_pack_start (GTK_BOX (vbox3), toggle, TRUE, TRUE, 0); calendar_data.flag_checkboxes[i]=toggle; } /* Build the right font-button */ button = gtk_button_new_with_label("Font..."); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(calendar_select_font), &calendar_data); gtk_box_pack_start (GTK_BOX (vbox2), button, FALSE, FALSE, 0); /* * Build the Signal-event part. */ frame = gtk_frame_new("Signal events"); gtk_box_pack_start(GTK_BOX(vbox), frame, TRUE, TRUE, DEF_PAD); vbox2 = gtk_vbox_new(TRUE, DEF_PAD_SMALL); gtk_container_add(GTK_CONTAINER(frame), vbox2); hbox = gtk_hbox_new (FALSE, 3); gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0); label = gtk_label_new ("Signal:"); gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0); calendar_data.last_sig = gtk_label_new (""); gtk_box_pack_start (GTK_BOX (hbox), calendar_data.last_sig, FALSE, TRUE, 0); hbox = gtk_hbox_new (FALSE, 3); gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0); label = gtk_label_new ("Previous signal:"); gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0); calendar_data.prev_sig = gtk_label_new (""); gtk_box_pack_start (GTK_BOX (hbox), calendar_data.prev_sig, FALSE, TRUE, 0); hbox = gtk_hbox_new (FALSE, 3); gtk_box_pack_start (GTK_BOX (vbox2), hbox, FALSE, TRUE, 0); label = gtk_label_new ("Second previous signal:"); gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, TRUE, 0); calendar_data.prev2_sig = gtk_label_new (""); gtk_box_pack_start (GTK_BOX (hbox), calendar_data.prev2_sig, FALSE, TRUE, 0); bbox = gtk_hbutton_box_new (); gtk_box_pack_start (GTK_BOX (vbox), bbox, FALSE, FALSE, 0); gtk_button_box_set_layout(GTK_BUTTON_BOX(bbox), GTK_BUTTONBOX_END); button = gtk_button_new_with_label ("Close"); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); gtk_container_add (GTK_CONTAINER (bbox), button); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show_all(window); } int main(int argc, char *argv[] ) { gtk_set_locale (); gtk_init (&argc, &argv); create_calendar(); gtk_main(); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Color Selection <p> The color selection widget is, not surprisingly, a widget for interactive selection of colors. This composite widget lets the user select a color by manipulating RGB (Red, Green, Blue) and HSV (Hue, Saturation, Value) triples. This is done either by adjusting single values with sliders or entries, or by picking the desired color from a hue-saturation wheel/value bar. Optionally, the opacity of the color can also be set. The color selection widget currently emits only one signal, "color_changed", which is emitted whenever the current color in the widget changes, either when the user changes it or if it's set explicitly through gtk_color_selection_set_color(). Lets have a look at what the color selection widget has to offer us. The widget comes in two flavours: gtk_color_selection and gtk_color_selection_dialog. <tscreen><verb> GtkWidget *gtk_color_selection_new( void ); </verb></tscreen> You'll probably not be using this constructor directly. It creates an orphan ColorSelection widget which you'll have to parent yourself. The ColorSelection widget inherits from the VBox widget. <tscreen><verb> GtkWidget *gtk_color_selection_dialog_new( const gchar *title ); </verb></tscreen> This is the most common color selection constructor. It creates a ColorSelectionDialog. It consists of a Frame containing a ColorSelection widget, an HSeparator and an HBox with three buttons, "Ok", "Cancel" and "Help". You can reach these buttons by accessing the "ok_button", "cancel_button" and "help_button" widgets in the ColorSelectionDialog structure, (i.e., <tt>GTK_COLOR_SELECTION_DIALOG(colorseldialog)->ok_button</tt>)). <tscreen><verb> void gtk_color_selection_set_update_policy( GtkColorSelection *colorsel, GtkUpdateType policy ); </verb></tscreen> This function sets the update policy. The default policy is <tt/GTK_UPDATE_CONTINUOUS/ which means that the current color is updated continuously when the user drags the sliders or presses the mouse and drags in the hue-saturation wheel or value bar. If you experience performance problems, you may want to set the policy to <tt/GTK_UPDATE_DISCONTINUOUS/ or <tt/GTK_UPDATE_DELAYED/. <tscreen><verb> void gtk_color_selection_set_opacity( GtkColorSelection *colorsel, gint use_opacity ); </verb></tscreen> The color selection widget supports adjusting the opacity of a color (also known as the alpha channel). This is disabled by default. Calling this function with use_opacity set to TRUE enables opacity. Likewise, use_opacity set to FALSE will disable opacity. <tscreen><verb> void gtk_color_selection_set_color( GtkColorSelection *colorsel, gdouble *color ); </verb></tscreen> You can set the current color explicitly by calling this function with a pointer to an array of colors (gdouble). The length of the array depends on whether opacity is enabled or not. Position 0 contains the red component, 1 is green, 2 is blue and opacity is at position 3 (only if opacity is enabled, see gtk_color_selection_set_opacity()). All values are between 0.0 and 1.0. <tscreen><verb> void gtk_color_selection_get_color( GtkColorSelection *colorsel, gdouble *color ); </verb></tscreen> When you need to query the current color, typically when you've received a "color_changed" signal, you use this function. Color is a pointer to the array of colors to fill in. See the gtk_color_selection_set_color() function for the description of this array. <!-- Need to do a whole section on DnD - TRG Drag and drop ------------- The color sample areas (right under the hue-saturation wheel) supports drag and drop. The type of drag and drop is "application/x-color". The message data consists of an array of 4 (or 5 if opacity is enabled) gdouble values, where the value at position 0 is 0.0 (opacity on) or 1.0 (opacity off) followed by the red, green and blue values at positions 1,2 and 3 respectively. If opacity is enabled, the opacity is passed in the value at position 4. --> Here's a simple example demonstrating the use of the ColorSelectionDialog. The program displays a window containing a drawing area. Clicking on it opens a color selection dialog, and changing the color in the color selection dialog changes the background color. <tscreen><verb> /* example-start colorsel colorsel.c */ #include <glib.h> #include <gdk/gdk.h> #include <gtk/gtk.h> GtkWidget *colorseldlg = NULL; GtkWidget *drawingarea = NULL; /* Color changed handler */ void color_changed_cb( GtkWidget *widget, GtkColorSelection *colorsel ) { gdouble color[3]; GdkColor gdk_color; GdkColormap *colormap; /* Get drawingarea colormap */ colormap = gdk_window_get_colormap (drawingarea->window); /* Get current color */ gtk_color_selection_get_color (colorsel,color); /* Fit to a unsigned 16 bit integer (0..65535) and * insert into the GdkColor structure */ gdk_color.red = (guint16)(color[0]*65535.0); gdk_color.green = (guint16)(color[1]*65535.0); gdk_color.blue = (guint16)(color[2]*65535.0); /* Allocate color */ gdk_color_alloc (colormap, &gdk_color); /* Set window background color */ gdk_window_set_background (drawingarea->window, &gdk_color); /* Clear window */ gdk_window_clear (drawingarea->window); } /* Drawingarea event handler */ gint area_event( GtkWidget *widget, GdkEvent *event, gpointer client_data ) { gint handled = FALSE; GtkWidget *colorsel; /* Check if we've received a button pressed event */ if (event->type == GDK_BUTTON_PRESS && colorseldlg == NULL) { /* Yes, we have an event and there's no colorseldlg yet! */ handled = TRUE; /* Create color selection dialog */ colorseldlg = gtk_color_selection_dialog_new("Select background color"); /* Get the ColorSelection widget */ colorsel = GTK_COLOR_SELECTION_DIALOG(colorseldlg)->colorsel; /* Connect to the "color_changed" signal, set the client-data * to the colorsel widget */ gtk_signal_connect(GTK_OBJECT(colorsel), "color_changed", (GtkSignalFunc)color_changed_cb, (gpointer)colorsel); /* Show the dialog */ gtk_widget_show(colorseldlg); } return handled; } /* Close down and exit handler */ gint destroy_window( GtkWidget *widget, GdkEvent *event, gpointer client_data ) { gtk_main_quit (); return(TRUE); } /* Main */ gint main( gint argc, gchar *argv[] ) { GtkWidget *window; /* Initialize the toolkit, remove gtk-related commandline stuff */ gtk_init (&argc,&argv); /* Create toplevel window, set title and policies */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW(window), "Color selection test"); gtk_window_set_policy (GTK_WINDOW(window), TRUE, TRUE, TRUE); /* Attach to the "delete" and "destroy" events so we can exit */ gtk_signal_connect (GTK_OBJECT(window), "delete_event", (GtkSignalFunc)destroy_window, (gpointer)window); /* Create drawingarea, set size and catch button events */ drawingarea = gtk_drawing_area_new (); gtk_drawing_area_size (GTK_DRAWING_AREA(drawingarea), 200, 200); gtk_widget_set_events (drawingarea, GDK_BUTTON_PRESS_MASK); gtk_signal_connect (GTK_OBJECT(drawingarea), "event", (GtkSignalFunc)area_event, (gpointer)drawingarea); /* Add drawingarea to window, then show them both */ gtk_container_add (GTK_CONTAINER(window), drawingarea); gtk_widget_show (drawingarea); gtk_widget_show (window); /* Enter the gtk main loop (this never returns) */ gtk_main (); /* Satisfy grumpy compilers */ return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> File Selections <p> The file selection widget is a quick and simple way to display a File dialog box. It comes complete with Ok, Cancel, and Help buttons, a great way to cut down on programming time. To create a new file selection box use: <tscreen><verb> GtkWidget *gtk_file_selection_new( gchar *title ); </verb></tscreen> To set the filename, for example to bring up a specific directory, or give a default filename, use this function: <tscreen><verb> void gtk_file_selection_set_filename( GtkFileSelection *filesel, gchar *filename ); </verb></tscreen> To grab the text that the user has entered or clicked on, use this function: <tscreen><verb> gchar *gtk_file_selection_get_filename( GtkFileSelection *filesel ); </verb></tscreen> There are also pointers to the widgets contained within the file selection widget. These are: <tscreen><verb> dir_list file_list selection_entry selection_text main_vbox ok_button cancel_button help_button </verb></tscreen> Most likely you will want to use the ok_button, cancel_button, and help_button pointers in signaling their use. Included here is an example stolen from testgtk.c, modified to run on its own. As you will see, there is nothing much to creating a file selection widget. While in this example the Help button appears on the screen, it does nothing as there is not a signal attached to it. <tscreen><verb> /* example-start filesel filesel.c */ #include <gtk/gtk.h> /* Get the selected filename and print it to the console */ void file_ok_sel( GtkWidget *w, GtkFileSelection *fs ) { g_print ("%s\n", gtk_file_selection_get_filename (GTK_FILE_SELECTION (fs))); } void destroy( GtkWidget *widget, gpointer data ) { gtk_main_quit (); } int main( int argc, char *argv[] ) { GtkWidget *filew; gtk_init (&argc, &argv); /* Create a new file selection widget */ filew = gtk_file_selection_new ("File selection"); gtk_signal_connect (GTK_OBJECT (filew), "destroy", (GtkSignalFunc) destroy, &filew); /* Connect the ok_button to file_ok_sel function */ gtk_signal_connect (GTK_OBJECT (GTK_FILE_SELECTION (filew)->ok_button), "clicked", (GtkSignalFunc) file_ok_sel, filew ); /* Connect the cancel_button to destroy the widget */ gtk_signal_connect_object (GTK_OBJECT (GTK_FILE_SELECTION (filew)->cancel_button), "clicked", (GtkSignalFunc) gtk_widget_destroy, GTK_OBJECT (filew)); /* Lets set the filename, as if this were a save dialog, and we are giving a default filename */ gtk_file_selection_set_filename (GTK_FILE_SELECTION(filew), "penguin.png"); gtk_widget_show(filew); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect> Container Widgets <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>The EventBox <label id="sec_EventBox"> <p> Some GTK widgets don't have associated X windows, so they just draw on their parents. Because of this, they cannot receive events and if they are incorrectly sized, they don't clip so you can get messy overwriting, etc. If you require more from these widgets, the EventBox is for you. At first glance, the EventBox widget might appear to be totally useless. It draws nothing on the screen and responds to no events. However, it does serve a function - it provides an X window for its child widget. This is important as many GTK widgets do not have an associated X window. Not having an X window saves memory and improves performance, but also has some drawbacks. A widget without an X window cannot receive events, and does not perform any clipping on its contents. Although the name <em/EventBox/ emphasizes the event-handling function, the widget can also be used for clipping. (and more, see the example below). To create a new EventBox widget, use: <tscreen><verb> GtkWidget *gtk_event_box_new( void ); </verb></tscreen> A child widget can then be added to this EventBox: <tscreen><verb> gtk_container_add( GTK_CONTAINER(event_box), child_widget ); </verb></tscreen> The following example demonstrates both uses of an EventBox - a label is created that is clipped to a small box, and set up so that a mouse-click on the label causes the program to exit. Resizing the window reveals varying amounts of the label. <tscreen><verb> /* example-start eventbox eventbox.c */ #include <gtk/gtk.h> int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *event_box; GtkWidget *label; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Event Box"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create an EventBox and add it to our toplevel window */ event_box = gtk_event_box_new (); gtk_container_add (GTK_CONTAINER(window), event_box); gtk_widget_show (event_box); /* Create a long label */ label = gtk_label_new ("Click here to quit, quit, quit, quit, quit"); gtk_container_add (GTK_CONTAINER (event_box), label); gtk_widget_show (label); /* Clip it short. */ gtk_widget_set_usize (label, 110, 20); /* And bind an action to it */ gtk_widget_set_events (event_box, GDK_BUTTON_PRESS_MASK); gtk_signal_connect (GTK_OBJECT(event_box), "button_press_event", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Yet one more thing you need an X window for ... */ gtk_widget_realize (event_box); gdk_window_set_cursor (event_box->window, gdk_cursor_new (GDK_HAND1)); gtk_widget_show (window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>The Alignment widget <label id="sec_Alignment"> <p> The alignment widget allows you to place a widget within its window at a position and size relative to the size of the Alignment widget itself. For example, it can be very useful for centering a widget within the window. There are only two functions associated with the Alignment widget: <tscreen><verb> GtkWidget* gtk_alignment_new( gfloat xalign, gfloat yalign, gfloat xscale, gfloat yscale ); void gtk_alignment_set( GtkAlignment *alignment, gfloat xalign, gfloat yalign, gfloat xscale, gfloat yscale ); </verb></tscreen> The first function creates a new Alignment widget with the specified parameters. The second function allows the alignment paramters of an exisiting Alignment widget to be altered. All four alignment parameters are floating point numbers which can range from 0.0 to 1.0. The <tt/xalign/ and <tt/yalign/ arguments affect the position of the widget placed within the Alignment widget. The <tt/xscale/ and <tt/yscale/ arguments affect the amount of space allocated to the widget. A child widget can be added to this Alignment widget using: <tscreen><verb> gtk_container_add( GTK_CONTAINER(alignment), child_widget ); </verb></tscreen> For an example of using an Alignment widget, refer to the example for the <ref id="sec_ProgressBar" name="Progress Bar"> widget. <!-- ----------------------------------------------------------------- --> <sect1> Fixed Container <p> The Fixed container allows you to place widgets at a fixed position within its window, relative to its upper left hand corner. The position of the widgets can be changed dynamically. There are only three functions associated with the fixed widget: <tscreen><verb> GtkWidget* gtk_fixed_new( void ); void gtk_fixed_put( GtkFixed *fixed, GtkWidget *widget, gint16 x, gint16 y ); void gtk_fixed_move( GtkFixed *fixed, GtkWidget *widget, gint16 x, gint16 y ); </verb></tscreen> The function <tt/gtk_fixed_new/ allows you to create a new Fixed container. <tt/gtk_fixed_put/ places <tt/widget/ in the container <tt/fixed/ at the position specified by <tt/x/ and <tt/y/. <tt/gtk_fixed_move/ allows the specified widget to be moved to a new position. The following example illustrates how to use the Fixed Container. <tscreen><verb> /* example-start fixed fixed.c */ #include <gtk/gtk.h> /* I'm going to be lazy and use some global variables to * store the position of the widget within the fixed * container */ gint x=50; gint y=50; /* This callback function moves the button to a new position * in the Fixed container. */ void move_button( GtkWidget *widget, GtkWidget *fixed ) { x = (x+30)%300; y = (y+50)%300; gtk_fixed_move( GTK_FIXED(fixed), widget, x, y); } int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *fixed; GtkWidget *button; gint i; /* Initialise GTK */ gtk_init(&argc, &argv); /* Create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title(GTK_WINDOW(window), "Fixed Container"); /* Here we connect the "destroy" event to a signal handler */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create a Fixed Container */ fixed = gtk_fixed_new(); gtk_container_add(GTK_CONTAINER(window), fixed); gtk_widget_show(fixed); for (i = 1 ; i <= 3 ; i++) { /* Creates a new button with the label "Press me" */ button = gtk_button_new_with_label ("Press me"); /* When the button receives the "clicked" signal, it will call the * function move_button() passing it the Fixed Container as its * argument. */ gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (move_button), fixed); /* This packs the button into the fixed containers window. */ gtk_fixed_put (GTK_FIXED (fixed), button, i*50, i*50); /* The final step is to display this newly created widget. */ gtk_widget_show (button); } /* Display the window */ gtk_widget_show (window); /* Enter the event loop */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Layout Container <p> The Layout container is similar to the Fixed container except that it implements an infinite (where infinity is less than 2^32) scrolling area. The X window system has a limitation where windows can be at most 32767 pixels wide or tall. The Layout container gets around this limitation by doing some exotic stuff using window and bit gravities, so that you can have smooth scrolling even when you have many child widgets in your scrolling area. A Layout container is created using: <tscreen><verb> GtkWidget *gtk_layout_new( GtkAdjustment *hadjustment, GtkAdjustment *vadjustment ); </verb></tscreen> As you can see, you can optionally specify the Adjustment objects that the Layout widget will use for its scrolling. You can add and move widgets in the Layout container using the following two functions: <tscreen><verb> void gtk_layout_put( GtkLayout *layout, GtkWidget *widget, gint x, gint y ); void gtk_layout_move( GtkLayout *layout, GtkWidget *widget, gint x, gint y ); </verb></tscreen> The size of the Layout container can be set using the next function: <tscreen><verb> void gtk_layout_set_size( GtkLayout *layout, guint width, guint height ); </verb></tscreen> Layout containers are one of the very few widgets in the GTK widget set that actively repaint themselves on screen as they are changed using the above functions (the vast majority of widgets queue requests which are then processed when control returns to the <tt/gtk_main()/ function). When you want to make a large number of changes to a Layout container, you can use the following two functions to disable and re-enable this repainting functionality: <tscreen><verb> void gtk_layout_freeze( GtkLayout *layout ); void gtk_layout_thaw( GtkLayout *layout ); </verb></tscreen> The final four functions for use with Layout widgets are for manipulating the horizontal and vertical adjustment widgets: <tscreen><verb> GtkAdjustment* gtk_layout_get_hadjustment( GtkLayout *layout ); GtkAdjustment* gtk_layout_get_vadjustment( GtkLayout *layout ); void gtk_layout_set_hadjustment( GtkLayout *layout, GtkAdjustment *adjustment ); void gtk_layout_set_vadjustment( GtkLayout *layout, GtkAdjustment *adjustment); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Frames <label id="sec_Frames"> <p> Frames can be used to enclose one or a group of widgets with a box which can optionally be labelled. The position of the label and the style of the box can be altered to suit. A Frame can be created with the following function: <tscreen><verb> GtkWidget *gtk_frame_new( const gchar *label ); </verb></tscreen> The label is by default placed in the upper left hand corner of the frame. A value of NULL for the <tt/label/ argument will result in no label being displayed. The text of the label can be changed using the next function. <tscreen><verb> void gtk_frame_set_label( GtkFrame *frame, const gchar *label ); </verb></tscreen> The position of the label can be changed using this function: <tscreen><verb> void gtk_frame_set_label_align( GtkFrame *frame, gfloat xalign, gfloat yalign ); </verb></tscreen> <tt/xalign/ and <tt/yalign/ take values between 0.0 and 1.0. <tt/xalign/ indicates the position of the label along the top horizontal of the frame. <tt/yalign/ is not currently used. The default value of xalign is 0.0 which places the label at the left hand end of the frame. The next function alters the style of the box that is used to outline the frame. <tscreen><verb> void gtk_frame_set_shadow_type( GtkFrame *frame, GtkShadowType type); </verb></tscreen> The <tt/type/ argument can take one of the following values: <tscreen><verb> GTK_SHADOW_NONE GTK_SHADOW_IN GTK_SHADOW_OUT GTK_SHADOW_ETCHED_IN (the default) GTK_SHADOW_ETCHED_OUT </verb></tscreen> The following code example illustrates the use of the Frame widget. <tscreen><verb> /* example-start frame frame.c */ #include <gtk/gtk.h> int main( int argc, char *argv[] ) { /* GtkWidget is the storage type for widgets */ GtkWidget *window; GtkWidget *frame; GtkWidget *button; gint i; /* Initialise GTK */ gtk_init(&argc, &argv); /* Create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title(GTK_WINDOW(window), "Frame Example"); /* Here we connect the "destroy" event to a signal handler */ gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); gtk_widget_set_usize(window, 300, 300); /* Sets the border width of the window. */ gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create a Frame */ frame = gtk_frame_new(NULL); gtk_container_add(GTK_CONTAINER(window), frame); /* Set the frame's label */ gtk_frame_set_label( GTK_FRAME(frame), "GTK Frame Widget" ); /* Align the label at the right of the frame */ gtk_frame_set_label_align( GTK_FRAME(frame), 1.0, 0.0); /* Set the style of the frame */ gtk_frame_set_shadow_type( GTK_FRAME(frame), GTK_SHADOW_ETCHED_OUT); gtk_widget_show(frame); /* Display the window */ gtk_widget_show (window); /* Enter the event loop */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Aspect Frames <p> The aspect frame widget is like a frame widget, except that it also enforces the aspect ratio (that is, the ratio of the width to the height) of the child widget to have a certain value, adding extra space if necessary. This is useful, for instance, if you want to preview a larger image. The size of the preview should vary when the user resizes the window, but the aspect ratio needs to always match the original image. To create a new aspect frame use: <tscreen><verb> GtkWidget *gtk_aspect_frame_new( const gchar *label, gfloat xalign, gfloat yalign, gfloat ratio, gint obey_child); </verb></tscreen> <tt/xalign/ and <tt/yalign/ specify alignment as with Alignment widgets. If <tt/obey_child/ is true, the aspect ratio of a child widget will match the aspect ratio of the ideal size it requests. Otherwise, it is given by <tt/ratio/. To change the options of an existing aspect frame, you can use: <tscreen><verb> void gtk_aspect_frame_set( GtkAspectFrame *aspect_frame, gfloat xalign, gfloat yalign, gfloat ratio, gint obey_child); </verb></tscreen> As an example, the following program uses an AspectFrame to present a drawing area whose aspect ratio will always be 2:1, no matter how the user resizes the top-level window. <tscreen><verb> /* example-start aspectframe aspectframe.c */ #include <gtk/gtk.h> int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *aspect_frame; GtkWidget *drawing_area; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create an aspect_frame and add it to our toplevel window */ aspect_frame = gtk_aspect_frame_new ("2x1", /* label */ 0.5, /* center x */ 0.5, /* center y */ 2, /* xsize/ysize = 2 */ FALSE /* ignore child's aspect */); gtk_container_add (GTK_CONTAINER(window), aspect_frame); gtk_widget_show (aspect_frame); /* Now add a child widget to the aspect frame */ drawing_area = gtk_drawing_area_new (); /* Ask for a 200x200 window, but the AspectFrame will give us a 200x100 * window since we are forcing a 2x1 aspect ratio */ gtk_widget_set_usize (drawing_area, 200, 200); gtk_container_add (GTK_CONTAINER(aspect_frame), drawing_area); gtk_widget_show (drawing_area); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Paned Window Widgets <p> The paned window widgets are useful when you want to divide an area into two parts, with the relative size of the two parts controlled by the user. A groove is drawn between the two portions with a handle that the user can drag to change the ratio. The division can either be horizontal (HPaned) or vertical (VPaned). To create a new paned window, call one of: <tscreen><verb> GtkWidget *gtk_hpaned_new (void); GtkWidget *gtk_vpaned_new (void); </verb></tscreen> After creating the paned window widget, you need to add child widgets to its two halves. To do this, use the functions: <tscreen><verb> void gtk_paned_add1 (GtkPaned *paned, GtkWidget *child); void gtk_paned_add2 (GtkPaned *paned, GtkWidget *child); </verb></tscreen> <tt/gtk_paned_add1()/ adds the child widget to the left or top half of the paned window. <tt/gtk_paned_add2()/ adds the child widget to the right or bottom half of the paned window. A paned widget can be changed visually using the following two functions. <tscreen><verb> void gtk_paned_set_handle_size( GtkPaned *paned, guint16 size); void gtk_paned_set_gutter_size( GtkPaned *paned, guint16 size); </verb></tscreen> The first of these sets the size of the handle and the second sets the size of the gutter that is between the two parts of the paned window. As an example, we will create part of the user interface of an imaginary email program. A window is divided into two portions vertically, with the top portion being a list of email messages and the bottom portion the text of the email message. Most of the program is pretty straightforward. A couple of points to note: text can't be added to a Text widget until it is realized. This could be done by calling <tt/gtk_widget_realize()/, but as a demonstration of an alternate technique, we connect a handler to the "realize" signal to add the text. Also, we need to add the <tt/GTK_SHRINK/ option to some of the items in the table containing the text window and its scrollbars, so that when the bottom portion is made smaller, the correct portions shrink instead of being pushed off the bottom of the window. <tscreen><verb> /* example-start paned paned.c */ #include <stdio.h> #include <gtk/gtk.h> /* Create the list of "messages" */ GtkWidget *create_list( void ) { GtkWidget *scrolled_window; GtkWidget *list; GtkWidget *list_item; int i; char buffer[16]; /* Create a new scrolled window, with scrollbars only if needed */ scrolled_window = gtk_scrolled_window_new (NULL, NULL); gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window), GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC); /* Create a new list and put it in the scrolled window */ list = gtk_list_new (); gtk_scrolled_window_add_with_viewport ( GTK_SCROLLED_WINDOW (scrolled_window), list); gtk_widget_show (list); /* Add some messages to the window */ for (i=0; i<10; i++) { sprintf(buffer,"Message #%d",i); list_item = gtk_list_item_new_with_label (buffer); gtk_container_add (GTK_CONTAINER(list), list_item); gtk_widget_show (list_item); } return scrolled_window; } /* Add some text to our text widget - this is a callback that is invoked when our window is realized. We could also force our window to be realized with gtk_widget_realize, but it would have to be part of a hierarchy first */ void realize_text( GtkWidget *text, gpointer data ) { gtk_text_freeze (GTK_TEXT (text)); gtk_text_insert (GTK_TEXT (text), NULL, &text->style->black, NULL, "From: pathfinder@nasa.gov\n" "To: mom@nasa.gov\n" "Subject: Made it!\n" "\n" "We just got in this morning. The weather has been\n" "great - clear but cold, and there are lots of fun sights.\n" "Sojourner says hi. See you soon.\n" " -Path\n", -1); gtk_text_thaw (GTK_TEXT (text)); } /* Create a scrolled text area that displays a "message" */ GtkWidget *create_text( void ) { GtkWidget *table; GtkWidget *text; GtkWidget *hscrollbar; GtkWidget *vscrollbar; /* Create a table to hold the text widget and scrollbars */ table = gtk_table_new (2, 2, FALSE); /* Put a text widget in the upper left hand corner. Note the use of * GTK_SHRINK in the y direction */ text = gtk_text_new (NULL, NULL); gtk_table_attach (GTK_TABLE (table), text, 0, 1, 0, 1, GTK_FILL | GTK_EXPAND, GTK_FILL | GTK_EXPAND | GTK_SHRINK, 0, 0); gtk_widget_show (text); /* Put a HScrollbar in the lower left hand corner */ hscrollbar = gtk_hscrollbar_new (GTK_TEXT (text)->hadj); gtk_table_attach (GTK_TABLE (table), hscrollbar, 0, 1, 1, 2, GTK_EXPAND | GTK_FILL, GTK_FILL, 0, 0); gtk_widget_show (hscrollbar); /* And a VScrollbar in the upper right */ vscrollbar = gtk_vscrollbar_new (GTK_TEXT (text)->vadj); gtk_table_attach (GTK_TABLE (table), vscrollbar, 1, 2, 0, 1, GTK_FILL, GTK_EXPAND | GTK_FILL | GTK_SHRINK, 0, 0); gtk_widget_show (vscrollbar); /* Add a handler to put a message in the text widget when it is realized */ gtk_signal_connect (GTK_OBJECT (text), "realize", GTK_SIGNAL_FUNC (realize_text), NULL); return table; } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *vpaned; GtkWidget *list; GtkWidget *text; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Paned Windows"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); gtk_widget_set_usize (GTK_WIDGET(window), 450, 400); /* create a vpaned widget and add it to our toplevel window */ vpaned = gtk_vpaned_new (); gtk_container_add (GTK_CONTAINER(window), vpaned); gtk_paned_set_handle_size (GTK_PANED(vpaned), 10); gtk_paned_set_gutter_size (GTK_PANED(vpaned), 15); gtk_widget_show (vpaned); /* Now create the contents of the two halves of the window */ list = create_list (); gtk_paned_add1 (GTK_PANED(vpaned), list); gtk_widget_show (list); text = create_text (); gtk_paned_add2 (GTK_PANED(vpaned), text); gtk_widget_show (text); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Viewports <label id="sec_Viewports"> <p> It is unlikely that you will ever need to use the Viewport widget directly. You are much more likely to use the <ref id="sec_ScrolledWindow" name="Scrolled Window"> widget which itself uses the Viewport. A viewport widget allows you to place a larger widget within it such that you can view a part of it at a time. It uses <ref id="sec_Adjustment" name="Adjustments"> to define the area that is currently in view. A Viewport is created with the function <tscreen><verb> GtkWidget *gtk_viewport_new( GtkAdjustment *hadjustment, GtkAdjustment *vadjustment ); </verb></tscreen> As you can see you can specify the horizontal and vertical Adjustments that the widget is to use when you create the widget. It will create its own if you pass NULL as the value of the arguments. You can get and set the adjustments after the widget has been created using the following four functions: <tscreen><verb> GtkAdjustment *gtk_viewport_get_hadjustment (GtkViewport *viewport ); GtkAdjustment *gtk_viewport_get_vadjustment (GtkViewport *viewport ); void gtk_viewport_set_hadjustment( GtkViewport *viewport, GtkAdjustment *adjustment ); void gtk_viewport_set_vadjustment( GtkViewport *viewport, GtkAdjustment *adjustment ); </verb></tscreen> The only other viewport function is used to alter its appearance: <tscreen><verb> void gtk_viewport_set_shadow_type( GtkViewport *viewport, GtkShadowType type ); </verb></tscreen> Possible values for the <tt/type/ parameter are: <tscreen><verb> GTK_SHADOW_NONE, GTK_SHADOW_IN, GTK_SHADOW_OUT, GTK_SHADOW_ETCHED_IN, GTK_SHADOW_ETCHED_OUT </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Scrolled Windows <label id="sec_ScrolledWindow"> <p> Scrolled windows are used to create a scrollable area with another widget inside it. You may insert any type of widget into a scrolled window, and it will be accessible regardless of the size by using the scrollbars. The following function is used to create a new scrolled window. <tscreen><verb> GtkWidget *gtk_scrolled_window_new( GtkAdjustment *hadjustment, GtkAdjustment *vadjustment ); </verb></tscreen> Where the first argument is the adjustment for the horizontal direction, and the second, the adjustment for the vertical direction. These are almost always set to NULL. <tscreen><verb> void gtk_scrolled_window_set_policy( GtkScrolledWindow *scrolled_window, GtkPolicyType hscrollbar_policy, GtkPolicyType vscrollbar_policy ); </verb></tscreen> This sets the policy to be used with respect to the scrollbars. The first argument is the scrolled window you wish to change. The second sets the policy for the horizontal scrollbar, and the third the policy for the vertical scrollbar. The policy may be one of <tt/GTK_POLICY_AUTOMATIC/ or <tt/GTK_POLICY_ALWAYS/. <tt/GTK_POLICY_AUTOMATIC/ will automatically decide whether you need scrollbars, whereas <tt/GTK_POLICY_ALWAYS/ will always leave the scrollbars there. You can then place your object into the scrolled window using the following function. <tscreen><verb> void gtk_scrolled_window_add_with_viewport( GtkScrolledWindow *scrolled_window, GtkWidget *child); </verb></tscreen> Here is a simple example that packs a table eith 100 toggle buttons into a scrolled window. I've only commented on the parts that may be new to you. <tscreen><verb> /* example-start scrolledwin scrolledwin.c */ #include <stdio.h> #include <gtk/gtk.h> void destroy( GtkWidget *widget, gpointer data ) { gtk_main_quit(); } int main( int argc, char *argv[] ) { static GtkWidget *window; GtkWidget *scrolled_window; GtkWidget *table; GtkWidget *button; char buffer[32]; int i, j; gtk_init (&argc, &argv); /* Create a new dialog window for the scrolled window to be * packed into. */ window = gtk_dialog_new (); gtk_signal_connect (GTK_OBJECT (window), "destroy", (GtkSignalFunc) destroy, NULL); gtk_window_set_title (GTK_WINDOW (window), "GtkScrolledWindow example"); gtk_container_set_border_width (GTK_CONTAINER (window), 0); gtk_widget_set_usize(window, 300, 300); /* create a new scrolled window. */ scrolled_window = gtk_scrolled_window_new (NULL, NULL); gtk_container_set_border_width (GTK_CONTAINER (scrolled_window), 10); /* the policy is one of GTK_POLICY AUTOMATIC, or GTK_POLICY_ALWAYS. * GTK_POLICY_AUTOMATIC will automatically decide whether you need * scrollbars, whereas GTK_POLICY_ALWAYS will always leave the scrollbars * there. The first one is the horizontal scrollbar, the second, * the vertical. */ gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window), GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS); /* The dialog window is created with a vbox packed into it. */ gtk_box_pack_start (GTK_BOX (GTK_DIALOG(window)->vbox), scrolled_window, TRUE, TRUE, 0); gtk_widget_show (scrolled_window); /* create a table of 10 by 10 squares. */ table = gtk_table_new (10, 10, FALSE); /* set the spacing to 10 on x and 10 on y */ gtk_table_set_row_spacings (GTK_TABLE (table), 10); gtk_table_set_col_spacings (GTK_TABLE (table), 10); /* pack the table into the scrolled window */ gtk_scrolled_window_add_with_viewport ( GTK_SCROLLED_WINDOW (scrolled_window), table); gtk_widget_show (table); /* this simply creates a grid of toggle buttons on the table * to demonstrate the scrolled window. */ for (i = 0; i < 10; i++) for (j = 0; j < 10; j++) { sprintf (buffer, "button (%d,%d)\n", i, j); button = gtk_toggle_button_new_with_label (buffer); gtk_table_attach_defaults (GTK_TABLE (table), button, i, i+1, j, j+1); gtk_widget_show (button); } /* Add a "close" button to the bottom of the dialog */ button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_widget_destroy, GTK_OBJECT (window)); /* this makes it so the button is the default. */ GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_box_pack_start (GTK_BOX (GTK_DIALOG (window)->action_area), button, TRUE, TRUE, 0); /* This grabs this button to be the default button. Simply hitting * the "Enter" key will cause this button to activate. */ gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show (window); gtk_main(); return(0); } /* example-end */ </verb></tscreen> Try playing with resizing the window. You'll notice how the scrollbars react. You may also wish to use the gtk_widget_set_usize() call to set the default size of the window or other widgets. <!-- ----------------------------------------------------------------- --> <sect1>Button Boxes <p> Button Boxes are a convenient way to quickly layout a group of buttons. They come in both horizontal and vertical flavours. You create a new Button Box with one of the following calls, which create a horizontal or vertical box, respectively: <tscreen><verb> GtkWidget *gtk_hbutton_box_new( void ); GtkWidget *gtk_vbutton_box_new( void ); </verb></tscreen> The only attributes pertaining to button boxes affect how the buttons are laid out. You can change the spacing between the buttons with: <tscreen><verb> void gtk_hbutton_box_set_spacing_default( gint spacing ); void gtk_vbutton_box_set_spacing_default( gint spacing ); </verb></tscreen> Similarly, the current spacing values can be queried using: <tscreen><verb> gint gtk_hbutton_box_get_spacing_default( void ); gint gtk_vbutton_box_get_spacing_default( void ); </verb></tscreen> The second attribute that we can access affects the layout of the buttons within the box. It is set using one of: <tscreen><verb> void gtk_hbutton_box_set_layout_default( GtkButtonBoxStyle layout ); void gtk_vbutton_box_set_layout_default( GtkButtonBoxStyle layout ); </verb></tscreen> The <tt/layout/ argument can take one of the following values: <tscreen><verb> GTK_BUTTONBOX_DEFAULT_STYLE GTK_BUTTONBOX_SPREAD GTK_BUTTONBOX_EDGE GTK_BUTTONBOX_START GTK_BUTTONBOX_END </verb></tscreen> The current layout setting can be retrieved using: <tscreen><verb> GtkButtonBoxStyle gtk_hbutton_box_get_layout_default( void ); GtkButtonBoxStyle gtk_vbutton_box_get_layout_default( void ); </verb></tscreen> Buttons are added to a Button Box using the usual function: <tscreen><verb> gtk_container_add( GTK_CONTAINER(button_box), child_widget ); </verb></tscreen> Here's an example that illustrates all the different layout settings for Button Boxes. <tscreen><verb> /* example-start buttonbox buttonbox.c */ #include <gtk/gtk.h> /* Create a Button Box with the specified parameters */ GtkWidget *create_bbox( gint horizontal, char *title, gint spacing, gint child_w, gint child_h, gint layout ) { GtkWidget *frame; GtkWidget *bbox; GtkWidget *button; frame = gtk_frame_new (title); if (horizontal) bbox = gtk_hbutton_box_new (); else bbox = gtk_vbutton_box_new (); gtk_container_set_border_width (GTK_CONTAINER (bbox), 5); gtk_container_add (GTK_CONTAINER (frame), bbox); /* Set the appearance of the Button Box */ gtk_button_box_set_layout (GTK_BUTTON_BOX (bbox), layout); gtk_button_box_set_spacing (GTK_BUTTON_BOX (bbox), spacing); gtk_button_box_set_child_size (GTK_BUTTON_BOX (bbox), child_w, child_h); button = gtk_button_new_with_label ("OK"); gtk_container_add (GTK_CONTAINER (bbox), button); button = gtk_button_new_with_label ("Cancel"); gtk_container_add (GTK_CONTAINER (bbox), button); button = gtk_button_new_with_label ("Help"); gtk_container_add (GTK_CONTAINER (bbox), button); return(frame); } int main( int argc, char *argv[] ) { static GtkWidget* window = NULL; GtkWidget *main_vbox; GtkWidget *vbox; GtkWidget *hbox; GtkWidget *frame_horz; GtkWidget *frame_vert; /* Initialize GTK */ gtk_init( &argc, &argv ); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Button Boxes"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); main_vbox = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), main_vbox); frame_horz = gtk_frame_new ("Horizontal Button Boxes"); gtk_box_pack_start (GTK_BOX (main_vbox), frame_horz, TRUE, TRUE, 10); vbox = gtk_vbox_new (FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (vbox), 10); gtk_container_add (GTK_CONTAINER (frame_horz), vbox); gtk_box_pack_start (GTK_BOX (vbox), create_bbox (TRUE, "Spread (spacing 40)", 40, 85, 20, GTK_BUTTONBOX_SPREAD), TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (vbox), create_bbox (TRUE, "Edge (spacing 30)", 30, 85, 20, GTK_BUTTONBOX_EDGE), TRUE, TRUE, 5); gtk_box_pack_start (GTK_BOX (vbox), create_bbox (TRUE, "Start (spacing 20)", 20, 85, 20, GTK_BUTTONBOX_START), TRUE, TRUE, 5); gtk_box_pack_start (GTK_BOX (vbox), create_bbox (TRUE, "End (spacing 10)", 10, 85, 20, GTK_BUTTONBOX_END), TRUE, TRUE, 5); frame_vert = gtk_frame_new ("Vertical Button Boxes"); gtk_box_pack_start (GTK_BOX (main_vbox), frame_vert, TRUE, TRUE, 10); hbox = gtk_hbox_new (FALSE, 0); gtk_container_set_border_width (GTK_CONTAINER (hbox), 10); gtk_container_add (GTK_CONTAINER (frame_vert), hbox); gtk_box_pack_start (GTK_BOX (hbox), create_bbox (FALSE, "Spread (spacing 5)", 5, 85, 20, GTK_BUTTONBOX_SPREAD), TRUE, TRUE, 0); gtk_box_pack_start (GTK_BOX (hbox), create_bbox (FALSE, "Edge (spacing 30)", 30, 85, 20, GTK_BUTTONBOX_EDGE), TRUE, TRUE, 5); gtk_box_pack_start (GTK_BOX (hbox), create_bbox (FALSE, "Start (spacing 20)", 20, 85, 20, GTK_BUTTONBOX_START), TRUE, TRUE, 5); gtk_box_pack_start (GTK_BOX (hbox), create_bbox (FALSE, "End (spacing 20)", 20, 85, 20, GTK_BUTTONBOX_END), TRUE, TRUE, 5); gtk_widget_show_all (window); /* Enter the event loop */ gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Toolbar <p> Toolbars are usually used to group some number of widgets in order to simplify customization of their look and layout. Typically a toolbar consists of buttons with icons, labels and tooltips, but any other widget can also be put inside a toolbar. Finally, items can be arranged horizontally or vertically and buttons can be displayed with icons, labels, or both. Creating a toolbar is (as one may already suspect) done with the following function: <tscreen><verb> GtkWidget *gtk_toolbar_new( GtkOrientation orientation, GtkToolbarStyle style ); </verb></tscreen> where orientation may be one of: <tscreen><verb> GTK_ORIENTATION_HORIZONTAL GTK_ORIENTATION_VERTICAL </verb></tscreen> and style one of: <tscreen><verb> GTK_TOOLBAR_TEXT GTK_TOOLBAR_ICONS GTK_TOOLBAR_BOTH </verb></tscreen> The style applies to all the buttons created with the `item' functions (not to buttons inserted into toolbar as separate widgets). After creating a toolbar one can append, prepend and insert items (that means simple text strings) or elements (that means any widget types) into the toolbar. To describe an item we need a label text, a tooltip text, a private tooltip text, an icon for the button and a callback function for it. For example, to append or prepend an item you may use the following functions: <tscreen><verb> GtkWidget *gtk_toolbar_append_item( GtkToolbar *toolbar, const char *text, const char *tooltip_text, const char *tooltip_private_text, GtkWidget *icon, GtkSignalFunc callback, gpointer user_data ); GtkWidget *gtk_toolbar_prepend_item( GtkToolbar *toolbar, const char *text, const char *tooltip_text, const char *tooltip_private_text, GtkWidget *icon, GtkSignalFunc callback, gpointer user_data ); </verb></tscreen> If you want to use gtk_toolbar_insert_item, the only additional parameter which must be specified is the position in which the item should be inserted, thus: <tscreen><verb> GtkWidget *gtk_toolbar_insert_item( GtkToolbar *toolbar, const char *text, const char *tooltip_text, const char *tooltip_private_text, GtkWidget *icon, GtkSignalFunc callback, gpointer user_data, gint position ); </verb></tscreen> To simplify adding spaces between toolbar items, you may use the following functions: <tscreen><verb> void gtk_toolbar_append_space( GtkToolbar *toolbar ); void gtk_toolbar_prepend_space( GtkToolbar *toolbar ); void gtk_toolbar_insert_space( GtkToolbar *toolbar, gint position ); </verb></tscreen> While the size of the added space can be set globally for a whole toolbar with the function: <tscreen><verb> void gtk_toolbar_set_space_size( GtkToolbar *toolbar, gint space_size) ; </verb></tscreen> If it's required, the orientation of a toolbar and its style can be changed "on the fly" using the following functions: <tscreen><verb> void gtk_toolbar_set_orientation( GtkToolbar *toolbar, GtkOrientation orientation ); void gtk_toolbar_set_style( GtkToolbar *toolbar, GtkToolbarStyle style ); void gtk_toolbar_set_tooltips( GtkToolbar *toolbar, gint enable ); </verb></tscreen> Where <tt/orientation/ is one of <tt/GTK_ORIENTATION_HORIZONTAL/ or <tt/GTK_ORIENTATION_VERTICAL/. The <tt/style/ is used to set appearance of the toolbar items by using one of <tt/GTK_TOOLBAR_ICONS/, <tt/GTK_TOOLBAR_TEXT/, or <tt/GTK_TOOLBAR_BOTH/. To show some other things that can be done with a toolbar, let's take the following program (we'll interrupt the listing with some additional explanations): <tscreen><verb> #include <gtk/gtk.h> #include "gtk.xpm" /* This function is connected to the Close button or * closing the window from the WM */ gint delete_event (GtkWidget *widget, GdkEvent *event, gpointer data) { gtk_main_quit (); return(FALSE); } </verb></tscreen> The above beginning seems for sure familiar to you if it's not your first GTK program. There is one additional thing though, we include a nice XPM picture to serve as an icon for all of the buttons. <tscreen><verb> GtkWidget* close_button; /* This button will emit signal to close * application */ GtkWidget* tooltips_button; /* to enable/disable tooltips */ GtkWidget* text_button, * icon_button, * both_button; /* radio buttons for toolbar style */ GtkWidget* entry; /* a text entry to show packing any widget into * toolbar */ </verb></tscreen> In fact not all of the above widgets are needed here, but to make things clearer I put them all together. <tscreen><verb> /* that's easy... when one of the buttons is toggled, we just * check which one is active and set the style of the toolbar * accordingly * ATTENTION: our toolbar is passed as data to callback ! */ void radio_event (GtkWidget *widget, gpointer data) { if (GTK_TOGGLE_BUTTON (text_button)->active) gtk_toolbar_set_style(GTK_TOOLBAR ( data ), GTK_TOOLBAR_TEXT); else if (GTK_TOGGLE_BUTTON (icon_button)->active) gtk_toolbar_set_style(GTK_TOOLBAR ( data ), GTK_TOOLBAR_ICONS); else if (GTK_TOGGLE_BUTTON (both_button)->active) gtk_toolbar_set_style(GTK_TOOLBAR ( data ), GTK_TOOLBAR_BOTH); } /* even easier, just check given toggle button and enable/disable * tooltips */ void toggle_event (GtkWidget *widget, gpointer data) { gtk_toolbar_set_tooltips (GTK_TOOLBAR ( data ), GTK_TOGGLE_BUTTON (widget)->active ); } </verb></tscreen> The above are just two callback functions that will be called when one of the buttons on a toolbar is pressed. You should already be familiar with things like this if you've already used toggle buttons (and radio buttons). <tscreen><verb> int main (int argc, char *argv[]) { /* Here is our main window (a dialog) and a handle for the handlebox */ GtkWidget* dialog; GtkWidget* handlebox; /* Ok, we need a toolbar, an icon with a mask (one for all of the buttons) and an icon widget to put this icon in (but we'll create a separate widget for each button) */ GtkWidget * toolbar; GdkPixmap * icon; GdkBitmap * mask; GtkWidget * iconw; /* this is called in all GTK application. */ gtk_init (&argc, &argv); /* create a new window with a given title, and nice size */ dialog = gtk_dialog_new (); gtk_window_set_title ( GTK_WINDOW ( dialog ) , "GTKToolbar Tutorial"); gtk_widget_set_usize( GTK_WIDGET ( dialog ) , 600 , 300 ); GTK_WINDOW ( dialog ) ->allow_shrink = TRUE; /* typically we quit if someone tries to close us */ gtk_signal_connect ( GTK_OBJECT ( dialog ), "delete_event", GTK_SIGNAL_FUNC ( delete_event ), NULL); /* we need to realize the window because we use pixmaps for * items on the toolbar in the context of it */ gtk_widget_realize ( dialog ); /* to make it nice we'll put the toolbar into the handle box, * so that it can be detached from the main window */ handlebox = gtk_handle_box_new (); gtk_box_pack_start ( GTK_BOX ( GTK_DIALOG(dialog)->vbox ), handlebox, FALSE, FALSE, 5 ); </verb></tscreen> The above should be similar to any other GTK application. Just initialization of GTK, creating the window, etc. There is only one thing that probably needs some explanation: a handle box. A handle box is just another box that can be used to pack widgets in to. The difference between it and typical boxes is that it can be detached from a parent window (or, in fact, the handle box remains in the parent, but it is reduced to a very small rectangle, while all of its contents are reparented to a new freely floating window). It is usually nice to have a detachable toolbar, so these two widgets occur together quite often. <tscreen><verb> /* toolbar will be horizontal, with both icons and text, and * with 5pxl spaces between items and finally, * we'll also put it into our handlebox */ toolbar = gtk_toolbar_new ( GTK_ORIENTATION_HORIZONTAL, GTK_TOOLBAR_BOTH ); gtk_container_set_border_width ( GTK_CONTAINER ( toolbar ) , 5 ); gtk_toolbar_set_space_size ( GTK_TOOLBAR ( toolbar ), 5 ); gtk_container_add ( GTK_CONTAINER ( handlebox ) , toolbar ); /* now we create icon with mask: we'll reuse it to create * icon widgets for toolbar items */ icon = gdk_pixmap_create_from_xpm_d ( dialog->window, &mask, &dialog->style->white, gtk_xpm ); </verb></tscreen> Well, what we do above is just a straightforward initialization of the toolbar widget and creation of a GDK pixmap with its mask. If you want to know something more about using pixmaps, refer to GDK documentation or to the <ref id="sec_Pixmaps" name="Pixmaps"> section earlier in this tutorial. <tscreen><verb> /* our first item is <close> button */ iconw = gtk_pixmap_new ( icon, mask ); /* icon widget */ close_button = gtk_toolbar_append_item ( GTK_TOOLBAR (toolbar), /* our toolbar */ "Close", /* button label */ "Closes this app", /* this button's tooltip */ "Private", /* tooltip private info */ iconw, /* icon widget */ GTK_SIGNAL_FUNC (delete_event), /* a signal */ NULL ); gtk_toolbar_append_space ( GTK_TOOLBAR ( toolbar ) ); /* space after item */ </verb></tscreen> In the above code you see the simplest case: adding a button to toolbar. Just before appending a new item, we have to construct a pixmap widget to serve as an icon for this item; this step will have to be repeated for each new item. Just after the item we also add a space, so the following items will not touch each other. As you see gtk_toolbar_append_item returns a pointer to our newly created button widget, so that we can work with it in the normal way. <tscreen><verb> /* now, let's make our radio buttons group... */ iconw = gtk_pixmap_new ( icon, mask ); icon_button = gtk_toolbar_append_element( GTK_TOOLBAR(toolbar), GTK_TOOLBAR_CHILD_RADIOBUTTON, /* a type of element */ NULL, /* pointer to widget */ "Icon", /* label */ "Only icons in toolbar", /* tooltip */ "Private", /* tooltip private string */ iconw, /* icon */ GTK_SIGNAL_FUNC (radio_event), /* signal */ toolbar); /* data for signal */ gtk_toolbar_append_space ( GTK_TOOLBAR ( toolbar ) ); </verb></tscreen> Here we begin creating a radio buttons group. To do this we use gtk_toolbar_append_element. In fact, using this function one can also +add simple items or even spaces (type = <tt/GTK_TOOLBAR_CHILD_SPACE/ or +<tt/GTK_TOOLBAR_CHILD_BUTTON/). In the above case we start creating a radio group. In creating other radio buttons for this group a pointer to the previous button in the group is required, so that a list of buttons can be easily constructed (see the section on <ref id="sec_Radio_Buttons" name="Radio Buttons"> earlier in this tutorial). <tscreen><verb> /* following radio buttons refer to previous ones */ iconw = gtk_pixmap_new ( icon, mask ); text_button = gtk_toolbar_append_element(GTK_TOOLBAR(toolbar), GTK_TOOLBAR_CHILD_RADIOBUTTON, icon_button, "Text", "Only texts in toolbar", "Private", iconw, GTK_SIGNAL_FUNC (radio_event), toolbar); gtk_toolbar_append_space ( GTK_TOOLBAR ( toolbar ) ); iconw = gtk_pixmap_new ( icon, mask ); both_button = gtk_toolbar_append_element(GTK_TOOLBAR(toolbar), GTK_TOOLBAR_CHILD_RADIOBUTTON, text_button, "Both", "Icons and text in toolbar", "Private", iconw, GTK_SIGNAL_FUNC (radio_event), toolbar); gtk_toolbar_append_space ( GTK_TOOLBAR ( toolbar ) ); gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(both_button),TRUE); </verb></tscreen> In the end we have to set the state of one of the buttons manually (otherwise they all stay in active state, preventing us from switching between them). <tscreen><verb> /* here we have just a simple toggle button */ iconw = gtk_pixmap_new ( icon, mask ); tooltips_button = gtk_toolbar_append_element(GTK_TOOLBAR(toolbar), GTK_TOOLBAR_CHILD_TOGGLEBUTTON, NULL, "Tooltips", "Toolbar with or without tips", "Private", iconw, GTK_SIGNAL_FUNC (toggle_event), toolbar); gtk_toolbar_append_space ( GTK_TOOLBAR ( toolbar ) ); gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(tooltips_button),TRUE); </verb></tscreen> A toggle button can be created in the obvious way (if one knows how to create radio buttons already). <tscreen><verb> /* to pack a widget into toolbar, we only have to * create it and append it with an appropriate tooltip */ entry = gtk_entry_new (); gtk_toolbar_append_widget( GTK_TOOLBAR (toolbar), entry, "This is just an entry", "Private" ); /* well, it isn't created within thetoolbar, so we must still show it */ gtk_widget_show ( entry ); </verb></tscreen> As you see, adding any kind of widget to a toolbar is simple. The one thing you have to remember is that this widget must be shown manually (contrary to other items which will be shown together with the toolbar). <tscreen><verb> /* that's it ! let's show everything. */ gtk_widget_show ( toolbar ); gtk_widget_show (handlebox); gtk_widget_show ( dialog ); /* rest in gtk_main and wait for the fun to begin! */ gtk_main (); return 0; } </verb></tscreen> So, here we are at the end of toolbar tutorial. Of course, to appreciate it in full you need also this nice XPM icon, so here it is: <tscreen><verb> /* XPM */ static char * gtk_xpm[] = { "32 39 5 1", ". c none", "+ c black", "@ c #3070E0", "# c #F05050", "$ c #35E035", "................+...............", "..............+++++.............", "............+++++@@++...........", "..........+++++@@@@@@++.........", "........++++@@@@@@@@@@++........", "......++++@@++++++++@@@++.......", ".....+++@@@+++++++++++@@@++.....", "...+++@@@@+++@@@@@@++++@@@@+....", "..+++@@@@+++@@@@@@@@+++@@@@@++..", ".++@@@@@@+++@@@@@@@@@@@@@@@@@@++", ".+#+@@@@@@++@@@@+++@@@@@@@@@@@@+", ".+##++@@@@+++@@@+++++@@@@@@@@$@.", ".+###++@@@@+++@@@+++@@@@@++$$$@.", ".+####+++@@@+++++++@@@@@+@$$$$@.", ".+#####+++@@@@+++@@@@++@$$$$$$+.", ".+######++++@@@@@@@++@$$$$$$$$+.", ".+#######+##+@@@@+++$$$$$$@@$$+.", ".+###+++##+##+@@++@$$$$$$++$$$+.", ".+###++++##+##+@@$$$$$$$@+@$$@+.", ".+###++++++#+++@$$@+@$$@++$$$@+.", ".+####+++++++#++$$@+@$$++$$$$+..", ".++####++++++#++$$@+@$++@$$$$+..", ".+#####+++++##++$$++@+++$$$$$+..", ".++####+++##+#++$$+++++@$$$$$+..", ".++####+++####++$$++++++@$$$@+..", ".+#####++#####++$$+++@++++@$@+..", ".+#####++#####++$$++@$$@+++$@@..", ".++####++#####++$$++$$$$$+@$@++.", ".++####++#####++$$++$$$$$$$$+++.", ".+++####+#####++$$++$$$$$$$@+++.", "..+++#########+@$$+@$$$$$$+++...", "...+++########+@$$$$$$$$@+++....", ".....+++######+@$$$$$$$+++......", "......+++#####+@$$$$$@++........", ".......+++####+@$$$$+++.........", ".........++###+$$$@++...........", "..........++##+$@+++............", "...........+++++++..............", ".............++++..............."}; </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Notebooks <p> The NoteBook Widget is a collection of "pages" that overlap each other, each page contains different information with only one page visible at a time. This widget has become more common lately in GUI programming, and it is a good way to show blocks of similar information that warrant separation in their display. The first function call you will need to know, as you can probably guess by now, is used to create a new notebook widget. <tscreen><verb> GtkWidget *gtk_notebook_new( void ); </verb></tscreen> Once the notebook has been created, there are a number of functions that operate on the notebook widget. Let's look at them individually. The first one we will look at is how to position the page indicators. These page indicators or "tabs" as they are referred to, can be positioned in four ways: top, bottom, left, or right. <tscreen><verb> void gtk_notebook_set_tab_pos( GtkNotebook *notebook, GtkPositionType pos ); </verb></tscreen> GtkPositionType will be one of the following, which are pretty self explanatory: <tscreen><verb> GTK_POS_LEFT GTK_POS_RIGHT GTK_POS_TOP GTK_POS_BOTTOM </verb></tscreen> <tt/GTK_POS_TOP/ is the default. Next we will look at how to add pages to the notebook. There are three ways to add pages to the NoteBook. Let's look at the first two together as they are quite similar. <tscreen><verb> void gtk_notebook_append_page( GtkNotebook *notebook, GtkWidget *child, GtkWidget *tab_label ); void gtk_notebook_prepend_page( GtkNotebook *notebook, GtkWidget *child, GtkWidget *tab_label ); </verb></tscreen> These functions add pages to the notebook by inserting them from the back of the notebook (append), or the front of the notebook (prepend). <tt/child/ is the widget that is placed within the notebook page, and <tt/tab_label/ is the label for the page being added. The <tt/child/ widget must be created separately, and is typically a set of options setup witin one of the other container widgets, such as a table. The final function for adding a page to the notebook contains all of the properties of the previous two, but it allows you to specify what position you want the page to be in the notebook. <tscreen><verb> void gtk_notebook_insert_page( GtkNotebook *notebook, GtkWidget *child, GtkWidget *tab_label, gint position ); </verb></tscreen> The parameters are the same as _append_ and _prepend_ except it contains an extra parameter, <tt/position/. This parameter is used to specify what place this page will be inserted into the first page having position zero. Now that we know how to add a page, lets see how we can remove a page from the notebook. <tscreen><verb> void gtk_notebook_remove_page( GtkNotebook *notebook, gint page_num ); </verb></tscreen> This function takes the page specified by <tt/page_num/ and removes it from the widget pointed to by <tt/notebook/. To find out what the current page is in a notebook use the function: <tscreen><verb> gint gtk_notebook_get_current_page( GtkNotebook *notebook ); </verb></tscreen> These next two functions are simple calls to move the notebook page forward or backward. Simply provide the respective function call with the notebook widget you wish to operate on. Note: When the NoteBook is currently on the last page, and gtk_notebook_next_page is called, the notebook will wrap back to the first page. Likewise, if the NoteBook is on the first page, and gtk_notebook_prev_page is called, the notebook will wrap to the last page. <tscreen><verb> void gtk_notebook_next_page( GtkNoteBook *notebook ); void gtk_notebook_prev_page( GtkNoteBook *notebook ); </verb></tscreen> This next function sets the "active" page. If you wish the notebook to be opened to page 5 for example, you would use this function. Without using this function, the notebook defaults to the first page. <tscreen><verb> void gtk_notebook_set_page( GtkNotebook *notebook, gint page_num ); </verb></tscreen> The next two functions add or remove the notebook page tabs and the notebook border respectively. <tscreen><verb> void gtk_notebook_set_show_tabs( GtkNotebook *notebook, gboolean show_tabs); void gtk_notebook_set_show_border( GtkNotebook *notebook, gboolean show_border ); </verb></tscreen> The next function is useful when the you have a large number of pages, and the tabs don't fit on the page. It allows the tabs to be scrolled through using two arrow buttons. <tscreen><verb> void gtk_notebook_set_scrollable( GtkNotebook *notebook, gboolean scrollable ); </verb></tscreen> <tt/show_tabs/, <tt/show_border/ and <tt/scrollable/ can be either TRUE or FALSE. Now let's look at an example, it is expanded from the testgtk.c code that comes with the GTK distribution. This small program creates a window with a notebook and six buttons. The notebook contains 11 pages, added in three different ways, appended, inserted, and prepended. The buttons allow you rotate the tab positions, add/remove the tabs and border, remove a page, change pages in both a forward and backward manner, and exit the program. <tscreen><verb> /* example-start notebook notebook.c */ #include <stdio.h> #include <gtk/gtk.h> /* This function rotates the position of the tabs */ void rotate_book( GtkButton *button, GtkNotebook *notebook ) { gtk_notebook_set_tab_pos (notebook, (notebook->tab_pos +1) %4); } /* Add/Remove the page tabs and the borders */ void tabsborder_book( GtkButton *button, GtkNotebook *notebook ) { gint tval = FALSE; gint bval = FALSE; if (notebook->show_tabs == 0) tval = TRUE; if (notebook->show_border == 0) bval = TRUE; gtk_notebook_set_show_tabs (notebook, tval); gtk_notebook_set_show_border (notebook, bval); } /* Remove a page from the notebook */ void remove_book( GtkButton *button, GtkNotebook *notebook ) { gint page; page = gtk_notebook_get_current_page(notebook); gtk_notebook_remove_page (notebook, page); /* Need to refresh the widget -- This forces the widget to redraw itself. */ gtk_widget_draw(GTK_WIDGET(notebook), NULL); } gint delete( GtkWidget *widget, GtkWidget *event, gpointer data ) { gtk_main_quit(); return(FALSE); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *button; GtkWidget *table; GtkWidget *notebook; GtkWidget *frame; GtkWidget *label; GtkWidget *checkbutton; int i; char bufferf[32]; char bufferl[32]; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "delete_event", GTK_SIGNAL_FUNC (delete), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); table = gtk_table_new(3,6,FALSE); gtk_container_add (GTK_CONTAINER (window), table); /* Create a new notebook, place the position of the tabs */ notebook = gtk_notebook_new (); gtk_notebook_set_tab_pos (GTK_NOTEBOOK (notebook), GTK_POS_TOP); gtk_table_attach_defaults(GTK_TABLE(table), notebook, 0,6,0,1); gtk_widget_show(notebook); /* Let's append a bunch of pages to the notebook */ for (i=0; i < 5; i++) { sprintf(bufferf, "Append Frame %d", i+1); sprintf(bufferl, "Page %d", i+1); frame = gtk_frame_new (bufferf); gtk_container_set_border_width (GTK_CONTAINER (frame), 10); gtk_widget_set_usize (frame, 100, 75); gtk_widget_show (frame); label = gtk_label_new (bufferf); gtk_container_add (GTK_CONTAINER (frame), label); gtk_widget_show (label); label = gtk_label_new (bufferl); gtk_notebook_append_page (GTK_NOTEBOOK (notebook), frame, label); } /* Now let's add a page to a specific spot */ checkbutton = gtk_check_button_new_with_label ("Check me please!"); gtk_widget_set_usize(checkbutton, 100, 75); gtk_widget_show (checkbutton); label = gtk_label_new ("Add page"); gtk_notebook_insert_page (GTK_NOTEBOOK (notebook), checkbutton, label, 2); /* Now finally let's prepend pages to the notebook */ for (i=0; i < 5; i++) { sprintf(bufferf, "Prepend Frame %d", i+1); sprintf(bufferl, "PPage %d", i+1); frame = gtk_frame_new (bufferf); gtk_container_set_border_width (GTK_CONTAINER (frame), 10); gtk_widget_set_usize (frame, 100, 75); gtk_widget_show (frame); label = gtk_label_new (bufferf); gtk_container_add (GTK_CONTAINER (frame), label); gtk_widget_show (label); label = gtk_label_new (bufferl); gtk_notebook_prepend_page (GTK_NOTEBOOK(notebook), frame, label); } /* Set what page to start at (page 4) */ gtk_notebook_set_page (GTK_NOTEBOOK(notebook), 3); /* Create a bunch of buttons */ button = gtk_button_new_with_label ("close"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (delete), NULL); gtk_table_attach_defaults(GTK_TABLE(table), button, 0,1,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("next page"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_notebook_next_page, GTK_OBJECT (notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 1,2,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("prev page"); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", (GtkSignalFunc) gtk_notebook_prev_page, GTK_OBJECT (notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 2,3,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("tab position"); gtk_signal_connect (GTK_OBJECT (button), "clicked", (GtkSignalFunc) rotate_book, GTK_OBJECT(notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 3,4,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("tabs/border on/off"); gtk_signal_connect (GTK_OBJECT (button), "clicked", (GtkSignalFunc) tabsborder_book, GTK_OBJECT (notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 4,5,1,2); gtk_widget_show(button); button = gtk_button_new_with_label ("remove page"); gtk_signal_connect (GTK_OBJECT (button), "clicked", (GtkSignalFunc) remove_book, GTK_OBJECT(notebook)); gtk_table_attach_defaults(GTK_TABLE(table), button, 5,6,1,2); gtk_widget_show(button); gtk_widget_show(table); gtk_widget_show(window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> I hope this helps you on your way with creating notebooks for your GTK applications. <!-- ***************************************************************** --> <sect>CList Widget <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <p> The CList widget has replaced the List widget (which is still available). The CList widget is a multi-column list widget that is capable of handling literally thousands of rows of information. Each column can optionally have a title, which itself is optionally active, allowing us to bind a function to its selection. <!-- ----------------------------------------------------------------- --> <sect1>Creating a CList widget <p> Creating a CList is quite straightforward, once you have learned about widgets in general. It provides the almost standard two ways, that is the hard way, and the easy way. But before we create it, there is one thing we should figure out beforehand: how many columns should it have? Not all columns have to be visible and can be used to store data that is related to a certain cell in the list. <tscreen><verb> GtkWidget *gtk_clist_new ( gint columns ); GtkWidget *gtk_clist_new_with_titles( gint columns, gchar *titles[] ); </verb></tscreen> The first form is very straightforward, the second might require some explanation. Each column can have a title associated with it, and this title can be a label or a button that reacts when we click on it. If we use the second form, we must provide pointers to the title texts, and the number of pointers should equal the number of columns specified. Of course we can always use the first form, and manually add titles later. Note: The CList widget does not have its own scrollbars and should be placed within a ScrolledWindow widget if your require this functionality. This is a change from the GTK 1.0 implementation. <!-- ----------------------------------------------------------------- --> <sect1>Modes of operation <p> There are several attributes that can be used to alter the behaviour of a CList. First there is <tscreen><verb> void gtk_clist_set_selection_mode( GtkCList *clist, GtkSelectionMode mode ); </verb></tscreen> which, as the name implies, sets the selection mode of the CList. The first argument is the CList widget, and the second specifies the cell selection mode (they are defined in gtkenums.h). At the time of this writing, the following modes are available to us: <itemize> <item> <tt/GTK_SELECTION_SINGLE/ - The selection is either NULL or contains a GList pointer for a single selected item. <item> <tt/GTK_SELECTION_BROWSE/ - The selection is NULL if the list contains no widgets or insensitive ones only, otherwise it contains a GList pointer for one GList structure, and therefore exactly one list item. <item> <tt/GTK_SELECTION_MULTIPLE/ - The selection is NULL if no list items are selected or a GList pointer for the first selected item. That in turn points to a GList structure for the second selected item and so on. This is currently the <bf>default</bf> for the CList widget. <item> <tt/GTK_SELECTION_EXTENDED/ - The selection is always NULL. </itemize> Others might be added in later revisions of GTK. We can also define what the border of the CList widget should look like. It is done through <tscreen><verb> void gtk_clist_set_shadow_type( GtkCList *clist, GtkShadowType border ); </verb></tscreen> The possible values for the second argument are <tscreen><verb> GTK_SHADOW_NONE GTK_SHADOW_IN GTK_SHADOW_OUT GTK_SHADOW_ETCHED_IN GTK_SHADOW_ETCHED_OUT </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Working with titles <p> When you create a CList widget, you will also get a set of title buttons automatically. They live in the top of the CList window, and can act either as normal buttons that respond to being pressed, or they can be passive, in which case they are nothing more than a title. There are four different calls that aid us in setting the status of the title buttons. <tscreen><verb> void gtk_clist_column_title_active( GtkCList *clist, gint column ); void gtk_clist_column_title_passive( GtkCList *clist, gint column ); void gtk_clist_column_titles_active( GtkCList *clist ); void gtk_clist_column_titles_passive( GtkCList *clist ); </verb></tscreen> An active title is one which acts as a normal button, a passive one is just a label. The first two calls above will activate/deactivate the title button above the specific column, while the last two calls activate/deactivate all title buttons in the supplied clist widget. But of course there are those cases when we don't want them at all, and so they can be hidden and shown at will using the following two calls. <tscreen><verb> void gtk_clist_column_titles_show( GtkCList *clist ); void gtk_clist_column_titles_hide( GtkCList *clist ); </verb></tscreen> For titles to be really useful we need a mechanism to set and change them, and this is done using <tscreen><verb> void gtk_clist_set_column_title( GtkCList *clist, gint column, gchar *title ); </verb></tscreen> Note that only the title of one column can be set at a time, so if all the titles are known from the beginning, then I really suggest using gtk_clist_new_with_titles (as described above) to set them. It saves you coding time, and makes your program smaller. There are some cases where getting the job done the manual way is better, and that's when not all titles will be text. CList provides us with title buttons that can in fact incorporate whole widgets, for example a pixmap. It's all done through <tscreen><verb> void gtk_clist_set_column_widget( GtkCList *clist, gint column, GtkWidget *widget ); </verb></tscreen> which should require no special explanation. <!-- ----------------------------------------------------------------- --> <sect1>Manipulating the list itself <p> It is possible to change the justification for a column, and it is done through <tscreen><verb> void gtk_clist_set_column_justification( GtkCList *clist, gint column, GtkJustification justification ); </verb></tscreen> The GtkJustification type can take the following values: <itemize> <item><tt/GTK_JUSTIFY_LEFT/ - The text in the column will begin from the left edge. <item><tt/GTK_JUSTIFY_RIGHT/ - The text in the column will begin from the right edge. <item><tt/GTK_JUSTIFY_CENTER/ - The text is placed in the center of the column. <item><tt/GTK_JUSTIFY_FILL/ - The text will use up all available space in the column. It is normally done by inserting extra blank spaces between words (or between individual letters if it's a single word). Much in the same way as any ordinary WYSIWYG text editor. </itemize> The next function is a very important one, and should be standard in the setup of all CList widgets. When the list is created, the width of the various columns are chosen to match their titles, and since this is seldom the right width we have to set it using <tscreen><verb> void gtk_clist_set_column_width( GtkCList *clist, gint column, gint width ); </verb></tscreen> Note that the width is given in pixels and not letters. The same goes for the height of the cells in the columns, but as the default value is the height of the current font this isn't as critical to the application. Still, it is done through <tscreen><verb> void gtk_clist_set_row_height( GtkCList *clist, gint height ); </verb></tscreen> Again, note that the height is given in pixels. We can also move the list around without user interaction, however, it does require that we know what we are looking for. Or in other words, we need the row and column of the item we want to scroll to. <tscreen><verb> void gtk_clist_moveto( GtkCList *clist, gint row, gint column, gfloat row_align, gfloat col_align ); </verb></tscreen> The gfloat row_align is pretty important to understand. It's a value between 0.0 and 1.0, where 0.0 means that we should scroll the list so the row appears at the top, while if the value of row_align is 1.0, the row will appear at the bottom instead. All other values between 0.0 and 1.0 are also valid and will place the row between the top and the bottom. The last argument, gfloat col_align works in the same way, though 0.0 marks left and 1.0 marks right instead. Depending on the application's needs, we don't have to scroll to an item that is already visible to us. So how do we know if it is visible? As usual, there is a function to find that out as well. <tscreen><verb> GtkVisibility gtk_clist_row_is_visible( GtkCList *clist, gint row ); </verb></tscreen> The return value is is one of the following: <tscreen><verb> GTK_VISIBILITY_NONE GTK_VISIBILITY_PARTIAL GTK_VISIBILITY_FULL </verb></tscreen> Note that it will only tell us if a row is visible. Currently there is no way to determine this for a column. We can get partial information though, because if the return is <tt/GTK_VISIBILITY_PARTIAL/, then some of it is hidden, but we don't know if it is the row that is being cut by the lower edge of the listbox, or if the row has columns that are outside. We can also change both the foreground and background colors of a particular row. This is useful for marking the row selected by the user, and the two functions that is used to do it are <tscreen><verb> void gtk_clist_set_foreground( GtkCList *clist, gint row, GdkColor *color ); void gtk_clist_set_background( GtkCList *clist, gint row, GdkColor *color ); </verb></tscreen> Please note that the colors must have been previously allocated. <!-- ----------------------------------------------------------------- --> <sect1>Adding rows to the list <p> We can add rows in three ways. They can be prepended or appended to the list using <tscreen><verb> gint gtk_clist_prepend( GtkCList *clist, gchar *text[] ); gint gtk_clist_append( GtkCList *clist, gchar *text[] ); </verb></tscreen> The return value of these two functions indicate the index of the row that was just added. We can insert a row at a given place using <tscreen><verb> void gtk_clist_insert( GtkCList *clist, gint row, gchar *text[] ); </verb></tscreen> In these calls we have to provide a collection of pointers that are the texts we want to put in the columns. The number of pointers should equal the number of columns in the list. If the text[] argument is NULL, then there will be no text in the columns of the row. This is useful, for example, if we want to add pixmaps instead (something that has to be done manually). Also, please note that the numbering of both rows and columns start at 0. To remove an individual row we use <tscreen><verb> void gtk_clist_remove( GtkCList *clist, gint row ); </verb></tscreen> There is also a call that removes all rows in the list. This is a lot faster than calling gtk_clist_remove once for each row, which is the only alternative. <tscreen><verb> void gtk_clist_clear( GtkCList *clist ); </verb></tscreen> There are also two convenience functions that should be used when a lot of changes have to be made to the list. This is to prevent the list flickering while being repeatedly updated, which may be highly annoying to the user. So instead it is a good idea to freeze the list, do the updates to it, and finally thaw it which causes the list to be updated on the screen. <tscreen><verb> void gtk_clist_freeze( GtkCList * clist ); void gtk_clist_thaw( GtkCList * clist ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Setting text and pixmaps in the cells <p> A cell can contain a pixmap, text or both. To set them the following functions are used. <tscreen><verb> void gtk_clist_set_text( GtkCList *clist, gint row, gint column, const gchar *text ); void gtk_clist_set_pixmap( GtkCList *clist, gint row, gint column, GdkPixmap *pixmap, GdkBitmap *mask ); void gtk_clist_set_pixtext( GtkCList *clist, gint row, gint column, gchar *text, guint8 spacing, GdkPixmap *pixmap, GdkBitmap *mask ); </verb></tscreen> It's quite straightforward. All the calls have the CList as the first argument, followed by the row and column of the cell, followed by the data to be set. The <tt/spacing/ argument in gtk_clist_set_pixtext is the number of pixels between the pixmap and the beginning of the text. In all cases the data is copied into the widget. To read back the data, we instead use <tscreen><verb> gint gtk_clist_get_text( GtkCList *clist, gint row, gint column, gchar **text ); gint gtk_clist_get_pixmap( GtkCList *clist, gint row, gint column, GdkPixmap **pixmap, GdkBitmap **mask ); gint gtk_clist_get_pixtext( GtkCList *clist, gint row, gint column, gchar **text, guint8 *spacing, GdkPixmap **pixmap, GdkBitmap **mask ); </verb></tscreen> The returned pointers are all pointers to the data stored within the widget, so the referenced data should not be modified or released. It isn't necessary to read it all back in case you aren't interested. Any of the pointers that are meant for return values (all except the clist) can be NULL. So if we want to read back only the text from a cell that is of type pixtext, then we would do the following, assuming that clist, row and column already exist: <tscreen><verb> gchar *mytext; gtk_clist_get_pixtext(clist, row, column, &mytext, NULL, NULL, NULL); </verb></tscreen> There is one more call that is related to what's inside a cell in the clist, and that's <tscreen><verb> GtkCellType gtk_clist_get_cell_type( GtkCList *clist, gint row, gint column ); </verb></tscreen> which returns the type of data in a cell. The return value is one of <tscreen><verb> GTK_CELL_EMPTY GTK_CELL_TEXT GTK_CELL_PIXMAP GTK_CELL_PIXTEXT GTK_CELL_WIDGET </verb></tscreen> There is also a function that will let us set the indentation, both vertical and horizontal, of a cell. The indentation value is of type gint, given in pixels, and can be both positive and negative. <tscreen><verb> void gtk_clist_set_shift( GtkCList *clist, gint row, gint column, gint vertical, gint horizontal ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Storing data pointers <p> With a CList it is possible to set a data pointer for a row. This pointer will not be visible for the user, but is merely a convenience for the programmer to associate a row with a pointer to some additional data. The functions should be fairly self-explanatory by now. <tscreen><verb> void gtk_clist_set_row_data( GtkCList *clist, gint row, gpointer data ); void gtk_clist_set_row_data_full( GtkCList *clist, gint row, gpointer data, GtkDestroyNotify destroy ); gpointer gtk_clist_get_row_data( GtkCList *clist, gint row ); gint gtk_clist_find_row_from_data( GtkCList *clist, gpointer data ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Working with selections <p> There are also functions available that let us force the (un)selection of a row. These are <tscreen><verb> void gtk_clist_select_row( GtkCList *clist, gint row, gint column ); void gtk_clist_unselect_row( GtkCList *clist, gint row, gint column ); </verb></tscreen> And also a function that will take x and y coordinates (for example, read from the mousepointer), and map that onto the list, returning the corresponding row and column. <tscreen><verb> gint gtk_clist_get_selection_info( GtkCList *clist, gint x, gint y, gint *row, gint *column ); </verb></tscreen> When we detect something of interest (it might be movement of the pointer, a click somewhere in the list) we can read the pointer coordinates and find out where in the list the pointer is. Cumbersome? Luckily, there is a simpler way... <!-- ----------------------------------------------------------------- --> <sect1>The signals that bring it together <p> As with all other widgets, there are a few signals that can be used. The CList widget is derived from the Container widget, and so has all the same signals, but also adds the following: <itemize> <item>select_row - This signal will send the following information, in order: GtkCList *clist, gint row, gint column, GtkEventButton *event <item>unselect_row - When the user unselects a row, this signal is activated. It sends the same information as select_row <item>click_column - Send GtkCList *clist, gint column </itemize> So if we want to connect a callback to select_row, the callback function would be declared like this <tscreen><verb> void select_row_callback(GtkWidget *widget, gint row, gint column, GdkEventButton *event, gpointer data); </verb></tscreen> The callback is connected as usual with <tscreen><verb> gtk_signal_connect(GTK_OBJECT( clist), "select_row" GTK_SIGNAL_FUNC(select_row_callback), NULL); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>A CList example <p> <tscreen><verb> /* example-start clist clist.c */ #include <gtk/gtk.h> /* User clicked the "Add List" button. */ void button_add_clicked( gpointer data ) { int indx; /* Something silly to add to the list. 4 rows of 2 columns each */ gchar *drink[4][2] = { { "Milk", "3 Oz" }, { "Water", "6 l" }, { "Carrots", "2" }, { "Snakes", "55" } }; /* Here we do the actual adding of the text. It's done once for * each row. */ for ( indx=0 ; indx < 4 ; indx++ ) gtk_clist_append( (GtkCList *) data, drink[indx]); return; } /* User clicked the "Clear List" button. */ void button_clear_clicked( gpointer data ) { /* Clear the list using gtk_clist_clear. This is much faster than * calling gtk_clist_remove once for each row. */ gtk_clist_clear( (GtkCList *) data); return; } /* The user clicked the "Hide/Show titles" button. */ void button_hide_show_clicked( gpointer data ) { /* Just a flag to remember the status. 0 = currently visible */ static short int flag = 0; if (flag == 0) { /* Hide the titles and set the flag to 1 */ gtk_clist_column_titles_hide((GtkCList *) data); flag++; } else { /* Show the titles and reset flag to 0 */ gtk_clist_column_titles_show((GtkCList *) data); flag--; } return; } /* If we come here, then the user has selected a row in the list. */ void selection_made( GtkWidget *clist, gint row, gint column, GdkEventButton *event, gpointer data ) { gchar *text; /* Get the text that is stored in the selected row and column * which was clicked in. We will receive it as a pointer in the * argument text. */ gtk_clist_get_text(GTK_CLIST(clist), row, column, &text); /* Just prints some information about the selected row */ g_print("You selected row %d. More specifically you clicked in " "column %d, and the text in this cell is %s\n\n", row, column, text); return; } int main( int argc, gchar *argv[] ) { GtkWidget *window; GtkWidget *vbox, *hbox; GtkWidget *scrolled_window, *clist; GtkWidget *button_add, *button_clear, *button_hide_show; gchar *titles[2] = { "Ingredients", "Amount" }; gtk_init(&argc, &argv); window=gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize(GTK_WIDGET(window), 300, 150); gtk_window_set_title(GTK_WINDOW(window), "GtkCList Example"); gtk_signal_connect(GTK_OBJECT(window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); vbox=gtk_vbox_new(FALSE, 5); gtk_container_set_border_width(GTK_CONTAINER(vbox), 5); gtk_container_add(GTK_CONTAINER(window), vbox); gtk_widget_show(vbox); /* Create a scrolled window to pack the CList widget into */ scrolled_window = gtk_scrolled_window_new (NULL, NULL); gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_window), GTK_POLICY_AUTOMATIC, GTK_POLICY_ALWAYS); gtk_box_pack_start(GTK_BOX(vbox), scrolled_window, TRUE, TRUE, 0); gtk_widget_show (scrolled_window); /* Create the CList. For this example we use 2 columns */ clist = gtk_clist_new_with_titles( 2, titles); /* When a selection is made, we want to know about it. The callback * used is selection_made, and its code can be found further down */ gtk_signal_connect(GTK_OBJECT(clist), "select_row", GTK_SIGNAL_FUNC(selection_made), NULL); /* It isn't necessary to shadow the border, but it looks nice :) */ gtk_clist_set_shadow_type (GTK_CLIST(clist), GTK_SHADOW_OUT); /* What however is important, is that we set the column widths as * they will never be right otherwise. Note that the columns are * numbered from 0 and up (to 1 in this case). */ gtk_clist_set_column_width (GTK_CLIST(clist), 0, 150); /* Add the CList widget to the vertical box and show it. */ gtk_container_add(GTK_CONTAINER(scrolled_window), clist); gtk_widget_show(clist); /* Create the buttons and add them to the window. See the button * tutorial for more examples and comments on this. */ hbox = gtk_hbox_new(FALSE, 0); gtk_box_pack_start(GTK_BOX(vbox), hbox, FALSE, TRUE, 0); gtk_widget_show(hbox); button_add = gtk_button_new_with_label("Add List"); button_clear = gtk_button_new_with_label("Clear List"); button_hide_show = gtk_button_new_with_label("Hide/Show titles"); gtk_box_pack_start(GTK_BOX(hbox), button_add, TRUE, TRUE, 0); gtk_box_pack_start(GTK_BOX(hbox), button_clear, TRUE, TRUE, 0); gtk_box_pack_start(GTK_BOX(hbox), button_hide_show, TRUE, TRUE, 0); /* Connect our callbacks to the three buttons */ gtk_signal_connect_object(GTK_OBJECT(button_add), "clicked", GTK_SIGNAL_FUNC(button_add_clicked), (gpointer) clist); gtk_signal_connect_object(GTK_OBJECT(button_clear), "clicked", GTK_SIGNAL_FUNC(button_clear_clicked), (gpointer) clist); gtk_signal_connect_object(GTK_OBJECT(button_hide_show), "clicked", GTK_SIGNAL_FUNC(button_hide_show_clicked), (gpointer) clist); gtk_widget_show(button_add); gtk_widget_show(button_clear); gtk_widget_show(button_hide_show); /* The interface is completely set up so we show the window and * enter the gtk_main loop. */ gtk_widget_show(window); gtk_main(); return(0); } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect> Tree Widget <label id="sec_Tree_Widgets"> <!-- ***************************************************************** --> <p> The purpose of tree widgets is to display hierarchically-organized data. The Tree widget itself is a vertical container for widgets of type TreeItem. Tree itself is not terribly different from CList - both are derived directly from Container, and the Container methods work in the same way on Tree widgets as on CList widgets. The difference is that Tree widgets can be nested within other Tree widgets. We'll see how to do this shortly. The Tree widget has its own window, and defaults to a white background, as does CList. Also, most of the Tree methods work in the same way as the corresponding CList ones. However, Tree is not derived from CList, so you cannot use them interchangeably. <sect1> Creating a Tree <p> A Tree is created in the usual way, using: <tscreen><verb> GtkWidget *gtk_tree_new( void ); </verb></tscreen> Like the CList widget, a Tree will simply keep growing as more items are added to it, as well as when subtrees are expanded. For this reason, they are almost always packed into a ScrolledWindow. You might want to use gtk_widget_set_usize() on the scrolled window to ensure that it is big enough to see the tree's items, as the default size for ScrolledWindow is quite small. Now that you have a tree, you'll probably want to add some items to it. <ref id="sec_Tree_Item_Widget" name="The Tree Item Widget"> below explains the gory details of TreeItem. For now, it'll suffice to create one, using: <tscreen><verb> GtkWidget *gtk_tree_item_new_with_label( gchar *label ); </verb></tscreen> You can then add it to the tree using one of the following (see <ref id="sec_Tree_Functions" name="Functions and Macros"> below for more options): <tscreen><verb> void gtk_tree_append( GtkTree *tree, GtkWidget *tree_item ); void gtk_tree_prepend( GtkTree *tree, GtkWidget *tree_item ); </verb></tscreen> Note that you must add items to a Tree one at a time - there is no equivalent to gtk_list_*_items(). <!-- ----------------------------------------------------------------- --> <sect1> Adding a Subtree <p> A subtree is created like any other Tree widget. A subtree is added to another tree beneath a tree item, using: <tscreen><verb> void gtk_tree_item_set_subtree( GtkTreeItem *tree_item, GtkWidget *subtree ); </verb></tscreen> You do not need to call gtk_widget_show() on a subtree before or after adding it to a TreeItem. However, you <em>must</em> have added the TreeItem in question to a parent tree before calling gtk_tree_item_set_subtree(). This is because, technically, the parent of the subtree is <em>not</em> the GtkTreeItem which "owns" it, but rather the GtkTree which holds that GtkTreeItem. When you add a subtree to a TreeItem, a plus or minus sign appears beside it, which the user can click on to "expand" or "collapse" it, meaning, to show or hide its subtree. TreeItems are collapsed by default. Note that when you collapse a TreeItem, any selected items in its subtree remain selected, which may not be what the user expects. <!-- ----------------------------------------------------------------- --> <sect1> Handling the Selection List <p> As with CList, the Tree type has a <tt>selection</tt> field, and it is possible to control the behaviour of the tree (somewhat) by setting the selection type using: <tscreen><verb> void gtk_tree_set_selection_mode( GtkTree *tree, GtkSelectionMode mode ); </verb></tscreen> The semantics associated with the various selection modes are described in the section on the CList widget. As with the CList widget, the "select_child", "unselect_child" (not really - see <ref id="sec_Tree_Signals" name="Signals"> below for an explanation), and "selection_changed" signals are emitted when list items are selected or unselected. However, in order to take advantage of these signals, you need to know <em>which</em> Tree widget they will be emitted by, and where to find the list of selected items. This is a source of potential confusion. The best way to explain this is that though all Tree widgets are created equal, some are more equal than others. All Tree widgets have their own X window, and can therefore receive events such as mouse clicks (if their TreeItems or their children don't catch them first!). However, to make <tt/GTK_SELECTION_SINGLE/ and <tt/GTK_SELECTION_BROWSE/ selection types behave in a sane manner, the list of selected items is specific to the topmost Tree widget in a hierarchy, known as the "root tree". Thus, accessing the <tt>selection</tt> field directly in an arbitrary Tree widget is not a good idea unless you <em>know</em> it's the root tree. Instead, use the <tt/GTK_TREE_SELECTION (Tree)/ macro, which gives the root tree's selection list as a GList pointer. Of course, this list can include items that are not in the subtree in question if the selection type is <tt/GTK_SELECTION_MULTIPLE/. Finally, the "select_child" (and "unselect_child", in theory) signals are emitted by all trees, but the "selection_changed" signal is only emitted by the root tree. Consequently, if you want to handle the "select_child" signal for a tree and all its subtrees, you will have to call gtk_signal_connect() for every subtree. <sect1> Tree Widget Internals <p> The Tree's struct definition looks like this: <tscreen><verb> struct _GtkTree { GtkContainer container; GList *children; GtkTree* root_tree; /* owner of selection list */ GtkWidget* tree_owner; GList *selection; guint level; guint indent_value; guint current_indent; guint selection_mode : 2; guint view_mode : 1; guint view_line : 1; }; </verb></tscreen> The perils associated with accessing the <tt>selection</tt> field directly have already been mentioned. The other important fields of the struct can also be accessed with handy macros or class functions. <tt/GTK_IS_ROOT_TREE (Tree)/ returns a boolean value which indicates whether a tree is the root tree in a Tree hierarchy, while <tt/GTK_TREE_ROOT_TREE (Tree)/ returns the root tree, an object of type GtkTree (so, remember to cast it using <tt/GTK_WIDGET (Tree)/ if you want to use one of the gtk_widget_*() functions on it). Instead of directly accessing the children field of a Tree widget, it's probably best to cast it using >tt/GTK_CONTAINER (Tree)/, and pass it to the gtk_container_children() function. This creates a duplicate of the original list, so it's advisable to free it up using g_list_free() after you're done with it, or to iterate on it destructively, like this: <tscreen><verb> children = gtk_container_children (GTK_CONTAINER (tree)); while (children) { do_something_nice (GTK_TREE_ITEM (children->data)); children = g_list_remove_link (children, children); } </verb></tscreen> The <tt>tree_owner</tt> field is defined only in subtrees, where it points to the TreeItem widget which holds the tree in question. The <tt>level</tt> field indicates how deeply nested a particular tree is; root trees have level 0, and each successive level of subtrees has a level one greater than the parent level. This field is set only after a Tree widget is actually mapped (i.e. drawn on the screen). <sect2> Signals<label id="sec_Tree_Signals"> <p> <tscreen><verb> void selection_changed( GtkTree *tree ); </verb></tscreen> This signal will be emitted whenever the <tt>selection</tt> field of a Tree has changed. This happens when a child of the Tree is selected or deselected. <tscreen><verb> void select_child( GtkTree *tree, GtkWidget *child ); </verb></tscreen> This signal is emitted when a child of the Tree is about to get selected. This happens on calls to gtk_tree_select_item(), gtk_tree_select_child(), on <em>all</em> button presses and calls to gtk_tree_item_toggle() and gtk_item_toggle(). It may sometimes be indirectly triggered on other occasions where children get added to or removed from the Tree. <tscreen><verb> void unselect_child (GtkTree *tree, GtkWidget *child); </verb></tscreen> This signal is emitted when a child of the Tree is about to get deselected. As of GTK 1.0.4, this seems to only occur on calls to gtk_tree_unselect_item() or gtk_tree_unselect_child(), and perhaps on other occasions, but <em>not</em> when a button press deselects a child, nor on emission of the "toggle" signal by gtk_item_toggle(). <sect2> Functions and Macros<label id="sec_Tree_Functions"> <p> <tscreen><verb> guint gtk_tree_get_type( void ); </verb></tscreen> Returns the "GtkTree" type identifier. <tscreen><verb> GtkWidget* gtk_tree_new( void ); </verb></tscreen> Create a new Tree object. The new widget is returned as a pointer to a GtkWidget object. NULL is returned on failure. <tscreen><verb> void gtk_tree_append( GtkTree *tree, GtkWidget *tree_item ); </verb></tscreen> Append a tree item to a Tree. <tscreen><verb> void gtk_tree_prepend( GtkTree *tree, GtkWidget *tree_item ); </verb></tscreen> Prepend a tree item to a Tree. <tscreen><verb> void gtk_tree_insert( GtkTree *tree, GtkWidget *tree_item, gint position ); </verb></tscreen> Insert a tree item into a Tree at the position in the list specified by <tt>position.</tt> <tscreen><verb> void gtk_tree_remove_items( GtkTree *tree, GList *items ); </verb></tscreen> Remove a list of items (in the form of a GList *) from a Tree. Note that removing an item from a tree dereferences (and thus usually) destroys it <em>and</em> its subtree, if it has one, <em>and</em> all subtrees in that subtree. If you want to remove only one item, you can use gtk_container_remove(). <tscreen><verb> void gtk_tree_clear_items( GtkTree *tree, gint start, gint end ); </verb></tscreen> Remove the items from position <tt>start</tt> to position <tt>end</tt> from a Tree. The same warning about dereferencing applies here, as gtk_tree_clear_items() simply constructs a list and passes it to gtk_tree_remove_items(). <tscreen><verb> void gtk_tree_select_item( GtkTree *tree, gint item ); </verb></tscreen> Emits the "select_item" signal for the child at position <tt>item</tt>, thus selecting the child (unless you unselect it in a signal handler). <tscreen><verb> void gtk_tree_unselect_item( GtkTree *tree, gint item ); </verb></tscreen> Emits the "unselect_item" signal for the child at position <tt>item</tt>, thus unselecting the child. <tscreen><verb> void gtk_tree_select_child( GtkTree *tree, GtkWidget *tree_item ); </verb></tscreen> Emits the "select_item" signal for the child <tt>tree_item</tt>, thus selecting it. <tscreen><verb> void gtk_tree_unselect_child( GtkTree *tree, GtkWidget *tree_item ); </verb></tscreen> Emits the "unselect_item" signal for the child <tt>tree_item</tt>, thus unselecting it. <tscreen><verb> gint gtk_tree_child_position( GtkTree *tree, GtkWidget *child ); </verb></tscreen> Returns the position in the tree of <tt>child</tt>, unless <tt>child</tt> is not in the tree, in which case it returns -1. <tscreen><verb> void gtk_tree_set_selection_mode( GtkTree *tree, GtkSelectionMode mode ); </verb></tscreen> Sets the selection mode, which can be one of <tt/GTK_SELECTION_SINGLE/ (the default), <tt/GTK_SELECTION_BROWSE/, <tt/GTK_SELECTION_MULTIPLE/, or <tt/GTK_SELECTION_EXTENDED/. This is only defined for root trees, which makes sense, since the root tree "owns" the selection. Setting it for subtrees has no effect at all; the value is simply ignored. <tscreen><verb> void gtk_tree_set_view_mode( GtkTree *tree, GtkTreeViewMode mode ); </verb></tscreen> Sets the "view mode", which can be either <tt/GTK_TREE_VIEW_LINE/ (the default) or <tt/GTK_TREE_VIEW_ITEM/. The view mode propagates from a tree to its subtrees, and can't be set exclusively to a subtree (this is not exactly true - see the example code comments). The term "view mode" is rather ambiguous - basically, it controls the way the highlight is drawn when one of a tree's children is selected. If it's <tt/GTK_TREE_VIEW_LINE/, the entire TreeItem widget is highlighted, while for <tt/GTK_TREE_VIEW_ITEM/, only the child widget (i.e., usually the label) is highlighted. <tscreen><verb> void gtk_tree_set_view_lines( GtkTree *tree, guint flag ); </verb></tscreen> Controls whether connecting lines between tree items are drawn. <tt>flag</tt> is either TRUE, in which case they are, or FALSE, in which case they aren't. <tscreen><verb> GtkTree *GTK_TREE (gpointer obj); </verb></tscreen> Cast a generic pointer to "GtkTree *". <tscreen><verb> GtkTreeClass *GTK_TREE_CLASS (gpointer class); </verb></tscreen> Cast a generic pointer to "GtkTreeClass *". <tscreen><verb> gint GTK_IS_TREE (gpointer obj); </verb></tscreen> Determine if a generic pointer refers to a "GtkTree" object. <tscreen><verb> gint GTK_IS_ROOT_TREE (gpointer obj) </verb></tscreen> Determine if a generic pointer refers to a "GtkTree" object <em>and</em> is a root tree. Though this will accept any pointer, the results of passing it a pointer that does not refer to a Tree are undefined and possibly harmful. <tscreen><verb> GtkTree *GTK_TREE_ROOT_TREE (gpointer obj) </verb></tscreen> Return the root tree of a pointer to a "GtkTree" object. The above warning applies. <tscreen><verb> GList *GTK_TREE_SELECTION( gpointer obj) </verb></tscreen> Return the selection list of the root tree of a "GtkTree" object. The above warning applies here, too. <sect1> Tree Item Widget<label id="sec_Tree_Item_Widget"> <p> The TreeItem widget, like CListItem, is derived from Item, which in turn is derived from Bin. Therefore, the item itself is a generic container holding exactly one child widget, which can be of any type. The TreeItem widget has a number of extra fields, but the only one we need be concerned with is the <tt>subtree</tt> field. The definition for the TreeItem struct looks like this: <tscreen><verb> struct _GtkTreeItem { GtkItem item; GtkWidget *subtree; GtkWidget *pixmaps_box; GtkWidget *plus_pix_widget, *minus_pix_widget; GList *pixmaps; /* pixmap node for this items color depth */ guint expanded : 1; }; </verb></tscreen> The <tt>pixmaps_box</tt> field is an EventBox which catches clicks on the plus/minus symbol which controls expansion and collapsing. The <tt>pixmaps</tt> field points to an internal data structure. Since you can always obtain the subtree of a TreeItem in a (relatively) type-safe manner with the <tt/GTK_TREE_ITEM_SUBTREE (Item)/ macro, it's probably advisable never to touch the insides of a TreeItem unless you <em>really</em> know what you're doing. Since it is directly derived from an Item it can be treated as such by using the <tt/GTK_ITEM (TreeItem)/ macro. A TreeItem usually holds a label, so the convenience function gtk_list_item_new_with_label() is provided. The same effect can be achieved using code like the following, which is actually copied verbatim from gtk_tree_item_new_with_label(): <tscreen><verb> tree_item = gtk_tree_item_new (); label_widget = gtk_label_new (label); gtk_misc_set_alignment (GTK_MISC (label_widget), 0.0, 0.5); gtk_container_add (GTK_CONTAINER (tree_item), label_widget); gtk_widget_show (label_widget); </verb></tscreen> As one is not forced to add a Label to a TreeItem, you could also add an HBox or an Arrow, or even a Notebook (though your app will likely be quite unpopular in this case) to the TreeItem. If you remove all the items from a subtree, it will be destroyed and unparented, unless you reference it beforehand, and the TreeItem which owns it will be collapsed. So, if you want it to stick around, do something like the following: <tscreen><verb> gtk_widget_ref (tree); owner = GTK_TREE(tree)->tree_owner; gtk_container_remove (GTK_CONTAINER(tree), item); if (tree->parent == NULL){ gtk_tree_item_expand (GTK_TREE_ITEM(owner)); gtk_tree_item_set_subtree (GTK_TREE_ITEM(owner), tree); } else gtk_widget_unref (tree); </verb></tscreen> Finally, drag-n-drop <em>does</em> work with TreeItems. You just have to make sure that the TreeItem you want to make into a drag item or a drop site has not only been added to a Tree, but that each successive parent widget has a parent itself, all the way back to a toplevel or dialog window, when you call gtk_widget_dnd_drag_set() or gtk_widget_dnd_drop_set(). Otherwise, strange things will happen. <sect2> Signals <p> TreeItem inherits the "select", "deselect", and "toggle" signals from Item. In addition, it adds two signals of its own, "expand" and "collapse". <tscreen><verb> void select( GtkItem *tree_item ); </verb></tscreen> This signal is emitted when an item is about to be selected, either after it has been clicked on by the user, or when the program calls gtk_tree_item_select(), gtk_item_select(), or gtk_tree_select_child(). <tscreen><verb> void deselect( GtkItem *tree_item ); </verb></tscreen> This signal is emitted when an item is about to be unselected, either after it has been clicked on by the user, or when the program calls gtk_tree_item_deselect() or gtk_item_deselect(). In the case of TreeItems, it is also emitted by gtk_tree_unselect_child(), and sometimes gtk_tree_select_child(). <tscreen><verb> void toggle( GtkItem *tree_item ); </verb></tscreen> This signal is emitted when the program calls gtk_item_toggle(). The effect it has when emitted on a TreeItem is to call gtk_tree_select_child() (and never gtk_tree_unselect_child()) on the item's parent tree, if the item has a parent tree. If it doesn't, then the highlight is reversed on the item. <tscreen><verb> void expand( GtkTreeItem *tree_item ); </verb></tscreen> This signal is emitted when the tree item's subtree is about to be expanded, that is, when the user clicks on the plus sign next to the item, or when the program calls gtk_tree_item_expand(). <tscreen><verb> void collapse( GtkTreeItem *tree_item ); </verb></tscreen> This signal is emitted when the tree item's subtree is about to be collapsed, that is, when the user clicks on the minus sign next to the item, or when the program calls gtk_tree_item_collapse(). <sect2> Functions and Macros <p> <tscreen><verb> guint gtk_tree_item_get_type( void ); </verb></tscreen> Returns the "GtkTreeItem" type identifier. <tscreen><verb> GtkWidget* gtk_tree_item_new( void ); </verb></tscreen> Create a new TreeItem object. The new widget is returned as a pointer to a GtkWidget object. NULL is returned on failure. <tscreen><verb> GtkWidget* gtk_tree_item_new_with_label (gchar *label); </verb></tscreen> Create a new TreeItem object, having a single GtkLabel as the sole child. The new widget is returned as a pointer to a GtkWidget object. NULL is returned on failure. <tscreen><verb> void gtk_tree_item_select( GtkTreeItem *tree_item ); </verb></tscreen> This function is basically a wrapper around a call to <tt>gtk_item_select (GTK_ITEM (tree_item))</tt> which will emit the select signal. <tscreen><verb> void gtk_tree_item_deselect( GtkTreeItem *tree_item ); </verb></tscreen> This function is basically a wrapper around a call to gtk_item_deselect (GTK_ITEM (tree_item)) which will emit the deselect signal. <tscreen><verb> void gtk_tree_item_set_subtree( GtkTreeItem *tree_item, GtkWidget *subtree ); </verb></tscreen> This function adds a subtree to tree_item, showing it if tree_item is expanded, or hiding it if tree_item is collapsed. Again, remember that the tree_item must have already been added to a tree for this to work. <tscreen><verb> void gtk_tree_item_remove_subtree( GtkTreeItem *tree_item ); </verb></tscreen> This removes all of tree_item's subtree's children (thus unreferencing and destroying it, any of its children's subtrees, and so on...), then removes the subtree itself, and hides the plus/minus sign. <tscreen><verb> void gtk_tree_item_expand( GtkTreeItem *tree_item ); </verb></tscreen> This emits the "expand" signal on tree_item, which expands it. <tscreen><verb> void gtk_tree_item_collapse( GtkTreeItem *tree_item ); </verb></tscreen> This emits the "collapse" signal on tree_item, which collapses it. <tscreen><verb> GtkTreeItem *GTK_TREE_ITEM (gpointer obj) </verb></tscreen> Cast a generic pointer to "GtkTreeItem *". <tscreen><verb> GtkTreeItemClass *GTK_TREE_ITEM_CLASS (gpointer obj) </verb></tscreen> Cast a generic pointer to "GtkTreeItemClass". <tscreen><verb> gint GTK_IS_TREE_ITEM (gpointer obj) </verb></tscreen> Determine if a generic pointer refers to a "GtkTreeItem" object. <tscreen><verb> GtkWidget GTK_TREE_ITEM_SUBTREE (gpointer obj) </verb></tscreen> Returns a tree item's subtree (<tt/obj/ should point to a "GtkTreeItem" object). <sect1> Tree Example <p> This is somewhat like the tree example in testgtk.c, but a lot less complete (although much better commented). It puts up a window with a tree, and connects all the signals for the relevant objects, so you can see when they are emitted. <tscreen><verb> /* example-start tree tree.c */ #include <gtk/gtk.h> /* for all the GtkItem:: and GtkTreeItem:: signals */ static void cb_itemsignal( GtkWidget *item, gchar *signame ) { gchar *name; GtkLabel *label; /* It's a Bin, so it has one child, which we know to be a label, so get that */ label = GTK_LABEL (GTK_BIN (item)->child); /* Get the text of the label */ gtk_label_get (label, &name); /* Get the level of the tree which the item is in */ g_print ("%s called for item %s->%p, level %d\n", signame, name, item, GTK_TREE (item->parent)->level); } /* Note that this is never called */ static void cb_unselect_child( GtkWidget *root_tree, GtkWidget *child, GtkWidget *subtree ) { g_print ("unselect_child called for root tree %p, subtree %p, child %p\n", root_tree, subtree, child); } /* Note that this is called every time the user clicks on an item, whether it is already selected or not. */ static void cb_select_child (GtkWidget *root_tree, GtkWidget *child, GtkWidget *subtree) { g_print ("select_child called for root tree %p, subtree %p, child %p\n", root_tree, subtree, child); } static void cb_selection_changed( GtkWidget *tree ) { GList *i; g_print ("selection_change called for tree %p\n", tree); g_print ("selected objects are:\n"); i = GTK_TREE_SELECTION(tree); while (i){ gchar *name; GtkLabel *label; GtkWidget *item; /* Get a GtkWidget pointer from the list node */ item = GTK_WIDGET (i->data); label = GTK_LABEL (GTK_BIN (item)->child); gtk_label_get (label, &name); g_print ("\t%s on level %d\n", name, GTK_TREE (item->parent)->level); i = i->next; } } int main( int argc, char *argv[] ) { GtkWidget *window, *scrolled_win, *tree; static gchar *itemnames[] = {"Foo", "Bar", "Baz", "Quux", "Maurice"}; gint i; gtk_init (&argc, &argv); /* a generic toplevel window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT(window), "delete_event", GTK_SIGNAL_FUNC (gtk_main_quit), NULL); gtk_container_set_border_width (GTK_CONTAINER(window), 5); /* A generic scrolled window */ scrolled_win = gtk_scrolled_window_new (NULL, NULL); gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (scrolled_win), GTK_POLICY_AUTOMATIC, GTK_POLICY_AUTOMATIC); gtk_widget_set_usize (scrolled_win, 150, 200); gtk_container_add (GTK_CONTAINER(window), scrolled_win); gtk_widget_show (scrolled_win); /* Create the root tree */ tree = gtk_tree_new(); g_print ("root tree is %p\n", tree); /* connect all GtkTree:: signals */ gtk_signal_connect (GTK_OBJECT(tree), "select_child", GTK_SIGNAL_FUNC(cb_select_child), tree); gtk_signal_connect (GTK_OBJECT(tree), "unselect_child", GTK_SIGNAL_FUNC(cb_unselect_child), tree); gtk_signal_connect (GTK_OBJECT(tree), "selection_changed", GTK_SIGNAL_FUNC(cb_selection_changed), tree); /* Add it to the scrolled window */ gtk_scrolled_window_add_with_viewport (GTK_SCROLLED_WINDOW(scrolled_win), tree); /* Set the selection mode */ gtk_tree_set_selection_mode (GTK_TREE(tree), GTK_SELECTION_MULTIPLE); /* Show it */ gtk_widget_show (tree); for (i = 0; i < 5; i++){ GtkWidget *subtree, *item; gint j; /* Create a tree item */ item = gtk_tree_item_new_with_label (itemnames[i]); /* Connect all GtkItem:: and GtkTreeItem:: signals */ gtk_signal_connect (GTK_OBJECT(item), "select", GTK_SIGNAL_FUNC(cb_itemsignal), "select"); gtk_signal_connect (GTK_OBJECT(item), "deselect", GTK_SIGNAL_FUNC(cb_itemsignal), "deselect"); gtk_signal_connect (GTK_OBJECT(item), "toggle", GTK_SIGNAL_FUNC(cb_itemsignal), "toggle"); gtk_signal_connect (GTK_OBJECT(item), "expand", GTK_SIGNAL_FUNC(cb_itemsignal), "expand"); gtk_signal_connect (GTK_OBJECT(item), "collapse", GTK_SIGNAL_FUNC(cb_itemsignal), "collapse"); /* Add it to the parent tree */ gtk_tree_append (GTK_TREE(tree), item); /* Show it - this can be done at any time */ gtk_widget_show (item); /* Create this item's subtree */ subtree = gtk_tree_new(); g_print ("-> item %s->%p, subtree %p\n", itemnames[i], item, subtree); /* This is still necessary if you want these signals to be called for the subtree's children. Note that selection_change will be signalled for the root tree regardless. */ gtk_signal_connect (GTK_OBJECT(subtree), "select_child", GTK_SIGNAL_FUNC(cb_select_child), subtree); gtk_signal_connect (GTK_OBJECT(subtree), "unselect_child", GTK_SIGNAL_FUNC(cb_unselect_child), subtree); /* This has absolutely no effect, because it is completely ignored in subtrees */ gtk_tree_set_selection_mode (GTK_TREE(subtree), GTK_SELECTION_SINGLE); /* Neither does this, but for a rather different reason - the view_mode and view_line values of a tree are propagated to subtrees when they are mapped. So, setting it later on would actually have a (somewhat unpredictable) effect */ gtk_tree_set_view_mode (GTK_TREE(subtree), GTK_TREE_VIEW_ITEM); /* Set this item's subtree - note that you cannot do this until AFTER the item has been added to its parent tree! */ gtk_tree_item_set_subtree (GTK_TREE_ITEM(item), subtree); for (j = 0; j < 5; j++){ GtkWidget *subitem; /* Create a subtree item, in much the same way */ subitem = gtk_tree_item_new_with_label (itemnames[j]); /* Connect all GtkItem:: and GtkTreeItem:: signals */ gtk_signal_connect (GTK_OBJECT(subitem), "select", GTK_SIGNAL_FUNC(cb_itemsignal), "select"); gtk_signal_connect (GTK_OBJECT(subitem), "deselect", GTK_SIGNAL_FUNC(cb_itemsignal), "deselect"); gtk_signal_connect (GTK_OBJECT(subitem), "toggle", GTK_SIGNAL_FUNC(cb_itemsignal), "toggle"); gtk_signal_connect (GTK_OBJECT(subitem), "expand", GTK_SIGNAL_FUNC(cb_itemsignal), "expand"); gtk_signal_connect (GTK_OBJECT(subitem), "collapse", GTK_SIGNAL_FUNC(cb_itemsignal), "collapse"); g_print ("-> -> item %s->%p\n", itemnames[j], subitem); /* Add it to its parent tree */ gtk_tree_append (GTK_TREE(subtree), subitem); /* Show it */ gtk_widget_show (subitem); } } /* Show the window and loop endlessly */ gtk_widget_show (window); gtk_main(); return 0; } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect>Menu Widget <!-- ***************************************************************** --> <p> There are two ways to create menus: there's the easy way, and there's the hard way. Both have their uses, but you can usually use the Itemfactory (the easy way). The "hard" way is to create all the menus using the calls directly. The easy way is to use the gtk_item_factory calls. This is much simpler, but there are advantages and disadvantages to each approach. The Itemfactory is much easier to use, and to add new menus to, although writing a few wrapper functions to create menus using the manual method could go a long way towards usability. With the Itemfactory, it is not possible to add images or the character '/' to the menus. <!-- ----------------------------------------------------------------- --> <sect1>Manual Menu Creation <p> In the true tradition of teaching, we'll show you the hard way first. <tt>:)</> There are three widgets that go into making a menubar and submenus: <itemize> <item>a menu item, which is what the user wants to select, e.g., "Save" <item>a menu, which acts as a container for the menu items, and <item>a menubar, which is a container for each of the individual menus. </itemize> This is slightly complicated by the fact that menu item widgets are used for two different things. They are both the widgets that are packed into the menu, and the widget that is packed into the menubar, which, when selected, activates the menu. Let's look at the functions that are used to create menus and menubars. This first function is used to create a new menubar. <tscreen> <verb> GtkWidget *gtk_menu_bar_new( void ); </verb> </tscreen> This rather self explanatory function creates a new menubar. You use gtk_container_add to pack this into a window, or the box_pack functions to pack it into a box - the same as buttons. <tscreen><verb> GtkWidget *gtk_menu_new( void ); </verb></tscreen> This function returns a pointer to a new menu; it is never actually shown (with gtk_widget_show), it is just a container for the menu items. I hope this will become more clear when you look at the example below. The next two calls are used to create menu items that are packed into the menu (and menubar). <tscreen><verb> GtkWidget *gtk_menu_item_new( void ); </verb></tscreen> and <tscreen><verb> GtkWidget *gtk_menu_item_new_with_label( const char *label ); </verb></tscreen> These calls are used to create the menu items that are to be displayed. Remember to differentiate between a "menu" as created with gtk_menu_new and a "menu item" as created by the gtk_menu_item_new functions. The menu item will be an actual button with an associated action, whereas a menu will be a container holding menu items. The gtk_menu_new_with_label and gtk_menu_new functions are just as you'd expect after reading about the buttons. One creates a new menu item with a label already packed into it, and the other just creates a blank menu item. Once you've created a menu item you have to put it into a menu. This is done using the function gtk_menu_append. In order to capture when the item is selected by the user, we need to connect to the <tt/activate/ signal in the usual way. So, if we wanted to create a standard <tt/File/ menu, with the options <tt/Open/, <tt/Save/, and <tt/Quit/, the code would look something like: <tscreen><verb> file_menu = gtk_menu_new (); /* Don't need to show menus */ /* Create the menu items */ open_item = gtk_menu_item_new_with_label ("Open"); save_item = gtk_menu_item_new_with_label ("Save"); quit_item = gtk_menu_item_new_with_label ("Quit"); /* Add them to the menu */ gtk_menu_append (GTK_MENU (file_menu), open_item); gtk_menu_append (GTK_MENU (file_menu), save_item); gtk_menu_append (GTK_MENU (file_menu), quit_item); /* Attach the callback functions to the activate signal */ gtk_signal_connect_object (GTK_OBJECT (open_items), "activate", GTK_SIGNAL_FUNC (menuitem_response), (gpointer) "file.open"); gtk_signal_connect_object (GTK_OBJECT (save_items), "activate", GTK_SIGNAL_FUNC (menuitem_response), (gpointer) "file.save"); /* We can attach the Quit menu item to our exit function */ gtk_signal_connect_object (GTK_OBJECT (quit_items), "activate", GTK_SIGNAL_FUNC (destroy), (gpointer) "file.quit"); /* We do need to show menu items */ gtk_widget_show (open_item); gtk_widget_show (save_item); gtk_widget_show (quit_item); </verb></tscreen> At this point we have our menu. Now we need to create a menubar and a menu item for the <tt/File/ entry, to which we add our menu. The code looks like this: <tscreen><verb> menu_bar = gtk_menu_bar_new (); gtk_container_add (GTK_CONTAINER (window), menu_bar); gtk_widget_show (menu_bar); file_item = gtk_menu_item_new_with_label ("File"); gtk_widget_show (file_item); </verb></tscreen> Now we need to associate the menu with <tt/file_item/. This is done with the function <tscreen> void gtk_menu_item_set_submenu( GtkMenuItem *menu_item, GtkWidget *submenu ); </tscreen> So, our example would continue with <tscreen><verb> gtk_menu_item_set_submenu (GTK_MENU_ITEM (file_item), file_menu); </verb></tscreen> All that is left to do is to add the menu to the menubar, which is accomplished using the function <tscreen> void gtk_menu_bar_append( GtkMenuBar *menu_bar, GtkWidget *menu_item ); </tscreen> which in our case looks like this: <tscreen><verb> gtk_menu_bar_append (GTK_MENU_BAR (menu_bar), file_item); </verb></tscreen> If we wanted the menu right justified on the menubar, such as help menus often are, we can use the following function (again on <tt/file_item/ in the current example) before attaching it to the menubar. <tscreen><verb> void gtk_menu_item_right_justify( GtkMenuItem *menu_item ); </verb></tscreen> Here is a summary of the steps needed to create a menu bar with menus attached: <itemize> <item> Create a new menu using gtk_menu_new() <item> Use multiple calls to gtk_menu_item_new() for each item you wish to have on your menu. And use gtk_menu_append() to put each of these new items on to the menu. <item> Create a menu item using gtk_menu_item_new(). This will be the root of the menu, the text appearing here will be on the menubar itself. <item>Use gtk_menu_item_set_submenu() to attach the menu to the root menu item (the one created in the above step). <item> Create a new menubar using gtk_menu_bar_new. This step only needs to be done once when creating a series of menus on one menu bar. <item> Use gtk_menu_bar_append() to put the root menu onto the menubar. </itemize> Creating a popup menu is nearly the same. The difference is that the menu is not posted "automatically" by a menubar, but explicitly by calling the function gtk_menu_popup() from a button-press event, for example. Take these steps: <itemize> <item>Create an event handling function. It needs to have the prototype <tscreen> static gint handler (GtkWidget *widget, GdkEvent *event); </tscreen> and it will use the event to find out where to pop up the menu. <item>In the event handler, if the event is a mouse button press, treat <tt>event</tt> as a button event (which it is) and use it as shown in the sample code to pass information to gtk_menu_popup(). <item>Bind that event handler to a widget with <tscreen> gtk_signal_connect_object (GTK_OBJECT (widget), "event", GTK_SIGNAL_FUNC (handler), GTK_OBJECT (menu)); </tscreen> where <tt>widget</tt> is the widget you are binding to, <tt>handler</tt> is the handling function, and <tt>menu</tt> is a menu created with gtk_menu_new(). This can be a menu which is also posted by a menu bar, as shown in the sample code. </itemize> <!-- ----------------------------------------------------------------- --> <sect1>Manual Menu Example <p> That should about do it. Let's take a look at an example to help clarify. <tscreen><verb> /* example-start menu menu.c */ #include <stdio.h> #include <gtk/gtk.h> static gint button_press (GtkWidget *, GdkEvent *); static void menuitem_response (gchar *); int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *menu; GtkWidget *menu_bar; GtkWidget *root_menu; GtkWidget *menu_items; GtkWidget *vbox; GtkWidget *button; char buf[128]; int i; gtk_init (&argc, &argv); /* create a new window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize (GTK_WIDGET (window), 200, 100); gtk_window_set_title (GTK_WINDOW (window), "GTK Menu Test"); gtk_signal_connect (GTK_OBJECT (window), "delete_event", (GtkSignalFunc) gtk_main_quit, NULL); /* Init the menu-widget, and remember -- never * gtk_show_widget() the menu widget!! * This is the menu that holds the menu items, the one that * will pop up when you click on the "Root Menu" in the app */ menu = gtk_menu_new (); /* Next we make a little loop that makes three menu-entries for "test-menu". * Notice the call to gtk_menu_append. Here we are adding a list of * menu items to our menu. Normally, we'd also catch the "clicked" * signal on each of the menu items and setup a callback for it, * but it's omitted here to save space. */ for (i = 0; i < 3; i++) { /* Copy the names to the buf. */ sprintf (buf, "Test-undermenu - %d", i); /* Create a new menu-item with a name... */ menu_items = gtk_menu_item_new_with_label (buf); /* ...and add it to the menu. */ gtk_menu_append (GTK_MENU (menu), menu_items); /* Do something interesting when the menuitem is selected */ gtk_signal_connect_object (GTK_OBJECT (menu_items), "activate", GTK_SIGNAL_FUNC (menuitem_response), (gpointer) g_strdup (buf)); /* Show the widget */ gtk_widget_show (menu_items); } /* This is the root menu, and will be the label * displayed on the menu bar. There won't be a signal handler attached, * as it only pops up the rest of the menu when pressed. */ root_menu = gtk_menu_item_new_with_label ("Root Menu"); gtk_widget_show (root_menu); /* Now we specify that we want our newly created "menu" to be the menu * for the "root menu" */ gtk_menu_item_set_submenu (GTK_MENU_ITEM (root_menu), menu); /* A vbox to put a menu and a button in: */ vbox = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), vbox); gtk_widget_show (vbox); /* Create a menu-bar to hold the menus and add it to our main window */ menu_bar = gtk_menu_bar_new (); gtk_box_pack_start (GTK_BOX (vbox), menu_bar, FALSE, FALSE, 2); gtk_widget_show (menu_bar); /* Create a button to which to attach menu as a popup */ button = gtk_button_new_with_label ("press me"); gtk_signal_connect_object (GTK_OBJECT (button), "event", GTK_SIGNAL_FUNC (button_press), GTK_OBJECT (menu)); gtk_box_pack_end (GTK_BOX (vbox), button, TRUE, TRUE, 2); gtk_widget_show (button); /* And finally we append the menu-item to the menu-bar -- this is the * "root" menu-item I have been raving about =) */ gtk_menu_bar_append (GTK_MENU_BAR (menu_bar), root_menu); /* always display the window as the last step so it all splashes on * the screen at once. */ gtk_widget_show (window); gtk_main (); return(0); } /* Respond to a button-press by posting a menu passed in as widget. * * Note that the "widget" argument is the menu being posted, NOT * the button that was pressed. */ static gint button_press( GtkWidget *widget, GdkEvent *event ) { if (event->type == GDK_BUTTON_PRESS) { GdkEventButton *bevent = (GdkEventButton *) event; gtk_menu_popup (GTK_MENU (widget), NULL, NULL, NULL, NULL, bevent->button, bevent->time); /* Tell calling code that we have handled this event; the buck * stops here. */ return TRUE; } /* Tell calling code that we have not handled this event; pass it on. */ return FALSE; } /* Print a string when a menu item is selected */ static void menuitem_response( gchar *string ) { printf ("%s\n", string); } /* example-end */ </verb></tscreen> You may also set a menu item to be insensitive and, using an accelerator table, bind keys to menu functions. <!-- ----------------------------------------------------------------- --> <sect1>Using ItemFactory <p> Now that we've shown you the hard way, here's how you do it using the gtk_item_factory calls. <!-- ----------------------------------------------------------------- --> <sect1>Item Factory Example <p> Here is an example using the GTK item factory. <tscreen><verb> /* example-start menu itemfactory.c */ #include <gtk/gtk.h> #include <strings.h> /* Obligatory basic callback */ static void print_hello( GtkWidget *w, gpointer data ) { g_message ("Hello, World!\n"); } /* This is the GtkItemFactoryEntry structure used to generate new menus. Item 1: The menu path. The letter after the underscore indicates an accelerator key once the menu is open. Item 2: The accelerator key for the entry Item 3: The callback function. Item 4: The callback action. This changes the parameters with which the function is called. The default is 0. Item 5: The item type, used to define what kind of an item it is. Here are the possible values: NULL -> "<Item>" "" -> "<Item>" "<Title>" -> create a title item "<Item>" -> create a simple item "<CheckItem>" -> create a check item "<ToggleItem>" -> create a toggle item "<RadioItem>" -> create a radio item <path> -> path of a radio item to link against "<Separator>" -> create a separator "<Branch>" -> create an item to hold sub items (optional) "<LastBranch>" -> create a right justified branch */ static GtkItemFactoryEntry menu_items[] = { { "/_File", NULL, NULL, 0, "<Branch>" }, { "/File/_New", "<control>N", print_hello, 0, NULL }, { "/File/_Open", "<control>O", print_hello, 0, NULL }, { "/File/_Save", "<control>S", print_hello, 0, NULL }, { "/File/Save _As", NULL, NULL, 0, NULL }, { "/File/sep1", NULL, NULL, 0, "<Separator>" }, { "/File/Quit", "<control>Q", gtk_main_quit, 0, NULL }, { "/_Options", NULL, NULL, 0, "<Branch>" }, { "/Options/Test", NULL, NULL, 0, NULL }, { "/_Help", NULL, NULL, 0, "<LastBranch>" }, { "/_Help/About", NULL, NULL, 0, NULL }, }; void get_main_menu( GtkWidget *window, GtkWidget **menubar ) { GtkItemFactory *item_factory; GtkAccelGroup *accel_group; gint nmenu_items = sizeof (menu_items) / sizeof (menu_items[0]); accel_group = gtk_accel_group_new (); /* This function initializes the item factory. Param 1: The type of menu - can be GTK_TYPE_MENU_BAR, GTK_TYPE_MENU, or GTK_TYPE_OPTION_MENU. Param 2: The path of the menu. Param 3: A pointer to a gtk_accel_group. The item factory sets up the accelerator table while generating menus. */ item_factory = gtk_item_factory_new (GTK_TYPE_MENU_BAR, "<main>", accel_group); /* This function generates the menu items. Pass the item factory, the number of items in the array, the array itself, and any callback data for the the menu items. */ gtk_item_factory_create_items (item_factory, nmenu_items, menu_items, NULL); /* Attach the new accelerator group to the window. */ gtk_window_add_accel_group (GTK_WINDOW (window), accel_group); if (menubar) /* Finally, return the actual menu bar created by the item factory. */ *menubar = gtk_item_factory_get_widget (item_factory, "<main>"); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *main_vbox; GtkWidget *menubar; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_main_quit), "WM destroy"); gtk_window_set_title (GTK_WINDOW(window), "Item Factory"); gtk_widget_set_usize (GTK_WIDGET(window), 300, 200); main_vbox = gtk_vbox_new (FALSE, 1); gtk_container_border_width (GTK_CONTAINER (main_vbox), 1); gtk_container_add (GTK_CONTAINER (window), main_vbox); gtk_widget_show (main_vbox); get_main_menu (window, &menubar); gtk_box_pack_start (GTK_BOX (main_vbox), menubar, FALSE, TRUE, 0); gtk_widget_show (menubar); gtk_widget_show (window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> For now, there's only this example. An explanation and lots 'o' comments will follow later. <!-- ***************************************************************** --> <sect> Text Widget <!-- ***************************************************************** --> <p> The Text widget allows multiple lines of text to be displayed and edited. It supports both multi-colored and multi-font text, allowing them to be mixed in any way we wish. It also has a wide set of key based text editing commands, which are compatible with Emacs. The text widget supports full cut-and-paste facilities, including the use of double- and triple-click to select a word and a whole line, respectively. <!-- ----------------------------------------------------------------- --> <sect1>Creating and Configuring a Text box <p> There is only one function for creating a new Text widget. <tscreen><verb> GtkWidget *gtk_text_new( GtkAdjustment *hadj, GtkAdjustment *vadj ); </verb></tscreen> The arguments allow us to give the Text widget pointers to Adjustments that can be used to track the viewing position of the widget. Passing NULL values to either or both of these arguments will cause the gtk_text_new function to create its own. <tscreen><verb> void gtk_text_set_adjustments( GtkText *text, GtkAdjustment *hadj, GtkAdjustment *vadj ); </verb></tscreen> The above function allows the horizontal and vertical adjustments of a text widget to be changed at any time. The text widget will not automatically create its own scrollbars when the amount of text to be displayed is too long for the display window. We therefore have to create and add them to the display layout ourselves. <tscreen><verb> vscrollbar = gtk_vscrollbar_new (GTK_TEXT(text)->vadj); gtk_box_pack_start(GTK_BOX(hbox), vscrollbar, FALSE, FALSE, 0); gtk_widget_show (vscrollbar); </verb></tscreen> The above code snippet creates a new vertical scrollbar, and attaches it to the vertical adjustment of the text widget, <tt/text/. It then packs it into a box in the normal way. Note, currently the Text widget does not support horizontal scrollbars. There are two main ways in which a Text widget can be used: to allow the user to edit a body of text, or to allow us to display multiple lines of text to the user. In order for us to switch between these modes of operation, the text widget has the following function: <tscreen><verb> void gtk_text_set_editable( GtkText *text, gint editable ); </verb></tscreen> The <tt/editable/ argument is a TRUE or FALSE value that specifies whether the user is permitted to edit the contents of the Text widget. When the text widget is editable, it will display a cursor at the current insertion point. You are not, however, restricted to just using the text widget in these two modes. You can toggle the editable state of the text widget at any time, and can insert text at any time. The text widget wraps lines of text that are too long to fit onto a single line of the display window. Its default behaviour is to break words across line breaks. This can be changed using the next function: <tscreen><verb> void gtk_text_set_word_wrap( GtkText *text, gint word_wrap ); </verb></tscreen> Using this function allows us to specify that the text widget should wrap long lines on word boundaries. The <tt/word_wrap/ argument is a TRUE or FALSE value. <!-- ----------------------------------------------------------------- --> <sect1>Text Manipulation <P> The current insertion point of a Text widget can be set using <tscreen><verb> void gtk_text_set_point( GtkText *text, guint index ); </verb></tscreen> where <tt/index/ is the position to set the insertion point. Analogous to this is the function for getting the current insertion point: <tscreen><verb> guint gtk_text_get_point( GtkText *text ); </verb></tscreen> A function that is useful in combination with the above two functions is <tscreen><verb> guint gtk_text_get_length( GtkText *text ); </verb></tscreen> which returns the current length of the Text widget. The length is the number of characters that are within the text block of the widget, including characters such as newline, which marks the end of lines. In order to insert text at the current insertion point of a Text widget, the function gtk_text_insert is used, which also allows us to specify background and foreground colors and a font for the text. <tscreen><verb> void gtk_text_insert( GtkText *text, GdkFont *font, GdkColor *fore, GdkColor *back, const char *chars, gint length ); </verb></tscreen> Passing a value of <tt/NULL/ in as the value for the foreground color, background color or font will result in the values set within the widget style to be used. Using a value of <tt/-1/ for the length parameter will result in the whole of the text string given being inserted. The text widget is one of the few within GTK that redraws itself dynamically, outside of the gtk_main function. This means that all changes to the contents of the text widget take effect immediately. This may be undesirable when performing multiple changes to the text widget. In order to allow us to perform multiple updates to the text widget without it continuously redrawing, we can freeze the widget, which temporarily stops it from automatically redrawing itself every time it is changed. We can then thaw the widget after our updates are complete. The following two functions perform this freeze and thaw action: <tscreen><verb> void gtk_text_freeze( GtkText *text ); void gtk_text_thaw( GtkText *text ); </verb></tscreen> Text is deleted from the text widget relative to the current insertion point by the following two functions. The return value is a TRUE or FALSE indicator of whether the operation was successful. <tscreen><verb> gint gtk_text_backward_delete( GtkText *text, guint nchars ); gint gtk_text_forward_delete ( GtkText *text, guint nchars ); </verb></tscreen> If you want to retrieve the contents of the text widget, then the macro <tt/GTK_TEXT_INDEX(t, index)/ allows you to retrieve the character at position <tt/index/ within the text widget <tt/t/. To retrieve larger blocks of text, we can use the function <tscreen><verb> gchar *gtk_editable_get_chars( GtkEditable *editable, gint start_pos, gint end_pos ); </verb></tscreen> This is a function of the parent class of the text widget. A value of -1 as <tt/end_pos/ signifies the end of the text. The index of the text starts at 0. The function allocates a new chunk of memory for the text block, so don't forget to free it with a call to g_free when you have finished with it. <!-- ----------------------------------------------------------------- --> <sect1>Keyboard Shortcuts <p> The text widget has a number of pre-installed keyboard shortcuts for common editing, motion and selection functions. These are accessed using Control and Alt key combinations. In addition to these, holding down the Control key whilst using cursor key movement will move the cursor by words rather than characters. Holding down Shift whilst using cursor movement will extend the selection. <sect2>Motion Shortcuts <p> <itemize> <item> Ctrl-A Beginning of line <item> Ctrl-E End of line <item> Ctrl-N Next Line <item> Ctrl-P Previous Line <item> Ctrl-B Backward one character <item> Ctrl-F Forward one character <item> Alt-B Backward one word <item> Alt-F Forward one word </itemize> <sect2>Editing Shortcuts <p> <itemize> <item> Ctrl-H Delete Backward Character (Backspace) <item> Ctrl-D Delete Forward Character (Delete) <item> Ctrl-W Delete Backward Word <item> Alt-D Delete Forward Word <item> Ctrl-K Delete to end of line <item> Ctrl-U Delete line </itemize> <sect2>Selection Shortcuts <p> <itemize> <item> Ctrl-X Cut to clipboard <item> Ctrl-C Copy to clipboard <item> Ctrl-V Paste from clipboard </itemize> <!-- ----------------------------------------------------------------- --> <sect1>A GtkText Example <p> <tscreen><verb> /* example-start text text.c */ /* text.c */ #include <stdio.h> #include <gtk/gtk.h> void text_toggle_editable (GtkWidget *checkbutton, GtkWidget *text) { gtk_text_set_editable(GTK_TEXT(text), GTK_TOGGLE_BUTTON(checkbutton)->active); } void text_toggle_word_wrap (GtkWidget *checkbutton, GtkWidget *text) { gtk_text_set_word_wrap(GTK_TEXT(text), GTK_TOGGLE_BUTTON(checkbutton)->active); } void close_application( GtkWidget *widget, gpointer data ) { gtk_main_quit(); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *box1; GtkWidget *box2; GtkWidget *hbox; GtkWidget *button; GtkWidget *check; GtkWidget *separator; GtkWidget *table; GtkWidget *vscrollbar; GtkWidget *text; GdkColormap *cmap; GdkColor color; GdkFont *fixed_font; FILE *infile; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_set_usize (window, 600, 500); gtk_window_set_policy (GTK_WINDOW(window), TRUE, TRUE, FALSE); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC(close_application), NULL); gtk_window_set_title (GTK_WINDOW (window), "Text Widget Example"); gtk_container_set_border_width (GTK_CONTAINER (window), 0); box1 = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), box1); gtk_widget_show (box1); box2 = gtk_vbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, TRUE, TRUE, 0); gtk_widget_show (box2); table = gtk_table_new (2, 2, FALSE); gtk_table_set_row_spacing (GTK_TABLE (table), 0, 2); gtk_table_set_col_spacing (GTK_TABLE (table), 0, 2); gtk_box_pack_start (GTK_BOX (box2), table, TRUE, TRUE, 0); gtk_widget_show (table); /* Create the GtkText widget */ text = gtk_text_new (NULL, NULL); gtk_text_set_editable (GTK_TEXT (text), TRUE); gtk_table_attach (GTK_TABLE (table), text, 0, 1, 0, 1, GTK_EXPAND | GTK_SHRINK | GTK_FILL, GTK_EXPAND | GTK_SHRINK | GTK_FILL, 0, 0); gtk_widget_show (text); /* Add a vertical scrollbar to the GtkText widget */ vscrollbar = gtk_vscrollbar_new (GTK_TEXT (text)->vadj); gtk_table_attach (GTK_TABLE (table), vscrollbar, 1, 2, 0, 1, GTK_FILL, GTK_EXPAND | GTK_SHRINK | GTK_FILL, 0, 0); gtk_widget_show (vscrollbar); /* Get the system color map and allocate the color red */ cmap = gdk_colormap_get_system(); color.red = 0xffff; color.green = 0; color.blue = 0; if (!gdk_color_alloc(cmap, &color)) { g_error("couldn't allocate color"); } /* Load a fixed font */ fixed_font = gdk_font_load ("-misc-fixed-medium-r-*-*-*-140-*-*-*-*-*-*"); /* Realizing a widget creates a window for it, * ready for us to insert some text */ gtk_widget_realize (text); /* Freeze the text widget, ready for multiple updates */ gtk_text_freeze (GTK_TEXT (text)); /* Insert some colored text */ gtk_text_insert (GTK_TEXT (text), NULL, &text->style->black, NULL, "Supports ", -1); gtk_text_insert (GTK_TEXT (text), NULL, &color, NULL, "colored ", -1); gtk_text_insert (GTK_TEXT (text), NULL, &text->style->black, NULL, "text and different ", -1); gtk_text_insert (GTK_TEXT (text), fixed_font, &text->style->black, NULL, "fonts\n\n", -1); /* Load the file text.c into the text window */ infile = fopen("text.c", "r"); if (infile) { char buffer[1024]; int nchars; while (1) { nchars = fread(buffer, 1, 1024, infile); gtk_text_insert (GTK_TEXT (text), fixed_font, NULL, NULL, buffer, nchars); if (nchars < 1024) break; } fclose (infile); } /* Thaw the text widget, allowing the updates to become visible */ gtk_text_thaw (GTK_TEXT (text)); hbox = gtk_hbutton_box_new (); gtk_box_pack_start (GTK_BOX (box2), hbox, FALSE, FALSE, 0); gtk_widget_show (hbox); check = gtk_check_button_new_with_label("Editable"); gtk_box_pack_start (GTK_BOX (hbox), check, FALSE, FALSE, 0); gtk_signal_connect (GTK_OBJECT(check), "toggled", GTK_SIGNAL_FUNC(text_toggle_editable), text); gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(check), TRUE); gtk_widget_show (check); check = gtk_check_button_new_with_label("Wrap Words"); gtk_box_pack_start (GTK_BOX (hbox), check, FALSE, TRUE, 0); gtk_signal_connect (GTK_OBJECT(check), "toggled", GTK_SIGNAL_FUNC(text_toggle_word_wrap), text); gtk_toggle_button_set_active(GTK_TOGGLE_BUTTON(check), FALSE); gtk_widget_show (check); separator = gtk_hseparator_new (); gtk_box_pack_start (GTK_BOX (box1), separator, FALSE, TRUE, 0); gtk_widget_show (separator); box2 = gtk_vbox_new (FALSE, 10); gtk_container_set_border_width (GTK_CONTAINER (box2), 10); gtk_box_pack_start (GTK_BOX (box1), box2, FALSE, TRUE, 0); gtk_widget_show (box2); button = gtk_button_new_with_label ("close"); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC(close_application), NULL); gtk_box_pack_start (GTK_BOX (box2), button, TRUE, TRUE, 0); GTK_WIDGET_SET_FLAGS (button, GTK_CAN_DEFAULT); gtk_widget_grab_default (button); gtk_widget_show (button); gtk_widget_show (window); gtk_main (); return(0); } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect> Undocumented Widgets <!-- ***************************************************************** --> <p> These all require authors! :) Please consider contributing to our tutorial. If you must use one of these widgets that are undocumented, I strongly suggest you take a look at their respective header files in the GTK distribution. GTK's function names are very descriptive. Once you have an understanding of how things work, it's not difficult to figure out how to use a widget simply by looking at its function declarations. This, along with a few examples from others' code, and it should be no problem. When you do come to understand all the functions of a new undocumented widget, please consider writing a tutorial on it so others may benefit from your time. <!-- ----------------------------------------------------------------- --> <sect1> CTree <p> <!-- ----------------------------------------------------------------- --> <sect1> Curves <p> <!-- ----------------------------------------------------------------- --> <sect1> Drawing Area <p> <!-- ----------------------------------------------------------------- --> <sect1> Font Selection Dialog <p> <!-- ----------------------------------------------------------------- --> <sect1> Gamma Curve <p> <!-- ----------------------------------------------------------------- --> <sect1> Image <p> <!-- ----------------------------------------------------------------- --> <sect1> Packer <p> <!-- ----------------------------------------------------------------- --> <sect1> Plugs and Sockets <p> <!-- ----------------------------------------------------------------- --> <sect1> Preview <p> <!-- (This may need to be rewritten to follow the style of the rest of the tutorial) <tscreen><verb> Previews serve a number of purposes in GIMP/GTK. The most important one is this. High quality images may take up to tens of megabytes of memory - easily! Any operation on an image that big is bound to take a long time. If it takes you 5-10 trial-and-errors (i.e., 10-20 steps, since you have to revert after you make an error) to choose the desired modification, it make take you literally hours to make the right one - if you don't run out of memory first. People who have spent hours in color darkrooms know the feeling. Previews to the rescue! But the annoyance of the delay is not the only issue. Oftentimes it is helpful to compare the Before and After versions side-by-side or at least back-to-back. If you're working with big images and 10 second delays, obtaining the Before and After impressions is, to say the least, difficult. For 30M images (4"x6", 600dpi, 24 bit) the side-by-side comparison is right out for most people, while back-to-back is more like back-to-1001, 1002, ..., 1010-back! Previews to the rescue! But there's more. Previews allow for side-by-side pre-previews. In other words, you write a plug-in (e.g., the filterpack simulation) which would have a number of here's-what-it-would-look-like-if-you-were-to-do-this previews. An approach like this acts as a sort of a preview palette and is very effective for subtle changes. Let's go previews! There's more. For certain plug-ins real-time image-specific human intervention maybe necessary. In the SuperNova plug-in, for example, the user is asked to enter the coordinates of the center of the future supernova. The easiest way to do this, really, is to present the user with a preview and ask him to interactively select the spot. Let's go previews! Finally, a couple of misc uses. One can use previews even when not working with big images. For example, they are useful when rendering complicated patterns. (Just check out the venerable Diffraction plug-in + many other ones!) As another example, take a look at the colormap rotation plug-in (work in progress). You can also use previews for little logos inside you plug-ins and even for an image of yourself, The Author. Let's go previews! When Not to Use Previews Don't use previews for graphs, drawing, etc. GDK is much faster for that. Use previews only for rendered images! Let's go previews! You can stick a preview into just about anything. In a vbox, an hbox, a table, a button, etc. But they look their best in tight frames around them. Previews by themselves do not have borders and look flat without them. (Of course, if the flat look is what you want...) Tight frames provide the necessary borders. [Image][Image] Previews in many ways are like any other widgets in GTK (whatever that means) except they possess an additional feature: they need to be filled with some sort of an image! First, we will deal exclusively with the GTK aspect of previews and then we'll discuss how to fill them. GtkWidget *preview! Without any ado: /* Create a preview widget, set its size, an show it */ GtkWidget *preview; preview=gtk_preview_new(GTK_PREVIEW_COLOR) /*Other option: GTK_PREVIEW_GRAYSCALE);*/ gtk_preview_size (GTK_PREVIEW (preview), WIDTH, HEIGHT); gtk_widget_show(preview); my_preview_rendering_function(preview); Oh yeah, like I said, previews look good inside frames, so how about: GtkWidget *create_a_preview(int Width, int Height, int Colorfulness) { GtkWidget *preview; GtkWidget *frame; frame = gtk_frame_new(NULL); gtk_frame_set_shadow_type (GTK_FRAME (frame), GTK_SHADOW_IN); gtk_container_set_border_width (GTK_CONTAINER(frame),0); gtk_widget_show(frame); preview=gtk_preview_new (Colorfulness?GTK_PREVIEW_COLOR :GTK_PREVIEW_GRAYSCALE); gtk_preview_size (GTK_PREVIEW (preview), Width, Height); gtk_container_add(GTK_CONTAINER(frame),preview); gtk_widget_show(preview); my_preview_rendering_function(preview); return frame; } That's my basic preview. This routine returns the "parent" frame so you can place it somewhere else in your interface. Of course, you can pass the parent frame to this routine as a parameter. In many situations, however, the contents of the preview are changed continually by your application. In this case you may want to pass a pointer to the preview to a "create_a_preview()" and thus have control of it later. One more important note that may one day save you a lot of time. Sometimes it is desirable to label you preview. For example, you may label the preview containing the original image as "Original" and the one containing the modified image as "Less Original". It might occur to you to pack the preview along with the appropriate label into a vbox. The unexpected caveat is that if the label is wider than the preview (which may happen for a variety of reasons unforseeable to you, from the dynamic decision on the size of the preview to the size of the font) the frame expands and no longer fits tightly over the preview. The same problem can probably arise in other situations as well. [Image] The solution is to place the preview and the label into a 2x1 table and by attaching them with the following parameters (this is one possible variations of course. The key is no GTK_FILL in the second attachment): gtk_table_attach(GTK_TABLE(table),label,0,1,0,1, 0, GTK_EXPAND|GTK_FILL, 0,0); gtk_table_attach(GTK_TABLE(table),frame,0,1,1,2, GTK_EXPAND, GTK_EXPAND, 0,0); And here's the result: [Image] Misc Making a preview clickable is achieved most easily by placing it in a button. It also adds a nice border around the preview and you may not even need to place it in a frame. See the Filter Pack Simulation plug-in for an example. This is pretty much it as far as GTK is concerned. Filling In a Preview In order to familiarize ourselves with the basics of filling in previews, let's create the following pattern (contrived by trial and error): [Image] void my_preview_rendering_function(GtkWidget *preview) { #define SIZE 100 #define HALF (SIZE/2) guchar *row=(guchar *) malloc(3*SIZE); /* 3 bits per dot */ gint i, j; /* Coordinates */ double r, alpha, x, y; if (preview==NULL) return; /* I usually add this when I want */ /* to avoid silly crashes. You */ /* should probably make sure that */ /* everything has been nicely */ /* initialized! */ for (j=0; j < ABS(cos(2*alpha)) ) { /* Are we inside the shape? */ /* glib.h contains ABS(x). */ row[i*3+0] = sqrt(1-r)*255; /* Define Red */ row[i*3+1] = 128; /* Define Green */ row[i*3+2] = 224; /* Define Blue */ } /* "+0" is for alignment! */ else { row[i*3+0] = r*255; row[i*3+1] = ABS(sin((float)i/SIZE*2*PI))*255; row[i*3+2] = ABS(sin((float)j/SIZE*2*PI))*255; } } gtk_preview_draw_row( GTK_PREVIEW(preview),row,0,j,SIZE); /* Insert "row" into "preview" starting at the point with */ /* coordinates (0,j) first column, j_th row extending SIZE */ /* pixels to the right */ } free(row); /* save some space */ gtk_widget_draw(preview,NULL); /* what does this do? */ gdk_flush(); /* or this? */ } Non-GIMP users can have probably seen enough to do a lot of things already. For the GIMP users I have a few pointers to add. Image Preview It is probably wise to keep a reduced version of the image around with just enough pixels to fill the preview. This is done by selecting every n'th pixel where n is the ratio of the size of the image to the size of the preview. All further operations (including filling in the previews) are then performed on the reduced number of pixels only. The following is my implementation of reducing the image. (Keep in mind that I've had only basic C!) (UNTESTED CODE ALERT!!!) typedef struct { gint width; gint height; gint bbp; guchar *rgb; guchar *mask; } ReducedImage; enum { SELECTION_ONLY, SELECTION_IN_CONTEXT, ENTIRE_IMAGE }; ReducedImage *Reduce_The_Image(GDrawable *drawable, GDrawable *mask, gint LongerSize, gint Selection) { /* This function reduced the image down to the the selected preview size */ /* The preview size is determine by LongerSize, i.e., the greater of the */ /* two dimensions. Works for RGB images only! */ gint RH, RW; /* Reduced height and reduced width */ gint width, height; /* Width and Height of the area being reduced */ gint bytes=drawable->bpp; ReducedImage *temp=(ReducedImage *)malloc(sizeof(ReducedImage)); guchar *tempRGB, *src_row, *tempmask, *src_mask_row,R,G,B; gint i, j, whichcol, whichrow, x1, x2, y1, y2; GPixelRgn srcPR, srcMask; gint NoSelectionMade=TRUE; /* Assume that we're dealing with the entire */ /* image. */ gimp_drawable_mask_bounds (drawable->id, &x1, &y1, &x2, &y2); width = x2-x1; height = y2-y1; /* If there's a SELECTION, we got its bounds!) if (width != drawable->width && height != drawable->height) NoSelectionMade=FALSE; /* Become aware of whether the user has made an active selection */ /* This will become important later, when creating a reduced mask. */ /* If we want to preview the entire image, overrule the above! */ /* Of course, if no selection has been made, this does nothing! */ if (Selection==ENTIRE_IMAGE) { x1=0; x2=drawable->width; y1=0; y2=drawable->height; } /* If we want to preview a selection with some surrounding area we */ /* have to expand it a little bit. Consider it a bit of a riddle. */ if (Selection==SELECTION_IN_CONTEXT) { x1=MAX(0, x1-width/2.0); x2=MIN(drawable->width, x2+width/2.0); y1=MAX(0, y1-height/2.0); y2=MIN(drawable->height, y2+height/2.0); } /* How we can determine the width and the height of the area being */ /* reduced. */ width = x2-x1; height = y2-y1; /* The lines below determine which dimension is to be the longer */ /* side. The idea borrowed from the supernova plug-in. I suspect I */ /* could've thought of it myself, but the truth must be told. */ /* Plagiarism stinks! */ if (width>height) { RW=LongerSize; RH=(float) height * (float) LongerSize/ (float) width; } else { RH=LongerSize; RW=(float)width * (float) LongerSize/ (float) height; } /* The entire image is stretched into a string! */ tempRGB = (guchar *) malloc(RW*RH*bytes); tempmask = (guchar *) malloc(RW*RH); gimp_pixel_rgn_init (&srcPR, drawable, x1, y1, width, height, FALSE, FALSE); gimp_pixel_rgn_init (&srcMask, mask, x1, y1, width, height, FALSE, FALSE); /* Grab enough to save a row of image and a row of mask. */ src_row = (guchar *) malloc (width*bytes); src_mask_row = (guchar *) malloc (width); for (i=0; i < RH; i++) { whichrow=(float)i*(float)height/(float)RH; gimp_pixel_rgn_get_row (&srcPR, src_row, x1, y1+whichrow, width); gimp_pixel_rgn_get_row (&srcMask, src_mask_row, x1, y1+whichrow, width); for (j=0; j < RW; j++) { whichcol=(float)j*(float)width/(float)RW; /* No selection made = each point is completely selected! */ if (NoSelectionMade) tempmask[i*RW+j]=255; else tempmask[i*RW+j]=src_mask_row[whichcol]; /* Add the row to the one long string which now contains the image! */ tempRGB[i*RW*bytes+j*bytes+0]=src_row[whichcol*bytes+0]; tempRGB[i*RW*bytes+j*bytes+1]=src_row[whichcol*bytes+1]; tempRGB[i*RW*bytes+j*bytes+2]=src_row[whichcol*bytes+2]; /* Hold on to the alpha as well */ if (bytes==4) tempRGB[i*RW*bytes+j*bytes+3]=src_row[whichcol*bytes+3]; } } temp->bpp=bytes; temp->width=RW; temp->height=RH; temp->rgb=tempRGB; temp->mask=tempmask; return temp; } The following is a preview function which used the same ReducedImage type! Note that it uses fakes transparency (if one is present by means of fake_transparency which is defined as follows: gint fake_transparency(gint i, gint j) { if ( ((i%20)- 10) * ((j%20)- 10)>0 ) return 64; else return 196; } Now here's the preview function: void my_preview_render_function(GtkWidget *preview, gint changewhat, gint changewhich) { gint Inten, bytes=drawable->bpp; gint i, j, k; float partial; gint RW=reduced->width; gint RH=reduced->height; guchar *row=malloc(bytes*RW);; for (i=0; i < RH; i++) { for (j=0; j < RW; j++) { row[j*3+0] = reduced->rgb[i*RW*bytes + j*bytes + 0]; row[j*3+1] = reduced->rgb[i*RW*bytes + j*bytes + 1]; row[j*3+2] = reduced->rgb[i*RW*bytes + j*bytes + 2]; if (bytes==4) for (k=0; k<3; k++) { float transp=reduced->rgb[i*RW*bytes+j*bytes+3]/255.0; row[3*j+k]=transp*a[3*j+k]+(1-transp)*fake_transparency(i,j); } } gtk_preview_draw_row( GTK_PREVIEW(preview),row,0,i,RW); } free(a); gtk_widget_draw(preview,NULL); gdk_flush(); } Applicable Routines guint gtk_preview_get_type (void); /* No idea */ void gtk_preview_uninit (void); /* No idea */ GtkWidget* gtk_preview_new (GtkPreviewType type); /* Described above */ void gtk_preview_size (GtkPreview *preview, gint width, gint height); /* Allows you to resize an existing preview. */ /* Apparently there's a bug in GTK which makes */ /* this process messy. A way to clean up a mess */ /* is to manually resize the window containing */ /* the preview after resizing the preview. */ void gtk_preview_put (GtkPreview *preview, GdkWindow *window, GdkGC *gc, gint srcx, gint srcy, gint destx, gint desty, gint width, gint height); /* No idea */ void gtk_preview_put_row (GtkPreview *preview, guchar *src, guchar *dest, gint x, gint y, gint w); /* No idea */ void gtk_preview_draw_row (GtkPreview *preview, guchar *data, gint x, gint y, gint w); /* Described in the text */ void gtk_preview_set_expand (GtkPreview *preview, gint expand); /* No idea */ /* No clue for any of the below but */ /* should be standard for most widgets */ void gtk_preview_set_gamma (double gamma); void gtk_preview_set_color_cube (guint nred_shades, guint ngreen_shades, guint nblue_shades, guint ngray_shades); void gtk_preview_set_install_cmap (gint install_cmap); void gtk_preview_set_reserved (gint nreserved); GdkVisual* gtk_preview_get_visual (void); GdkColormap* gtk_preview_get_cmap (void); GtkPreviewInfo* gtk_preview_get_info (void); That's all, folks! </verb></tscreen> --> <!-- ***************************************************************** --> <sect>Setting Widget Attributes<label id="sec_setting_widget_attributes"> <!-- ***************************************************************** --> <p> This describes the functions used to operate on widgets. These can be used to set style, padding, size, etc. (Maybe I should make a whole section on accelerators.) <tscreen><verb> void gtk_widget_install_accelerator( GtkWidget *widget, GtkAcceleratorTable *table, gchar *signal_name, gchar key, guint8 modifiers ); void gtk_widget_remove_accelerator ( GtkWidget *widget, GtkAcceleratorTable *table, gchar *signal_name); void gtk_widget_activate( GtkWidget *widget ); void gtk_widget_set_name( GtkWidget *widget, gchar *name ); gchar *gtk_widget_get_name( GtkWidget *widget ); void gtk_widget_set_sensitive( GtkWidget *widget, gint sensitive ); void gtk_widget_set_style( GtkWidget *widget, GtkStyle *style ); GtkStyle *gtk_widget_get_style( GtkWidget *widget ); GtkStyle *gtk_widget_get_default_style( void ); void gtk_widget_set_uposition( GtkWidget *widget, gint x, gint y ); void gtk_widget_set_usize( GtkWidget *widget, gint width, gint height ); void gtk_widget_grab_focus( GtkWidget *widget ); void gtk_widget_show( GtkWidget *widget ); void gtk_widget_hide( GtkWidget *widget ); </verb></tscreen> <!-- ***************************************************************** --> <sect>Timeouts, IO and Idle Functions<label id="sec_timeouts"> <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Timeouts <p> You may be wondering how you make GTK do useful work when in gtk_main. Well, you have several options. Using the following function you can create a timeout function that will be called every "interval" milliseconds. <tscreen><verb> gint gtk_timeout_add( guint32 interval, GtkFunction function, gpointer data ); </verb></tscreen> The first argument is the number of milliseconds between calls to your function. The second argument is the function you wish to have called, and the third, the data passed to this callback function. The return value is an integer "tag" which may be used to stop the timeout by calling: <tscreen><verb> void gtk_timeout_remove( gint tag ); </verb></tscreen> You may also stop the timeout function by returning zero or FALSE from your callback function. Obviously this means if you want your function to continue to be called, it should return a non-zero value, i.e., TRUE. The declaration of your callback should look something like this: <tscreen><verb> gint timeout_callback( gpointer data ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Monitoring IO <p> A nifty feature of GDK (the library that underlies GTK), is the ability to have it check for data on a file descriptor for you (as returned by open(2) or socket(2)). This is especially useful for networking applications. The function: <tscreen><verb> gint gdk_input_add( gint source, GdkInputCondition condition, GdkInputFunction function, gpointer data ); </verb></tscreen> Where the first argument is the file descriptor you wish to have watched, and the second specifies what you want GDK to look for. This may be one of: <itemize> <item><tt/GDK_INPUT_READ/ - Call your function when there is data ready for reading on your file descriptor. <item>><tt/GDK_INPUT_WRITE/ - Call your function when the file descriptor is ready for writing. </itemize> As I'm sure you've figured out already, the third argument is the function you wish to have called when the above conditions are satisfied, and the fourth is the data to pass to this function. The return value is a tag that may be used to stop GDK from monitoring this file descriptor using the following function. <tscreen><verb> void gdk_input_remove( gint tag ); </verb></tscreen> The callback function should be declared as: <tscreen><verb> void input_callback( gpointer data, gint source, GdkInputCondition condition ); </verb></tscreen> Where <tt/source/ and <tt/condition/ are as specified above. <!-- ----------------------------------------------------------------- --> <sect1>Idle Functions <p> <!-- TODO: Need to check on idle priorities - TRG --> What if you have a function which you want to be called when nothing else is happening ? <tscreen><verb> gint gtk_idle_add( GtkFunction function, gpointer data ); </verb></tscreen> This causes GTK to call the specified function whenever nothing else is happening. <tscreen><verb> void gtk_idle_remove( gint tag ); </verb></tscreen> I won't explain the meaning of the arguments as they follow very much like the ones above. The function pointed to by the first argument to gtk_idle_add will be called whenever the opportunity arises. As with the others, returning FALSE will stop the idle function from being called. <!-- ***************************************************************** --> <sect>Advanced Event and Signal Handling<label id="sec_Adv_Events_and_Signals"> <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1>Signal Functions <!-- ----------------------------------------------------------------- --> <sect2>Connecting and Disconnecting Signal Handlers <p> <tscreen><verb> guint gtk_signal_connect( GtkObject *object, const gchar *name, GtkSignalFunc func, gpointer func_data ); guint gtk_signal_connect_after( GtkObject *object, const gchar *name, GtkSignalFunc func, gpointer func_data ); guint gtk_signal_connect_object( GtkObject *object, const gchar *name, GtkSignalFunc func, GtkObject *slot_object ); guint gtk_signal_connect_object_after( GtkObject *object, const gchar *name, GtkSignalFunc func, GtkObject *slot_object ); guint gtk_signal_connect_full( GtkObject *object, const gchar *name, GtkSignalFunc func, GtkCallbackMarshal marshal, gpointer data, GtkDestroyNotify destroy_func, gint object_signal, gint after ); guint gtk_signal_connect_interp( GtkObject *object, const gchar *name, GtkCallbackMarshal func, gpointer data, GtkDestroyNotify destroy_func, gint after ); void gtk_signal_connect_object_while_alive( GtkObject *object, const gchar *signal, GtkSignalFunc func, GtkObject *alive_object ); void gtk_signal_connect_while_alive( GtkObject *object, const gchar *signal, GtkSignalFunc func, gpointer func_data, GtkObject *alive_object ); void gtk_signal_disconnect( GtkObject *object, guint handler_id ); void gtk_signal_disconnect_by_func( GtkObject *object, GtkSignalFunc func, gpointer data ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2>Blocking and Unblocking Signal Handlers <p> <tscreen><verb> void gtk_signal_handler_block( GtkObject *object, guint handler_id); void gtk_signal_handler_block_by_func( GtkObject *object, GtkSignalFunc func, gpointer data ); void gtk_signal_handler_block_by_data( GtkObject *object, gpointer data ); void gtk_signal_handler_unblock( GtkObject *object, guint handler_id ); void gtk_signal_handler_unblock_by_func( GtkObject *object, GtkSignalFunc func, gpointer data ); void gtk_signal_handler_unblock_by_data( GtkObject *object, gpointer data ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2>Emitting and Stopping Signals <p> <tscreen><verb> void gtk_signal_emit( GtkObject *object, guint signal_id, ... ); void gtk_signal_emit_by_name( GtkObject *object, const gchar *name, ... ); void gtk_signal_emitv( GtkObject *object, guint signal_id, GtkArg *params ); void gtk_signal_emitv_by_name( GtkObject *object, const gchar *name, GtkArg *params ); guint gtk_signal_n_emissions( GtkObject *object, guint signal_id ); guint gtk_signal_n_emissions_by_name( GtkObject *object, const gchar *name ); void gtk_signal_emit_stop( GtkObject *object, guint signal_id ); void gtk_signal_emit_stop_by_name( GtkObject *object, const gchar *name ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Signal Emission and Propagation <p> Signal emission is the process whereby GTK runs all handlers for a specific object and signal. First, note that the return value from a signal emission is the return value of the <em>last</em> handler executed. Since event signals are all of type <tt/GTK_RUN_LAST/, this will be the default (GTK supplied) handler, unless you connect with gtk_signal_connect_after(). The way an event (say "button_press_event") is handled, is: <itemize> <item>Start with the widget where the event occured. <item>Emit the generic "event" signal. If that signal handler returns a value of TRUE, stop all processing. <item>Otherwise, emit a specific, "button_press_event" signal. If that returns TRUE, stop all processing. <item>Otherwise, go to the widget's parent, and repeat the above two steps. <item>Continue until some signal handler returns TRUE, or until the top-level widget is reached. </itemize> Some consequences of the above are: <itemize> <item>Your handler's return value will have no effect if there is a default handler, unless you connect with gtk_signal_connect_after(). <item>To prevent the default handler from being run, you need to connect with gtk_signal_connect() and use gtk_signal_emit_stop_by_name() - the return value only affects whether the signal is propagated, not the current emission. </itemize> <!-- ***************************************************************** --> <sect>Managing Selections <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Overview <p> One type of interprocess communication supported by X and GTK is <em>selections</em>. A selection identifies a chunk of data, for instance, a portion of text, selected by the user in some fashion, for instance, by dragging with the mouse. Only one application on a display (the <em>owner</em>) can own a particular selection at one time, so when a selection is claimed by one application, the previous owner must indicate to the user that selection has been relinquished. Other applications can request the contents of a selection in different forms, called <em>targets</em>. There can be any number of selections, but most X applications only handle one, the <em>primary selection</em>. In most cases, it isn't necessary for a GTK application to deal with selections itself. The standard widgets, such as the Entry widget, already have the capability to claim the selection when appropriate (e.g., when the user drags over text), and to retrieve the contents of the selection owned by another widget or another application (e.g., when the user clicks the second mouse button). However, there may be cases in which you want to give other widgets the ability to supply the selection, or you wish to retrieve targets not supported by default. A fundamental concept needed to understand selection handling is that of the <em>atom</em>. An atom is an integer that uniquely identifies a string (on a certain display). Certain atoms are predefined by the X server, and in some cases there are constants in <tt>gtk.h</tt> corresponding to these atoms. For instance the constant <tt>GDK_PRIMARY_SELECTION</tt> corresponds to the string "PRIMARY". In other cases, you should use the functions <tt>gdk_atom_intern()</tt>, to get the atom corresponding to a string, and <tt>gdk_atom_name()</tt>, to get the name of an atom. Both selections and targets are identified by atoms. <!-- ----------------------------------------------------------------- --> <sect1> Retrieving the selection <p> Retrieving the selection is an asynchronous process. To start the process, you call: <tscreen><verb> gint gtk_selection_convert( GtkWidget *widget, GdkAtom selection, GdkAtom target, guint32 time ); </verb</tscreen> This <em>converts</em> the selection into the form specified by <tt/target/. If at all possible, the time field should be the time from the event that triggered the selection. This helps make sure that events occur in the order that the user requested them. However, if it is not available (for instance, if the conversion was triggered by a "clicked" signal), then you can use the constant <tt>GDK_CURRENT_TIME</tt>. When the selection owner responds to the request, a "selection_received" signal is sent to your application. The handler for this signal receives a pointer to a <tt>GtkSelectionData</tt> structure, which is defined as: <tscreen><verb> struct _GtkSelectionData { GdkAtom selection; GdkAtom target; GdkAtom type; gint format; guchar *data; gint length; }; </verb></tscreen> <tt>selection</tt> and <tt>target</tt> are the values you gave in your <tt>gtk_selection_convert()</tt> call. <tt>type</tt> is an atom that identifies the type of data returned by the selection owner. Some possible values are "STRING", a string of latin-1 characters, "ATOM", a series of atoms, "INTEGER", an integer, etc. Most targets can only return one type. <tt/format/ gives the length of the units (for instance characters) in bits. Usually, you don't care about this when receiving data. <tt>data</tt> is a pointer to the returned data, and <tt>length</tt> gives the length of the returned data, in bytes. If <tt>length</tt> is negative, then an error occurred and the selection could not be retrieved. This might happen if no application owned the selection, or if you requested a target that the application didn't support. The buffer is actually guaranteed to be one byte longer than <tt>length</tt>; the extra byte will always be zero, so it isn't necessary to make a copy of strings just to null terminate them. In the following example, we retrieve the special target "TARGETS", which is a list of all targets into which the selection can be converted. <tscreen><verb> /* example-start selection gettargets.c */ #include <gtk/gtk.h> void selection_received( GtkWidget *widget, GtkSelectionData *selection_data, gpointer data ); /* Signal handler invoked when user clicks on the "Get Targets" button */ void get_targets( GtkWidget *widget, gpointer data ) { static GdkAtom targets_atom = GDK_NONE; /* Get the atom corresponding to the string "TARGETS" */ if (targets_atom == GDK_NONE) targets_atom = gdk_atom_intern ("TARGETS", FALSE); /* And request the "TARGETS" target for the primary selection */ gtk_selection_convert (widget, GDK_SELECTION_PRIMARY, targets_atom, GDK_CURRENT_TIME); } /* Signal handler called when the selections owner returns the data */ void selection_received( GtkWidget *widget, GtkSelectionData *selection_data, gpointer data ) { GdkAtom *atoms; GList *item_list; int i; /* **** IMPORTANT **** Check to see if retrieval succeeded */ if (selection_data->length < 0) { g_print ("Selection retrieval failed\n"); return; } /* Make sure we got the data in the expected form */ if (selection_data->type != GDK_SELECTION_TYPE_ATOM) { g_print ("Selection \"TARGETS\" was not returned as atoms!\n"); return; } /* Print out the atoms we received */ atoms = (GdkAtom *)selection_data->data; item_list = NULL; for (i=0; i<selection_data->length/sizeof(GdkAtom); i++) { char *name; name = gdk_atom_name (atoms[i]); if (name != NULL) g_print ("%s\n",name); else g_print ("(bad atom)\n"); } return; } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *button; gtk_init (&argc, &argv); /* Create the toplevel window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Event Box"); gtk_container_set_border_width (GTK_CONTAINER (window), 10); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Create a button the user can click to get targets */ button = gtk_button_new_with_label ("Get Targets"); gtk_container_add (GTK_CONTAINER (window), button); gtk_signal_connect (GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC (get_targets), NULL); gtk_signal_connect (GTK_OBJECT(button), "selection_received", GTK_SIGNAL_FUNC (selection_received), NULL); gtk_widget_show (button); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Supplying the selection <p> Supplying the selection is a bit more complicated. You must register handlers that will be called when your selection is requested. For each selection/target pair you will handle, you make a call to: <tscreen><verb> void gtk_selection_add_target (GtkWidget *widget, GdkAtom selection, GdkAtom target, guint info); </verb></tscreen> <tt/widget/, <tt/selection/, and <tt/target/ identify the requests this handler will manage. When a request for a selection is received, the "selection_get" signal will be called. <tt/info/ can be used as an enumerator to identify the specific target within the callback function. The callback function has the signature: <tscreen><verb> void "selection_get" (GtkWidget *widget, GtkSelectionData *selection_data, guint info, guint time); </verb></tscreen> The GtkSelectionData is the same as above, but this time, we're responsible for filling in the fields <tt/type/, <tt/format/, <tt/data/, and <tt/length/. (The <tt/format/ field is actually important here - the X server uses it to figure out whether the data needs to be byte-swapped or not. Usually it will be 8 - <em/i.e./ a character - or 32 - <em/i.e./ a. integer.) This is done by calling the function: <tscreen><verb> void gtk_selection_data_set( GtkSelectionData *selection_data, GdkAtom type, gint format, guchar *data, gint length ); </verb></tscreen> This function takes care of properly making a copy of the data so that you don't have to worry about keeping it around. (You should not fill in the fields of the GtkSelectionData structure by hand.) When prompted by the user, you claim ownership of the selection by calling: <tscreen><verb> gint gtk_selection_owner_set( GtkWidget *widget, GdkAtom selection, guint32 time ); </verb></tscreen> If another application claims ownership of the selection, you will receive a "selection_clear_event". As an example of supplying the selection, the following program adds selection functionality to a toggle button. When the toggle button is depressed, the program claims the primary selection. The only target supported (aside from certain targets like "TARGETS" supplied by GTK itself), is the "STRING" target. When this target is requested, a string representation of the time is returned. <tscreen><verb> /* example-start selection setselection.c */ #include <gtk/gtk.h> #include <time.h> /* Callback when the user toggles the selection */ void selection_toggled( GtkWidget *widget, gint *have_selection ) { if (GTK_TOGGLE_BUTTON(widget)->active) { *have_selection = gtk_selection_owner_set (widget, GDK_SELECTION_PRIMARY, GDK_CURRENT_TIME); /* if claiming the selection failed, we return the button to the out state */ if (!*have_selection) gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON(widget), FALSE); } else { if (*have_selection) { /* Before clearing the selection by setting the owner to NULL, we check if we are the actual owner */ if (gdk_selection_owner_get (GDK_SELECTION_PRIMARY) == widget->window) gtk_selection_owner_set (NULL, GDK_SELECTION_PRIMARY, GDK_CURRENT_TIME); *have_selection = FALSE; } } } /* Called when another application claims the selection */ gint selection_clear( GtkWidget *widget, GdkEventSelection *event, gint *have_selection ) { *have_selection = FALSE; gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON(widget), FALSE); return TRUE; } /* Supplies the current time as the selection. */ void selection_handle( GtkWidget *widget, GtkSelectionData *selection_data, guint info, guint time_stamp, gpointer data ) { gchar *timestr; time_t current_time; current_time = time(NULL); timestr = asctime (localtime(&current_time)); /* When we return a single string, it should not be null terminated. That will be done for us */ gtk_selection_data_set (selection_data, GDK_SELECTION_TYPE_STRING, 8, timestr, strlen(timestr)); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *selection_button; static int have_selection = FALSE; gtk_init (&argc, &argv); /* Create the toplevel window */ window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Event Box"); gtk_container_set_border_width (GTK_CONTAINER (window), 10); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); /* Create a toggle button to act as the selection */ selection_button = gtk_toggle_button_new_with_label ("Claim Selection"); gtk_container_add (GTK_CONTAINER (window), selection_button); gtk_widget_show (selection_button); gtk_signal_connect (GTK_OBJECT(selection_button), "toggled", GTK_SIGNAL_FUNC (selection_toggled), &have_selection); gtk_signal_connect (GTK_OBJECT(selection_button), "selection_clear_event", GTK_SIGNAL_FUNC (selection_clear), &have_selection); gtk_selection_add_target (selection_button, GDK_SELECTION_PRIMARY, GDK_SELECTION_TYPE_STRING, 1); gtk_signal_connect (GTK_OBJECT(selection_button), "selection_get", GTK_SIGNAL_FUNC (selection_handle), &have_selection); gtk_widget_show (selection_button); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect>GLib<label id="sec_glib"> <!-- ***************************************************************** --> <p> GLib is a lower-level library that provides many useful definitions and functions available for use when creating GDK and GTK applications. These include definitions for basic types and their limits, standard macros, type conversions, byte order, memory allocation, warnings and assertions, message logging, timers, string utilities, hook functions, a lexical scanner, dynamic loading of modules, and automatic string completion. A number of data structures (and their related operations) are also defined, including memory chunks, doubly-linked lists, singly-linked lists, hash tables, strings (which can grow dynamically), string chunks (groups of strings), arrays (which can grow in size as elements are added), balanced binary trees, N-ary trees, quarks (a two-way association of a string and a unique integer identifier), keyed data lists (lists of data elements accessible by a string or integer id), relations and tuples (tables of data which can be indexed on any number of fields), and caches. A summary of some of GLib's capabilities follows; not every function, data structure, or operation is covered here. For more complete information about the GLib routines, see the GLib documentation. One source of GLib documentation is <htmlurl url="http://www.gtk.org/" name="http://www.gtk.org/">. If you are using a language other than C, you should consult your language's binding documentation. In some cases your language may have equivalent functionality built-in, while in other cases it may not. <!-- ----------------------------------------------------------------- --> <sect1>Definitions <p> Definitions for the extremes of many of the standard types are: <tscreen><verb> G_MINFLOAT G_MAXFLOAT G_MINDOUBLE G_MAXDOUBLE G_MINSHORT G_MAXSHORT G_MININT G_MAXINT G_MINLONG G_MAXLONG </verb></tscreen> Also, the following typedefs. The ones left unspecified are dynamically set depending on the architecture. Remember to avoid counting on the size of a pointer if you want to be portable! E.g., a pointer on an Alpha is 8 bytes, but 4 on Intel 80x86 family CPUs. <tscreen><verb> char gchar; short gshort; long glong; int gint; char gboolean; unsigned char guchar; unsigned short gushort; unsigned long gulong; unsigned int guint; float gfloat; double gdouble; long double gldouble; void* gpointer; gint8 guint8 gint16 guint16 gint32 guint32 </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Doubly Linked Lists <p> The following functions are used to create, manage, and destroy standard doubly linked lists. Each element in the list contains a piece of data, together with pointers which link to the previous and next elements in the list. This enables easy movement in either direction through the list. The data item is of type "gpointer", which means the data can be a pointer to your real data or (through casting) a numeric value (but do not assume that int and gpointer have the same size!). These routines internally allocate list elements in blocks, which is more efficient than allocating elements individually. There is no function to specifically create a list. Instead, simply create a variable of type GList* and set its value to NULL; NULL is considered to be the empty list. To add elements to a list, use the g_list_append(), g_list_prepend(), g_list_insert(), or g_list_insert_sorted() routines. In all cases they accept a pointer to the beginning of the list, and return the (possibly changed) pointer to the beginning of the list. Thus, for all of the operations that add or remove elements, be sure to save the returned value! <tscreen><verb> GList *g_list_append( GList *list, gpointer data ); </verb></tscreen> This adds a new element (with value <tt/data/) onto the end of the list. <tscreen><verb> GList *g_list_prepend( GList *list, gpointer data ); </verb></tscreen> This adds a new element (with value <tt/data/) to the beginning of the list. <tscreen><verb> GList *g_list_insert( GList *list, gpointer data, gint position ); </verb></tscreen> This inserts a new element (with value data) into the list at the given position. If position is 0, this is just like g_list_prepend(); if position is less than 0, this is just like g_list_append(). <tscreen><verb> GList *g_list_remove( GList *list, gpointer data ); </verb></tscreen> This removes the element in the list with the value <tt/data/; if the element isn't there, the list is unchanged. <tscreen><verb> void g_list_free( GList *list ); </verb></tscreen> This frees all of the memory used by a GList. If the list elements refer to dynamically-allocated memory, then they should be freed first. There are many other GLib functions that support doubly linked lists; see the glib documentation for more information. Here are a few of the more useful functions' signatures: <tscreen><verb> GList *g_list_remove_link( GList *list, GList *link ); GList *g_list_reverse( GList *list ); GList *g_list_nth( GList *list, gint n ); GList *g_list_find( GList *list, gpointer data ); GList *g_list_last( GList *list ); GList *g_list_first( GList *list ); gint g_list_length( GList *list ); void g_list_foreach( GList *list, GFunc func, gpointer user_data ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Singly Linked Lists <p> Many of the above functions for singly linked lists are identical to the above. Here is a list of some of their operations: <tscreen><verb> GSList *g_slist_append( GSList *list, gpointer data ); GSList *g_slist_prepend( GSList *list, gpointer data ); GSList *g_slist_insert( GSList *list, gpointer data, gint position ); GSList *g_slist_remove( GSList *list, gpointer data ); GSList *g_slist_remove_link( GSList *list, GSList *link ); GSList *g_slist_reverse( GSList *list ); GSList *g_slist_nth( GSList *list, gint n ); GSList *g_slist_find( GSList *list, gpointer data ); GSList *g_slist_last( GSList *list ); gint g_slist_length( GSList *list ); void g_slist_foreach( GSList *list, GFunc func, gpointer user_data ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Memory Management <p> <tscreen><verb> gpointer g_malloc( gulong size ); </verb></tscreen> This is a replacement for malloc(). You do not need to check the return value as it is done for you in this function. If the memory allocation fails for whatever reasons, your applications will be terminated. <tscreen><verb> gpointer g_malloc0( gulong size ); </verb></tscreen> Same as above, but zeroes the memory before returning a pointer to it. <tscreen><verb> gpointer g_realloc( gpointer mem, gulong size ); </verb></tscreen> Relocates "size" bytes of memory starting at "mem". Obviously, the memory should have been previously allocated. <tscreen><verb> void g_free( gpointer mem ); </verb></tscreen> Frees memory. Easy one. If <tt/mem/ is NULL it simply returns. <tscreen><verb> void g_mem_profile( void ); </verb></tscreen> Dumps a profile of used memory, but requires that you add <tt>#define MEM_PROFILE</tt> to the top of glib/gmem.c and re-make and make install. <tscreen><verb> void g_mem_check( gpointer mem ); </verb></tscreen> Checks that a memory location is valid. Requires you add <tt>#define MEM_CHECK</tt> to the top of gmem.c and re-make and make install. <!-- ----------------------------------------------------------------- --> <sect1>Timers <p> Timer functions can be used to time operations (e.g., to see how much time has elapsed). First, you create a new timer with g_timer_new(). You can then use g_timer_start() to start timing an operation, g_timer_stop() to stop timing an operation, and g_timer_elapsed() to determine the elapsed time. <tscreen><verb> GTimer *g_timer_new( void ); void g_timer_destroy( GTimer *timer ); void g_timer_start( GTimer *timer ); void g_timer_stop( GTimer *timer ); void g_timer_reset( GTimer *timer ); gdouble g_timer_elapsed( GTimer *timer, gulong *microseconds ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>String Handling <p> GLib defines a new type called a GString, which is similar to a standard C string but one that grows automatically. Its string data is null-terminated. What this gives you is protection from buffer overflow programming errors within your program. This is a very important feature, and hence I recommend that you make use of GStrings. GString itself has a simple public definition: <tscreen><verb> struct GString { gchar *str; /* Points to the string's current \0-terminated value. */ gint len; /* Current length */ }; </verb></tscreen> As you might expect, there are a number of operations you can do with a GString. <tscreen><verb> GString *g_string_new( gchar *init ); </verb></tscreen> This constructs a GString, copying the string value of <tt/init/ into the GString and returning a pointer to it. NULL may be given as the argument for an initially empty GString. <tscreen><verb> void g_string_free( GString *string, gint free_segment ); </verb></tscreen> This frees the memory for the given GString. If <tt/free_segment/ is TRUE, then this also frees its character data. <tscreen><verb> GString *g_string_assign( GString *lval, const gchar *rval ); </verb></tscreen> This copies the characters from rval into lval, destroying the previous contents of lval. Note that lval will be lengthened as necessary to hold the string's contents, unlike the standard strcpy() function. The rest of these functions should be relatively obvious (the _c versions accept a character instead of a string): <tscreen><verb> GString *g_string_truncate( GString *string, gint len ); GString *g_string_append( GString *string, gchar *val ); GString *g_string_append_c( GString *string, gchar c ); GString *g_string_prepend( GString *string, gchar *val ); GString *g_string_prepend_c( GString *string, gchar c ); void g_string_sprintf( GString *string, gchar *fmt, ...); void g_string_sprintfa ( GString *string, gchar *fmt, ... ); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>Utility and Error Functions <p> <tscreen><verb> gchar *g_strdup( const gchar *str ); </verb></tscreen> Replacement strdup function. Copies the original strings contents to newly allocated memory, and returns a pointer to it. <tscreen><verb> gchar *g_strerror( gint errnum ); </verb></tscreen> I recommend using this for all error messages. It's much nicer, and more portable than perror() or others. The output is usually of the form: <tscreen><verb> program name:function that failed:file or further description:strerror </verb></tscreen> Here's an example of one such call used in our hello_world program: <tscreen><verb> g_print("hello_world:open:%s:%s\n", filename, g_strerror(errno)); </verb></tscreen> <tscreen><verb> void g_error( gchar *format, ... ); </verb></tscreen> Prints an error message. The format is just like printf, but it prepends "** ERROR **: " to your message, and exits the program. Use only for fatal errors. <tscreen><verb> void g_warning( gchar *format, ... ); </verb></tscreen> Same as above, but prepends "** WARNING **: ", and does not exit the program. <tscreen><verb> void g_message( gchar *format, ... ); </verb></tscreen> Prints "message: " prepended to the string you pass in. <tscreen><verb> void g_print( gchar *format, ... ); </verb></tscreen> Replacement for printf(). And our last function: <tscreen><verb> gchar *g_strsignal( gint signum ); </verb></tscreen> Prints out the name of the Unix system signal given the signal number. Useful in generic signal handling functions. All of the above are more or less just stolen from glib.h. If anyone cares to document any function, just send me an email! <!-- ***************************************************************** --> <sect>GTK's rc Files <label id="sec_gtkrc_files"> <!-- ***************************************************************** --> <p> GTK has its own way of dealing with application defaults, by using rc files. These can be used to set the colors of just about any widget, and can also be used to tile pixmaps onto the background of some widgets. <!-- ----------------------------------------------------------------- --> <sect1>Functions For rc Files <p> When your application starts, you should include a call to: <tscreen><verb> void gtk_rc_parse( char *filename ); </verb></tscreen> Passing in the filename of your rc file. This will cause GTK to parse this file, and use the style settings for the widget types defined there. If you wish to have a special set of widgets that can take on a different style from others, or any other logical division of widgets, use a call to: <tscreen><verb> void gtk_widget_set_name( GtkWidget *widget, gchar *name ); </verb></tscreen> Passing your newly created widget as the first argument, and the name you wish to give it as the second. This will allow you to change the attributes of this widget by name through the rc file. If we use a call something like this: <tscreen><verb> button = gtk_button_new_with_label ("Special Button"); gtk_widget_set_name (button, "special button"); </verb></tscreen> Then this button is given the name "special button" and may be addressed by name in the rc file as "special button.GtkButton". [<--- Verify ME!] The example rc file below, sets the properties of the main window, and lets all children of that main window inherit the style described by the "main button" style. The code used in the application is: <tscreen><verb> window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_set_name (window, "main window"); </verb></tscreen> And then the style is defined in the rc file using: <tscreen><verb> widget "main window.*GtkButton*" style "main_button" </verb></tscreen> Which sets all the Button widgets in the "main window" to the "main_buttons" style as defined in the rc file. As you can see, this is a fairly powerful and flexible system. Use your imagination as to how best to take advantage of this. <!-- ----------------------------------------------------------------- --> <sect1>GTK's rc File Format <p> The format of the GTK file is illustrated in the example below. This is the testgtkrc file from the GTK distribution, but I've added a few comments and things. You may wish to include this explanation in your application to allow the user to fine tune his application. There are several directives to change the attributes of a widget. <itemize> <item>fg - Sets the foreground color of a widget. <item>bg - Sets the background color of a widget. <item>bg_pixmap - Sets the background of a widget to a tiled pixmap. <item>font - Sets the font to be used with the given widget. </itemize> In addition to this, there are several states a widget can be in, and you can set different colors, pixmaps and fonts for each state. These states are: <itemize> <item>NORMAL - The normal state of a widget, without the mouse over top of it, and not being pressed, etc. <item>PRELIGHT - When the mouse is over top of the widget, colors defined using this state will be in effect. <item>ACTIVE - When the widget is pressed or clicked it will be active, and the attributes assigned by this tag will be in effect. <item>INSENSITIVE - When a widget is set insensitive, and cannot be activated, it will take these attributes. <item>SELECTED - When an object is selected, it takes these attributes. </itemize> When using the "fg" and "bg" keywords to set the colors of widgets, the format is: <tscreen><verb> fg[<STATE>] = { Red, Green, Blue } </verb></tscreen> Where STATE is one of the above states (PRELIGHT, ACTIVE, etc), and the Red, Green and Blue are values in the range of 0 - 1.0, { 1.0, 1.0, 1.0 } being white. They must be in float form, or they will register as 0, so a straight "1" will not work, it must be "1.0". A straight "0" is fine because it doesn't matter if it's not recognized. Unrecognized values are set to 0. bg_pixmap is very similar to the above, except the colors are replaced by a filename. pixmap_path is a list of paths separated by ":"'s. These paths will be searched for any pixmap you specify. The font directive is simply: <tscreen><verb> font = "<font name>" </verb></tscreen> The only hard part is figuring out the font string. Using xfontsel or a similar utility should help. The "widget_class" sets the style of a class of widgets. These classes are listed in the widget overview on the class hierarchy. The "widget" directive sets a specifically named set of widgets to a given style, overriding any style set for the given widget class. These widgets are registered inside the application using the gtk_widget_set_name() call. This allows you to specify the attributes of a widget on a per widget basis, rather than setting the attributes of an entire widget class. I urge you to document any of these special widgets so users may customize them. When the keyword <tt>parent</> is used as an attribute, the widget will take on the attributes of its parent in the application. When defining a style, you may assign the attributes of a previously defined style to this new one. <tscreen><verb> style "main_button" = "button" { font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*" bg[PRELIGHT] = { 0.75, 0, 0 } } </verb></tscreen> This example takes the "button" style, and creates a new "main_button" style simply by changing the font and prelight background color of the "button" style. Of course, many of these attributes don't apply to all widgets. It's a simple matter of common sense really. Anything that could apply, should. <!-- ----------------------------------------------------------------- --> <sect1>Example rc file <p> <tscreen><verb> # pixmap_path "<dir 1>:<dir 2>:<dir 3>:..." # pixmap_path "/usr/include/X11R6/pixmaps:/home/imain/pixmaps" # # style <name> [= <name>] # { # <option> # } # # widget <widget_set> style <style_name> # widget_class <widget_class_set> style <style_name> # Here is a list of all the possible states. Note that some do not apply to # certain widgets. # # NORMAL - The normal state of a widget, without the mouse over top of # it, and not being pressed, etc. # # PRELIGHT - When the mouse is over top of the widget, colors defined # using this state will be in effect. # # ACTIVE - When the widget is pressed or clicked it will be active, and # the attributes assigned by this tag will be in effect. # # INSENSITIVE - When a widget is set insensitive, and cannot be # activated, it will take these attributes. # # SELECTED - When an object is selected, it takes these attributes. # # Given these states, we can set the attributes of the widgets in each of # these states using the following directives. # # fg - Sets the foreground color of a widget. # fg - Sets the background color of a widget. # bg_pixmap - Sets the background of a widget to a tiled pixmap. # font - Sets the font to be used with the given widget. # # This sets a style called "button". The name is not really important, as # it is assigned to the actual widgets at the bottom of the file. style "window" { #This sets the padding around the window to the pixmap specified. #bg_pixmap[<STATE>] = "<pixmap filename>" bg_pixmap[NORMAL] = "warning.xpm" } style "scale" { #Sets the foreground color (font color) to red when in the "NORMAL" #state. fg[NORMAL] = { 1.0, 0, 0 } #Sets the background pixmap of this widget to that of its parent. bg_pixmap[NORMAL] = "<parent>" } style "button" { # This shows all the possible states for a button. The only one that # doesn't apply is the SELECTED state. fg[PRELIGHT] = { 0, 1.0, 1.0 } bg[PRELIGHT] = { 0, 0, 1.0 } bg[ACTIVE] = { 1.0, 0, 0 } fg[ACTIVE] = { 0, 1.0, 0 } bg[NORMAL] = { 1.0, 1.0, 0 } fg[NORMAL] = { .99, 0, .99 } bg[INSENSITIVE] = { 1.0, 1.0, 1.0 } fg[INSENSITIVE] = { 1.0, 0, 1.0 } } # In this example, we inherit the attributes of the "button" style and then # override the font and background color when prelit to create a new # "main_button" style. style "main_button" = "button" { font = "-adobe-helvetica-medium-r-normal--*-100-*-*-*-*-*-*" bg[PRELIGHT] = { 0.75, 0, 0 } } style "toggle_button" = "button" { fg[NORMAL] = { 1.0, 0, 0 } fg[ACTIVE] = { 1.0, 0, 0 } # This sets the background pixmap of the toggle_button to that of its # parent widget (as defined in the application). bg_pixmap[NORMAL] = "<parent>" } style "text" { bg_pixmap[NORMAL] = "marble.xpm" fg[NORMAL] = { 1.0, 1.0, 1.0 } } style "ruler" { font = "-adobe-helvetica-medium-r-normal--*-80-*-*-*-*-*-*" } # pixmap_path "~/.pixmaps" # These set the widget types to use the styles defined above. # The widget types are listed in the class hierarchy, but could probably be # just listed in this document for the users reference. widget_class "GtkWindow" style "window" widget_class "GtkDialog" style "window" widget_class "GtkFileSelection" style "window" widget_class "*Gtk*Scale" style "scale" widget_class "*GtkCheckButton*" style "toggle_button" widget_class "*GtkRadioButton*" style "toggle_button" widget_class "*GtkButton*" style "button" widget_class "*Ruler" style "ruler" widget_class "*GtkText" style "text" # This sets all the buttons that are children of the "main window" to # the main_button style. These must be documented to be taken advantage of. widget "main window.*GtkButton*" style "main_button" </verb></tscreen> <!-- ***************************************************************** --> <sect>Writing Your Own Widgets <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Overview <p> Although the GTK distribution comes with many types of widgets that should cover most basic needs, there may come a time when you need to create your own new widget type. Since GTK uses widget inheritance extensively, and there is already a widget that is close to what you want, it is often possible to make a useful new widget type in just a few lines of code. But before starting work on a new widget, check around first to make sure that someone has not already written it. This will prevent duplication of effort and keep the number of GTK widgets out there to a minimum, which will help keep both the code and the interface of different applications consistent. As a flip side to this, once you finish your widget, announce it to the world so other people can benefit. The best place to do this is probably the <tt>gtk-list</tt>. Complete sources for the example widgets are available at the place you got this tutorial, or from: <htmlurl url="http://www.gtk.org/~otaylor/gtk/tutorial/" name="http://www.gtk.org/~otaylor/gtk/tutorial/"> <!-- ----------------------------------------------------------------- --> <sect1> The Anatomy Of A Widget <p> In order to create a new widget, it is important to have an understanding of how GTK objects work. This section is just meant as a brief overview. See the reference documentation for the details. GTK widgets are implemented in an object oriented fashion. However, they are implemented in standard C. This greatly improves portability and stability over using current generation C++ compilers; however, it does mean that the widget writer has to pay attention to some of the implementation details. The information common to all instances of one class of widgets (e.g., to all Button widgets) is stored in the <em>class structure</em>. There is only one copy of this in which is stored information about the class's signals (which act like virtual functions in C). To support inheritance, the first field in the class structure must be a copy of the parent's class structure. The declaration of the class structure of GtkButtton looks like: <tscreen><verb> struct _GtkButtonClass { GtkContainerClass parent_class; void (* pressed) (GtkButton *button); void (* released) (GtkButton *button); void (* clicked) (GtkButton *button); void (* enter) (GtkButton *button); void (* leave) (GtkButton *button); }; </verb></tscreen> When a button is treated as a container (for instance, when it is resized), its class structure can be cast to GtkContainerClass, and the relevant fields used to handle the signals. There is also a structure for each widget that is created on a per-instance basis. This structure has fields to store information that is different for each instance of the widget. We'll call this structure the <em>object structure</em>. For the Button class, it looks like: <tscreen><verb> struct _GtkButton { GtkContainer container; GtkWidget *child; guint in_button : 1; guint button_down : 1; }; </verb></tscreen> Note that, similar to the class structure, the first field is the object structure of the parent class, so that this structure can be cast to the parent class' object structure as needed. <!-- ----------------------------------------------------------------- --> <sect1> Creating a Composite widget <!-- ----------------------------------------------------------------- --> <sect2> Introduction <p> One type of widget that you may be interested in creating is a widget that is merely an aggregate of other GTK widgets. This type of widget does nothing that couldn't be done without creating new widgets, but provides a convenient way of packaging user interface elements for reuse. The FileSelection and ColorSelection widgets in the standard distribution are examples of this type of widget. The example widget that we'll create in this section is the Tictactoe widget, a 3x3 array of toggle buttons which triggers a signal when all three buttons in a row, column, or on one of the diagonals are depressed. <!-- ----------------------------------------------------------------- --> <sect2> Choosing a parent class <p> The parent class for a composite widget is typically the container class that holds all of the elements of the composite widget. For example, the parent class of the FileSelection widget is the Dialog class. Since our buttons will be arranged in a table, it might seem natural to make our parent class the Table class. Unfortunately, this turns out not to work. The creation of a widget is divided among two functions - a <tt/WIDGETNAME_new()/ function that the user calls, and a <tt/WIDGETNAME_init()/ function which does the basic work of initializing the widget which is independent of the arguments passed to the <tt/_new()/ function. Descendant widgets only call the <tt/_init/ function of their parent widget. But this division of labor doesn't work well for tables, which when created need to know the number of rows and columns in the table. Unless we want to duplicate most of the functionality of <tt/gtk_table_new()/ in our Tictactoe widget, we had best avoid deriving it from Table. For that reason, we derive it from VBox instead, and stick our table inside the VBox. <!-- ----------------------------------------------------------------- --> <sect2> The header file <p> Each widget class has a header file which declares the object and class structures for that widget, along with public functions. A couple of features are worth pointing out. To prevent duplicate definitions, we wrap the entire header file in: <tscreen><verb> #ifndef __TICTACTOE_H__ #define __TICTACTOE_H__ . . . #endif /* __TICTACTOE_H__ */ </verb></tscreen> And to keep C++ programs that include the header file happy, in: <tscreen><verb> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ . . . #ifdef __cplusplus } #endif /* __cplusplus */ </verb></tscreen> Along with the functions and structures, we declare three standard macros in our header file, <tt/TICTACTOE(obj)/, <tt/TICTACTOE_CLASS(klass)/, and <tt/IS_TICTACTOE(obj)/, which cast a pointer into a pointer to the object or class structure, and check if an object is a Tictactoe widget respectively. Here is the complete header file: <tscreen><verb> /* tictactoe.h */ #ifndef __TICTACTOE_H__ #define __TICTACTOE_H__ #include <gdk/gdk.h> #include <gtk/gtkvbox.h> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictactoe_get_type (), Tictactoe) #define TICTACTOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictactoe_get_type (), TictactoeClass) #define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictactoe_get_type ()) typedef struct _Tictactoe Tictactoe; typedef struct _TictactoeClass TictactoeClass; struct _Tictactoe { GtkVBox vbox; GtkWidget *buttons[3][3]; }; struct _TictactoeClass { GtkVBoxClass parent_class; void (* tictactoe) (Tictactoe *ttt); }; guint tictactoe_get_type (void); GtkWidget* tictactoe_new (void); void tictactoe_clear (Tictactoe *ttt); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __TICTACTOE_H__ */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> The <tt/_get_type()/ function. <p> We now continue on to the implementation of our widget. A core function for every widget is the function <tt/WIDGETNAME_get_type()/. This function, when first called, tells GTK about the widget class, and gets an ID that uniquely identifies the widget class. Upon subsequent calls, it just returns the ID. <tscreen><verb> guint tictactoe_get_type () { static guint ttt_type = 0; if (!ttt_type) { GtkTypeInfo ttt_info = { "Tictactoe", sizeof (Tictactoe), sizeof (TictactoeClass), (GtkClassInitFunc) tictactoe_class_init, (GtkObjectInitFunc) tictactoe_init, (GtkArgSetFunc) NULL, (GtkArgGetFunc) NULL }; ttt_type = gtk_type_unique (gtk_vbox_get_type (), &ttt_info); } return ttt_type; } </verb></tscreen> The GtkTypeInfo structure has the following definition: <tscreen><verb> struct _GtkTypeInfo { gchar *type_name; guint object_size; guint class_size; GtkClassInitFunc class_init_func; GtkObjectInitFunc object_init_func; GtkArgSetFunc arg_set_func; GtkArgGetFunc arg_get_func; }; </verb></tscreen> The fields of this structure are pretty self-explanatory. We'll ignore the <tt/arg_set_func/ and <tt/arg_get_func/ fields here: they have an important, but as yet largely unimplemented, role in allowing widget options to be conveniently set from interpreted languages. Once GTK has a correctly filled in copy of this structure, it knows how to create objects of a particular widget type. <!-- ----------------------------------------------------------------- --> <sect2> The <tt/_class_init()/ function <p> The <tt/WIDGETNAME_class_init()/ function initializes the fields of the widget's class structure, and sets up any signals for the class. For our Tictactoe widget it looks like: <tscreen><verb> enum { TICTACTOE_SIGNAL, LAST_SIGNAL }; static gint tictactoe_signals[LAST_SIGNAL] = { 0 }; static void tictactoe_class_init (TictactoeClass *class) { GtkObjectClass *object_class; object_class = (GtkObjectClass*) class; tictactoe_signals[TICTACTOE_SIGNAL] = gtk_signal_new ("tictactoe", GTK_RUN_FIRST, object_class->type, GTK_SIGNAL_OFFSET (TictactoeClass, tictactoe), gtk_signal_default_marshaller, GTK_TYPE_NONE, 0); gtk_object_class_add_signals (object_class, tictactoe_signals, LAST_SIGNAL); class->tictactoe = NULL; } </verb></tscreen> Our widget has just one signal, the <tt/tictactoe/ signal that is invoked when a row, column, or diagonal is completely filled in. Not every composite widget needs signals, so if you are reading this for the first time, you may want to skip to the next section now, as things are going to get a bit complicated. The function: <tscreen><verb> gint gtk_signal_new( const gchar *name, GtkSignalRunType run_type, GtkType object_type, gint function_offset, GtkSignalMarshaller marshaller, GtkType return_val, guint nparams, ...); </verb></tscreen> Creates a new signal. The parameters are: <itemize> <item> <tt/name/: The name of the signal. <item> <tt/run_type/: Whether the default handler runs before or after user handlers. Usually this will be <tt/GTK_RUN_FIRST/, or <tt/GTK_RUN_LAST/, although there are other possibilities. <item> <tt/object_type/: The ID of the object that this signal applies to. (It will also apply to that objects descendants.) <item> <tt/function_offset/: The offset within the class structure of a pointer to the default handler. <item> <tt/marshaller/: A function that is used to invoke the signal handler. For signal handlers that have no arguments other than the object that emitted the signal and user data, we can use the pre-supplied marshaller function <tt/gtk_signal_default_marshaller/. <item> <tt/return_val/: The type of the return val. <item> <tt/nparams/: The number of parameters of the signal handler (other than the two default ones mentioned above) <item> <tt/.../: The types of the parameters. </itemize> When specifying types, the <tt/GtkType/ enumeration is used: <tscreen><verb> typedef enum { GTK_TYPE_INVALID, GTK_TYPE_NONE, GTK_TYPE_CHAR, GTK_TYPE_BOOL, GTK_TYPE_INT, GTK_TYPE_UINT, GTK_TYPE_LONG, GTK_TYPE_ULONG, GTK_TYPE_FLOAT, GTK_TYPE_DOUBLE, GTK_TYPE_STRING, GTK_TYPE_ENUM, GTK_TYPE_FLAGS, GTK_TYPE_BOXED, GTK_TYPE_FOREIGN, GTK_TYPE_CALLBACK, GTK_TYPE_ARGS, GTK_TYPE_POINTER, /* it'd be great if the next two could be removed eventually */ GTK_TYPE_SIGNAL, GTK_TYPE_C_CALLBACK, GTK_TYPE_OBJECT } GtkFundamentalType; </verb></tscreen> <tt/gtk_signal_new()/ returns a unique integer identifier for the signal, that we store in the <tt/tictactoe_signals/ array, which we index using an enumeration. (Conventionally, the enumeration elements are the signal name, uppercased, but here there would be a conflict with the <tt/TICTACTOE()/ macro, so we called it <tt/TICTACTOE_SIGNAL/ instead. After creating our signals, we need to tell GTK to associate our signals with the Tictactoe class. We do that by calling <tt/gtk_object_class_add_signals()/. We then set the pointer which points to the default handler for the "tictactoe" signal to NULL, indicating that there is no default action. <!-- ----------------------------------------------------------------- --> <sect2> The <tt/_init()/ function. <p> Each widget class also needs a function to initialize the object structure. Usually, this function has the fairly limited role of setting the fields of the structure to default values. For composite widgets, however, this function also creates the component widgets. <tscreen><verb> static void tictactoe_init (Tictactoe *ttt) { GtkWidget *table; gint i,j; table = gtk_table_new (3, 3, TRUE); gtk_container_add (GTK_CONTAINER(ttt), table); gtk_widget_show (table); for (i=0;i<3; i++) for (j=0;j<3; j++) { ttt->buttons[i][j] = gtk_toggle_button_new (); gtk_table_attach_defaults (GTK_TABLE(table), ttt->buttons[i][j], i, i+1, j, j+1); gtk_signal_connect (GTK_OBJECT (ttt->buttons[i][j]), "toggled", GTK_SIGNAL_FUNC (tictactoe_toggle), ttt); gtk_widget_set_usize (ttt->buttons[i][j], 20, 20); gtk_widget_show (ttt->buttons[i][j]); } } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> And the rest... <p> There is one more function that every widget (except for base widget types like Bin that cannot be instantiated) needs to have - the function that the user calls to create an object of that type. This is conventionally called <tt/WIDGETNAME_new()/. In some widgets, though not for the Tictactoe widgets, this function takes arguments, and does some setup based on the arguments. The other two functions are specific to the Tictactoe widget. <tt/tictactoe_clear()/ is a public function that resets all the buttons in the widget to the up position. Note the use of <tt/gtk_signal_handler_block_by_data()/ to keep our signal handler for button toggles from being triggered unnecessarily. <tt/tictactoe_toggle()/ is the signal handler that is invoked when the user clicks on a button. It checks to see if there are any winning combinations that involve the toggled button, and if so, emits the "tictactoe" signal. <tscreen><verb> GtkWidget* tictactoe_new () { return GTK_WIDGET ( gtk_type_new (tictactoe_get_type ())); } void tictactoe_clear (Tictactoe *ttt) { int i,j; for (i=0;i<3;i++) for (j=0;j<3;j++) { gtk_signal_handler_block_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt); gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (ttt->buttons[i][j]), FALSE); gtk_signal_handler_unblock_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt); } } static void tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt) { int i,k; static int rwins[8][3] = { { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } }; static int cwins[8][3] = { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 }, { 0, 1, 2 }, { 2, 1, 0 } }; int success, found; for (k=0; k<8; k++) { success = TRUE; found = FALSE; for (i=0;i<3;i++) { success = success && GTK_TOGGLE_BUTTON(ttt->buttons[rwins[k][i]][cwins[k][i]])->active; found = found || ttt->buttons[rwins[k][i]][cwins[k][i]] == widget; } if (success && found) { gtk_signal_emit (GTK_OBJECT (ttt), tictactoe_signals[TICTACTOE_SIGNAL]); break; } } } </verb></tscreen> And finally, an example program using our Tictactoe widget: <tscreen><verb> #include <gtk/gtk.h> #include "tictactoe.h" /* Invoked when a row, column or diagonal is completed */ void win (GtkWidget *widget, gpointer data) { g_print ("Yay!\n"); tictactoe_clear (TICTACTOE (widget)); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *ttt; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); /* Create a new Tictactoe widget */ ttt = tictactoe_new (); gtk_container_add (GTK_CONTAINER (window), ttt); gtk_widget_show (ttt); /* And attach to its "tictactoe" signal */ gtk_signal_connect (GTK_OBJECT (ttt), "tictactoe", GTK_SIGNAL_FUNC (win), NULL); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Creating a widget from scratch. <!-- ----------------------------------------------------------------- --> <sect2> Introduction <p> In this section, we'll learn more about how widgets display themselves on the screen and interact with events. As an example of this, we'll create an analog dial widget with a pointer that the user can drag to set the value. <!-- ----------------------------------------------------------------- --> <sect2> Displaying a widget on the screen <p> There are several steps that are involved in displaying on the screen. After the widget is created with a call to <tt/WIDGETNAME_new()/, several more functions are needed: <itemize> <item> <tt/WIDGETNAME_realize()/ is responsible for creating an X window for the widget if it has one. <item> <tt/WIDGETNAME_map()/ is invoked after the user calls <tt/gtk_widget_show()/. It is responsible for making sure the widget is actually drawn on the screen (<em/mapped/). For a container class, it must also make calls to <tt/map()/> functions of any child widgets. <item> <tt/WIDGETNAME_draw()/ is invoked when <tt/gtk_widget_draw()/ is called for the widget or one of its ancestors. It makes the actual calls to the drawing functions to draw the widget on the screen. For container widgets, this function must make calls to <tt/gtk_widget_draw()/ for its child widgets. <item> <tt/WIDGETNAME_expose()/ is a handler for expose events for the widget. It makes the necessary calls to the drawing functions to draw the exposed portion on the screen. For container widgets, this function must generate expose events for its child widgets which don't have their own windows. (If they have their own windows, then X will generate the necessary expose events.) </itemize> You might notice that the last two functions are quite similar - each is responsible for drawing the widget on the screen. In fact many types of widgets don't really care about the difference between the two. The default <tt/draw()/ function in the widget class simply generates a synthetic expose event for the redrawn area. However, some types of widgets can save work by distinguishing between the two functions. For instance, if a widget has multiple X windows, then since expose events identify the exposed window, it can redraw only the affected window, which is not possible for calls to <tt/draw()/. Container widgets, even if they don't care about the difference for themselves, can't simply use the default <tt/draw()/ function because their child widgets might care about the difference. However, it would be wasteful to duplicate the drawing code between the two functions. The convention is that such widgets have a function called <tt/WIDGETNAME_paint()/ that does the actual work of drawing the widget, that is then called by the <tt/draw()/ and <tt/expose()/ functions. In our example approach, since the dial widget is not a container widget, and only has a single window, we can take the simplest approach and use the default <tt/draw()/ function and only implement an <tt/expose()/ function. <!-- ----------------------------------------------------------------- --> <sect2> The origins of the Dial Widget <p> Just as all land animals are just variants on the first amphibian that crawled up out of the mud, GTK widgets tend to start off as variants of some other, previously written widget. Thus, although this section is entitled "Creating a Widget from Scratch", the Dial widget really began with the source code for the Range widget. This was picked as a starting point because it would be nice if our Dial had the same interface as the Scale widgets which are just specialized descendants of the Range widget. So, though the source code is presented below in finished form, it should not be implied that it was written, <em>ab initio</em> in this fashion. Also, if you aren't yet familiar with how scale widgets work from the application writer's point of view, it would be a good idea to look them over before continuing. <!-- ----------------------------------------------------------------- --> <sect2> The Basics <p> Quite a bit of our widget should look pretty familiar from the Tictactoe widget. First, we have a header file: <tscreen><verb> /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifndef __GTK_DIAL_H__ #define __GTK_DIAL_H__ #include <gdk/gdk.h> #include <gtk/gtkadjustment.h> #include <gtk/gtkwidget.h> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define GTK_DIAL(obj) GTK_CHECK_CAST (obj, gtk_dial_get_type (), GtkDial) #define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get_type (), GtkDialClass) #define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk_dial_get_type ()) typedef struct _GtkDial GtkDial; typedef struct _GtkDialClass GtkDialClass; struct _GtkDial { GtkWidget widget; /* update policy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUOUS]) */ guint policy : 2; /* Button currently pressed or 0 if none */ guint8 button; /* Dimensions of dial components */ gint radius; gint pointer_width; /* ID of update timer, or 0 if none */ guint32 timer; /* Current angle */ gfloat angle; /* Old values from adjustment stored so we know when something changes */ gfloat old_value; gfloat old_lower; gfloat old_upper; /* The adjustment object that stores the data for this dial */ GtkAdjustment *adjustment; }; struct _GtkDialClass { GtkWidgetClass parent_class; }; GtkWidget* gtk_dial_new (GtkAdjustment *adjustment); guint gtk_dial_get_type (void); GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial); void gtk_dial_set_update_policy (GtkDial *dial, GtkUpdateType policy); void gtk_dial_set_adjustment (GtkDial *dial, GtkAdjustment *adjustment); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __GTK_DIAL_H__ */ </verb></tscreen> Since there is quite a bit more going on in this widget than the last one, we have more fields in the data structure, but otherwise things are pretty similar. Next, after including header files and declaring a few constants, we have some functions to provide information about the widget and initialize it: <tscreen><verb> #include <math.h> #include <stdio.h> #include <gtk/gtkmain.h> #include <gtk/gtksignal.h> #include "gtkdial.h" #define SCROLL_DELAY_LENGTH 300 #define DIAL_DEFAULT_SIZE 100 /* Forward declarations */ [ omitted to save space ] /* Local data */ static GtkWidgetClass *parent_class = NULL; guint gtk_dial_get_type () { static guint dial_type = 0; if (!dial_type) { GtkTypeInfo dial_info = { "GtkDial", sizeof (GtkDial), sizeof (GtkDialClass), (GtkClassInitFunc) gtk_dial_class_init, (GtkObjectInitFunc) gtk_dial_init, (GtkArgSetFunc) NULL, (GtkArgGetFunc) NULL, }; dial_type = gtk_type_unique (gtk_widget_get_type (), &dial_info); } return dial_type; } static void gtk_dial_class_init (GtkDialClass *class) { GtkObjectClass *object_class; GtkWidgetClass *widget_class; object_class = (GtkObjectClass*) class; widget_class = (GtkWidgetClass*) class; parent_class = gtk_type_class (gtk_widget_get_type ()); object_class->destroy = gtk_dial_destroy; widget_class->realize = gtk_dial_realize; widget_class->expose_event = gtk_dial_expose; widget_class->size_request = gtk_dial_size_request; widget_class->size_allocate = gtk_dial_size_allocate; widget_class->button_press_event = gtk_dial_button_press; widget_class->button_release_event = gtk_dial_button_release; widget_class->motion_notify_event = gtk_dial_motion_notify; } static void gtk_dial_init (GtkDial *dial) { dial->button = 0; dial->policy = GTK_UPDATE_CONTINUOUS; dial->timer = 0; dial->radius = 0; dial->pointer_width = 0; dial->angle = 0.0; dial->old_value = 0.0; dial->old_lower = 0.0; dial->old_upper = 0.0; dial->adjustment = NULL; } GtkWidget* gtk_dial_new (GtkAdjustment *adjustment) { GtkDial *dial; dial = gtk_type_new (gtk_dial_get_type ()); if (!adjustment) adjustment = (GtkAdjustment*) gtk_adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0); gtk_dial_set_adjustment (dial, adjustment); return GTK_WIDGET (dial); } static void gtk_dial_destroy (GtkObject *object) { GtkDial *dial; g_return_if_fail (object != NULL); g_return_if_fail (GTK_IS_DIAL (object)); dial = GTK_DIAL (object); if (dial->adjustment) gtk_object_unref (GTK_OBJECT (dial->adjustment)); if (GTK_OBJECT_CLASS (parent_class)->destroy) (* GTK_OBJECT_CLASS (parent_class)->destroy) (object); } </verb></tscreen> Note that this <tt/init()/ function does less than for the Tictactoe widget, since this is not a composite widget, and the <tt/new()/ function does more, since it now has an argument. Also, note that when we store a pointer to the Adjustment object, we increment its reference count, (and correspondingly decrement it when we no longer use it) so that GTK can keep track of when it can be safely destroyed. <p> Also, there are a few function to manipulate the widget's options: <tscreen><verb> GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial) { g_return_val_if_fail (dial != NULL, NULL); g_return_val_if_fail (GTK_IS_DIAL (dial), NULL); return dial->adjustment; } void gtk_dial_set_update_policy (GtkDial *dial, GtkUpdateType policy) { g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); dial->policy = policy; } void gtk_dial_set_adjustment (GtkDial *dial, GtkAdjustment *adjustment) { g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); if (dial->adjustment) { gtk_signal_disconnect_by_data (GTK_OBJECT (dial->adjustment), (gpointer) dial); gtk_object_unref (GTK_OBJECT (dial->adjustment)); } dial->adjustment = adjustment; gtk_object_ref (GTK_OBJECT (dial->adjustment)); gtk_signal_connect (GTK_OBJECT (adjustment), "changed", (GtkSignalFunc) gtk_dial_adjustment_changed, (gpointer) dial); gtk_signal_connect (GTK_OBJECT (adjustment), "value_changed", (GtkSignalFunc) gtk_dial_adjustment_value_changed, (gpointer) dial); dial->old_value = adjustment->value; dial->old_lower = adjustment->lower; dial->old_upper = adjustment->upper; gtk_dial_update (dial); } </verb></tscreen> <sect2> <tt/gtk_dial_realize()/ <p> Now we come to some new types of functions. First, we have a function that does the work of creating the X window. Notice that a mask is passed to the function <tt/gdk_window_new()/ which specifies which fields of the GdkWindowAttr structure actually have data in them (the remaining fields will be given default values). Also worth noting is the way the event mask of the widget is created. We call <tt/gtk_widget_get_events()/ to retrieve the event mask that the user has specified for this widget (with <tt/gtk_widget_set_events()/), and add the events that we are interested in ourselves. <p> After creating the window, we set its style and background, and put a pointer to the widget in the user data field of the GdkWindow. This last step allows GTK to dispatch events for this window to the correct widget. <tscreen><verb> static void gtk_dial_realize (GtkWidget *widget) { GtkDial *dial; GdkWindowAttr attributes; gint attributes_mask; g_return_if_fail (widget != NULL); g_return_if_fail (GTK_IS_DIAL (widget)); GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED); dial = GTK_DIAL (widget); attributes.x = widget->allocation.x; attributes.y = widget->allocation.y; attributes.width = widget->allocation.width; attributes.height = widget->allocation.height; attributes.wclass = GDK_INPUT_OUTPUT; attributes.window_type = GDK_WINDOW_CHILD; attributes.event_mask = gtk_widget_get_events (widget) | GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK; attributes.visual = gtk_widget_get_visual (widget); attributes.colormap = gtk_widget_get_colormap (widget); attributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP; widget->window = gdk_window_new (widget->parent->window, &attributes, attributes_mask); widget->style = gtk_style_attach (widget->style, widget->window); gdk_window_set_user_data (widget->window, widget); gtk_style_set_background (widget->style, widget->window, GTK_STATE_ACTIVE); } </verb></tscreen> <sect2> Size negotiation <p> Before the first time that the window containing a widget is displayed, and whenever the layout of the window changes, GTK asks each child widget for its desired size. This request is handled by the function <tt/gtk_dial_size_request()/. Since our widget isn't a container widget, and has no real constraints on its size, we just return a reasonable default value. <tscreen><verb> static void gtk_dial_size_request (GtkWidget *widget, GtkRequisition *requisition) { requisition->width = DIAL_DEFAULT_SIZE; requisition->height = DIAL_DEFAULT_SIZE; } </verb></tscreen> <p> After all the widgets have requested an ideal size, the layout of the window is computed and each child widget is notified of its actual size. Usually, this will be at least as large as the requested size, but if for instance the user has resized the window, it may occasionally be smaller than the requested size. The size notification is handled by the function <tt/gtk_dial_size_allocate()/. Notice that as well as computing the sizes of some component pieces for future use, this routine also does the grunt work of moving the widget's X window into the new position and size. <tscreen><verb> static void gtk_dial_size_allocate (GtkWidget *widget, GtkAllocation *allocation) { GtkDial *dial; g_return_if_fail (widget != NULL); g_return_if_fail (GTK_IS_DIAL (widget)); g_return_if_fail (allocation != NULL); widget->allocation = *allocation; if (GTK_WIDGET_REALIZED (widget)) { dial = GTK_DIAL (widget); gdk_window_move_resize (widget->window, allocation->x, allocation->y, allocation->width, allocation->height); dial->radius = MAX(allocation->width,allocation->height) * 0.45; dial->pointer_width = dial->radius / 5; } } </verb></tscreen>. <!-- ----------------------------------------------------------------- --> <sect2> <tt/gtk_dial_expose()/ <p> As mentioned above, all the drawing of this widget is done in the handler for expose events. There's not much to remark on here except the use of the function <tt/gtk_draw_polygon/ to draw the pointer with three dimensional shading according to the colors stored in the widget's style. <tscreen><verb> static gint gtk_dial_expose (GtkWidget *widget, GdkEventExpose *event) { GtkDial *dial; GdkPoint points[3]; gdouble s,c; gdouble theta; gint xc, yc; gint tick_length; gint i; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); if (event->count > 0) return FALSE; dial = GTK_DIAL (widget); gdk_window_clear_area (widget->window, 0, 0, widget->allocation.width, widget->allocation.height); xc = widget->allocation.width/2; yc = widget->allocation.height/2; /* Draw ticks */ for (i=0; i<25; i++) { theta = (i*M_PI/18. - M_PI/6.); s = sin(theta); c = cos(theta); tick_length = (i%6 == 0) ? dial->pointer_width : dial->pointer_width/2; gdk_draw_line (widget->window, widget->style->fg_gc[widget->state], xc + c*(dial->radius - tick_length), yc - s*(dial->radius - tick_length), xc + c*dial->radius, yc - s*dial->radius); } /* Draw pointer */ s = sin(dial->angle); c = cos(dial->angle); points[0].x = xc + s*dial->pointer_width/2; points[0].y = yc + c*dial->pointer_width/2; points[1].x = xc + c*dial->radius; points[1].y = yc - s*dial->radius; points[2].x = xc - s*dial->pointer_width/2; points[2].y = yc - c*dial->pointer_width/2; gtk_draw_polygon (widget->style, widget->window, GTK_STATE_NORMAL, GTK_SHADOW_OUT, points, 3, TRUE); return FALSE; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> Event handling <p> The rest of the widget's code handles various types of events, and isn't too different from what would be found in many GTK applications. Two types of events can occur - either the user can click on the widget with the mouse and drag to move the pointer, or the value of the Adjustment object can change due to some external circumstance. When the user clicks on the widget, we check to see if the click was appropriately near the pointer, and if so, store the button that the user clicked with in the <tt/button/ field of the widget structure, and grab all mouse events with a call to <tt/gtk_grab_add()/. Subsequent motion of the mouse causes the value of the control to be recomputed (by the function <tt/gtk_dial_update_mouse/). Depending on the policy that has been set, "value_changed" events are either generated instantly (<tt/GTK_UPDATE_CONTINUOUS/), after a delay in a timer added with <tt/gtk_timeout_add()/ (<tt/GTK_UPDATE_DELAYED/), or only when the button is released (<tt/GTK_UPDATE_DISCONTINUOUS/). <tscreen><verb> static gint gtk_dial_button_press (GtkWidget *widget, GdkEventButton *event) { GtkDial *dial; gint dx, dy; double s, c; double d_parallel; double d_perpendicular; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); /* Determine if button press was within pointer region - we do this by computing the parallel and perpendicular distance of the point where the mouse was pressed from the line passing through the pointer */ dx = event->x - widget->allocation.width / 2; dy = widget->allocation.height / 2 - event->y; s = sin(dial->angle); c = cos(dial->angle); d_parallel = s*dy + c*dx; d_perpendicular = fabs(s*dx - c*dy); if (!dial->button && (d_perpendicular < dial->pointer_width/2) && (d_parallel > - dial->pointer_width)) { gtk_grab_add (widget); dial->button = event->button; gtk_dial_update_mouse (dial, event->x, event->y); } return FALSE; } static gint gtk_dial_button_release (GtkWidget *widget, GdkEventButton *event) { GtkDial *dial; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); if (dial->button == event->button) { gtk_grab_remove (widget); dial->button = 0; if (dial->policy == GTK_UPDATE_DELAYED) gtk_timeout_remove (dial->timer); if ((dial->policy != GTK_UPDATE_CONTINUOUS) && (dial->old_value != dial->adjustment->value)) gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } return FALSE; } static gint gtk_dial_motion_notify (GtkWidget *widget, GdkEventMotion *event) { GtkDial *dial; GdkModifierType mods; gint x, y, mask; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); if (dial->button != 0) { x = event->x; y = event->y; if (event->is_hint || (event->window != widget->window)) gdk_window_get_pointer (widget->window, &x, &y, &mods); switch (dial->button) { case 1: mask = GDK_BUTTON1_MASK; break; case 2: mask = GDK_BUTTON2_MASK; break; case 3: mask = GDK_BUTTON3_MASK; break; default: mask = 0; break; } if (mods & mask) gtk_dial_update_mouse (dial, x,y); } return FALSE; } static gint gtk_dial_timer (GtkDial *dial) { g_return_val_if_fail (dial != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (dial), FALSE); if (dial->policy == GTK_UPDATE_DELAYED) gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); return FALSE; } static void gtk_dial_update_mouse (GtkDial *dial, gint x, gint y) { gint xc, yc; gfloat old_value; g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); xc = GTK_WIDGET(dial)->allocation.width / 2; yc = GTK_WIDGET(dial)->allocation.height / 2; old_value = dial->adjustment->value; dial->angle = atan2(yc-y, x-xc); if (dial->angle < -M_PI/2.) dial->angle += 2*M_PI; if (dial->angle < -M_PI/6) dial->angle = -M_PI/6; if (dial->angle > 7.*M_PI/6.) dial->angle = 7.*M_PI/6.; dial->adjustment->value = dial->adjustment->lower + (7.*M_PI/6 - dial->angle) * (dial->adjustment->upper - dial->adjustment->lower) / (4.*M_PI/3.); if (dial->adjustment->value != old_value) { if (dial->policy == GTK_UPDATE_CONTINUOUS) { gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } else { gtk_widget_draw (GTK_WIDGET(dial), NULL); if (dial->policy == GTK_UPDATE_DELAYED) { if (dial->timer) gtk_timeout_remove (dial->timer); dial->timer = gtk_timeout_add (SCROLL_DELAY_LENGTH, (GtkFunction) gtk_dial_timer, (gpointer) dial); } } } } </verb></tscreen> Changes to the Adjustment by external means are communicated to our widget by the "changed" and "value_changed" signals. The handlers for these functions call <tt/gtk_dial_update()/ to validate the arguments, compute the new pointer angle, and redraw the widget (by calling <tt/gtk_widget_draw()/). <tscreen><verb> static void gtk_dial_update (GtkDial *dial) { gfloat new_value; g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); new_value = dial->adjustment->value; if (new_value < dial->adjustment->lower) new_value = dial->adjustment->lower; if (new_value > dial->adjustment->upper) new_value = dial->adjustment->upper; if (new_value != dial->adjustment->value) { dial->adjustment->value = new_value; gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } dial->angle = 7.*M_PI/6. - (new_value - dial->adjustment->lower) * 4.*M_PI/3. / (dial->adjustment->upper - dial->adjustment->lower); gtk_widget_draw (GTK_WIDGET(dial), NULL); } static void gtk_dial_adjustment_changed (GtkAdjustment *adjustment, gpointer data) { GtkDial *dial; g_return_if_fail (adjustment != NULL); g_return_if_fail (data != NULL); dial = GTK_DIAL (data); if ((dial->old_value != adjustment->value) || (dial->old_lower != adjustment->lower) || (dial->old_upper != adjustment->upper)) { gtk_dial_update (dial); dial->old_value = adjustment->value; dial->old_lower = adjustment->lower; dial->old_upper = adjustment->upper; } } static void gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment, gpointer data) { GtkDial *dial; g_return_if_fail (adjustment != NULL); g_return_if_fail (data != NULL); dial = GTK_DIAL (data); if (dial->old_value != adjustment->value) { gtk_dial_update (dial); dial->old_value = adjustment->value; } } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> Possible Enhancements <p> The Dial widget as we've described it so far runs about 670 lines of code. Although that might sound like a fair bit, we've really accomplished quite a bit with that much code, especially since much of that length is headers and boilerplate. However, there are quite a few more enhancements that could be made to this widget: <itemize> <item> If you try this widget out, you'll find that there is some flashing as the pointer is dragged around. This is because the entire widget is erased every time the pointer is moved before being redrawn. Often, the best way to handle this problem is to draw to an offscreen pixmap, then copy the final results onto the screen in one step. (The ProgressBar widget draws itself in this fashion.) <item> The user should be able to use the up and down arrow keys to increase and decrease the value. <item> It would be nice if the widget had buttons to increase and decrease the value in small or large steps. Although it would be possible to use embedded Button widgets for this, we would also like the buttons to auto-repeat when held down, as the arrows on a scrollbar do. Most of the code to implement this type of behavior can be found in the Range widget. <item> The Dial widget could be made into a container widget with a single child widget positioned at the bottom between the buttons mentioned above. The user could then add their choice of a label or entry widget to display the current value of the dial. </itemize> <!-- ----------------------------------------------------------------- --> <sect1> Learning More <p> Only a small part of the many details involved in creating widgets could be described above. If you want to write your own widgets, the best source of examples is the GTK source itself. Ask yourself some questions about the widget you want to write: IS it a Container widget? Does it have its own window? Is it a modification of an existing widget? Then find a similar widget, and start making changes. Good luck! <!-- ***************************************************************** --> <sect>Scribble, A Simple Example Drawing Program <!-- ***************************************************************** --> <!-- ----------------------------------------------------------------- --> <sect1> Overview <p> In this section, we will build a simple drawing program. In the process, we will examine how to handle mouse events, how to draw in a window, and how to do drawing better by using a backing pixmap. After creating the simple drawing program, we will extend it by adding support for XInput devices, such as drawing tablets. GTK provides support routines which makes getting extended information, such as pressure and tilt, from such devices quite easy. <!-- ----------------------------------------------------------------- --> <sect1> Event Handling <p> The GTK signals we have already discussed are for high-level actions, such as a menu item being selected. However, sometimes it is useful to learn about lower-level occurrences, such as the mouse being moved, or a key being pressed. There are also GTK signals corresponding to these low-level <em>events</em>. The handlers for these signals have an extra parameter which is a pointer to a structure containing information about the event. For instance, motion event handlers are passed a pointer to a GdkEventMotion structure which looks (in part) like: <tscreen><verb> struct _GdkEventMotion { GdkEventType type; GdkWindow *window; guint32 time; gdouble x; gdouble y; ... guint state; ... }; </verb></tscreen> <tt/type/ will be set to the event type, in this case <tt/GDK_MOTION_NOTIFY/, window is the window in which the event occurred. <tt/x/ and <tt/y/ give the coordinates of the event. <tt/state/ specifies the modifier state when the event occurred (that is, it specifies which modifier keys and mouse buttons were pressed). It is the bitwise OR of some of the following: <tscreen><verb> GDK_SHIFT_MASK GDK_LOCK_MASK GDK_CONTROL_MASK GDK_MOD1_MASK GDK_MOD2_MASK GDK_MOD3_MASK GDK_MOD4_MASK GDK_MOD5_MASK GDK_BUTTON1_MASK GDK_BUTTON2_MASK GDK_BUTTON3_MASK GDK_BUTTON4_MASK GDK_BUTTON5_MASK </verb></tscreen> As for other signals, to determine what happens when an event occurs we call <tt>gtk_signal_connect()</tt>. But we also need let GTK know which events we want to be notified about. To do this, we call the function: <tscreen><verb> void gtk_widget_set_events (GtkWidget *widget, gint events); </verb></tscreen> The second field specifies the events we are interested in. It is the bitwise OR of constants that specify different types of events. For future reference the event types are: <tscreen><verb> GDK_EXPOSURE_MASK GDK_POINTER_MOTION_MASK GDK_POINTER_MOTION_HINT_MASK GDK_BUTTON_MOTION_MASK GDK_BUTTON1_MOTION_MASK GDK_BUTTON2_MOTION_MASK GDK_BUTTON3_MOTION_MASK GDK_BUTTON_PRESS_MASK GDK_BUTTON_RELEASE_MASK GDK_KEY_PRESS_MASK GDK_KEY_RELEASE_MASK GDK_ENTER_NOTIFY_MASK GDK_LEAVE_NOTIFY_MASK GDK_FOCUS_CHANGE_MASK GDK_STRUCTURE_MASK GDK_PROPERTY_CHANGE_MASK GDK_PROXIMITY_IN_MASK GDK_PROXIMITY_OUT_MASK </verb></tscreen> There are a few subtle points that have to be observed when calling <tt/gtk_widget_set_events()/. First, it must be called before the X window for a GTK widget is created. In practical terms, this means you should call it immediately after creating the widget. Second, the widget must have an associated X window. For efficiency, many widget types do not have their own window, but draw in their parent's window. These widgets are: <tscreen><verb> GtkAlignment GtkArrow GtkBin GtkBox GtkImage GtkItem GtkLabel GtkPixmap GtkScrolledWindow GtkSeparator GtkTable GtkAspectFrame GtkFrame GtkVBox GtkHBox GtkVSeparator GtkHSeparator </verb></tscreen> To capture events for these widgets, you need to use an EventBox widget. See the section on the <ref id="sec_EventBox" name="EventBox"> widget for details. For our drawing program, we want to know when the mouse button is pressed and when the mouse is moved, so we specify <tt/GDK_POINTER_MOTION_MASK/ and <tt/GDK_BUTTON_PRESS_MASK/. We also want to know when we need to redraw our window, so we specify <tt/GDK_EXPOSURE_MASK/. Although we want to be notified via a Configure event when our window size changes, we don't have to specify the corresponding <tt/GDK_STRUCTURE_MASK/ flag, because it is automatically specified for all windows. It turns out, however, that there is a problem with just specifying <tt/GDK_POINTER_MOTION_MASK/. This will cause the server to add a new motion event to the event queue every time the user moves the mouse. Imagine that it takes us 0.1 seconds to handle a motion event, but the X server queues a new motion event every 0.05 seconds. We will soon get way behind the users drawing. If the user draws for 5 seconds, it will take us another 5 seconds to catch up after they release the mouse button! What we would like is to only get one motion event for each event we process. The way to do this is to specify <tt/GDK_POINTER_MOTION_HINT_MASK/. When we specify <tt/GDK_POINTER_MOTION_HINT_MASK/, the server sends us a motion event the first time the pointer moves after entering our window, or after a button press or release event. Subsequent motion events will be suppressed until we explicitly ask for the position of the pointer using the function: <tscreen><verb> GdkWindow* gdk_window_get_pointer (GdkWindow *window, gint *x, gint *y, GdkModifierType *mask); </verb></tscreen> (There is another function, <tt>gtk_widget_get_pointer()</tt> which has a simpler interface, but turns out not to be very useful, since it only retrieves the position of the mouse, not whether the buttons are pressed.) The code to set the events for our window then looks like: <tscreen><verb> gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event", (GtkSignalFunc) expose_event, NULL); gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event", (GtkSignalFunc) configure_event, NULL); gtk_signal_connect (GTK_OBJECT (drawing_area), "motion_notify_event", (GtkSignalFunc) motion_notify_event, NULL); gtk_signal_connect (GTK_OBJECT (drawing_area), "button_press_event", (GtkSignalFunc) button_press_event, NULL); gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK | GDK_LEAVE_NOTIFY_MASK | GDK_BUTTON_PRESS_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK); </verb></tscreen> We'll save the "expose_event" and "configure_event" handlers for later. The "motion_notify_event" and "button_press_event" handlers are pretty simple: <tscreen><verb> static gint button_press_event (GtkWidget *widget, GdkEventButton *event) { if (event->button == 1 && pixmap != NULL) draw_brush (widget, event->x, event->y); return TRUE; } static gint motion_notify_event (GtkWidget *widget, GdkEventMotion *event) { int x, y; GdkModifierType state; if (event->is_hint) gdk_window_get_pointer (event->window, &x, &y, &state); else { x = event->x; y = event->y; state = event->state; } if (state & GDK_BUTTON1_MASK && pixmap != NULL) draw_brush (widget, x, y); return TRUE; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> The DrawingArea Widget, And Drawing <p> We now turn to the process of drawing on the screen. The widget we use for this is the DrawingArea widget. A drawing area widget is essentially an X window and nothing more. It is a blank canvas in which we can draw whatever we like. A drawing area is created using the call: <tscreen><verb> GtkWidget* gtk_drawing_area_new (void); </verb></tscreen> A default size for the widget can be specified by calling: <tscreen><verb> void gtk_drawing_area_size (GtkDrawingArea *darea, gint width, gint height); </verb></tscreen> This default size can be overridden, as is true for all widgets, by calling <tt>gtk_widget_set_usize()</tt>, and that, in turn, can be overridden if the user manually resizes the the window containing the drawing area. It should be noted that when we create a DrawingArea widget, we are <em>completely</em> responsible for drawing the contents. If our window is obscured then uncovered, we get an exposure event and must redraw what was previously hidden. Having to remember everything that was drawn on the screen so we can properly redraw it can, to say the least, be a nuisance. In addition, it can be visually distracting if portions of the window are cleared, then redrawn step by step. The solution to this problem is to use an offscreen <em>backing pixmap</em>. Instead of drawing directly to the screen, we draw to an image stored in server memory but not displayed, then when the image changes or new portions of the image are displayed, we copy the relevant portions onto the screen. To create an offscreen pixmap, we call the function: <tscreen><verb> GdkPixmap* gdk_pixmap_new (GdkWindow *window, gint width, gint height, gint depth); </verb></tscreen> The <tt>window</tt> parameter specifies a GDK window that this pixmap takes some of its properties from. <tt>width</tt> and <tt>height</tt> specify the size of the pixmap. <tt>depth</tt> specifies the <em>color depth</em>, that is the number of bits per pixel, for the new window. If the depth is specified as <tt>-1</tt>, it will match the depth of <tt>window</tt>. We create the pixmap in our "configure_event" handler. This event is generated whenever the window changes size, including when it is originally created. <tscreen><verb> /* Backing pixmap for drawing area */ static GdkPixmap *pixmap = NULL; /* Create a new backing pixmap of the appropriate size */ static gint configure_event (GtkWidget *widget, GdkEventConfigure *event) { if (pixmap) gdk_pixmap_unref(pixmap); pixmap = gdk_pixmap_new(widget->window, widget->allocation.width, widget->allocation.height, -1); gdk_draw_rectangle (pixmap, widget->style->white_gc, TRUE, 0, 0, widget->allocation.width, widget->allocation.height); return TRUE; } </verb></tscreen> The call to <tt>gdk_draw_rectangle()</tt> clears the pixmap initially to white. We'll say more about that in a moment. Our exposure event handler then simply copies the relevant portion of the pixmap onto the screen (we determine the area we need to redraw by using the event->area field of the exposure event): <tscreen><verb> /* Redraw the screen from the backing pixmap */ static gint expose_event (GtkWidget *widget, GdkEventExpose *event) { gdk_draw_pixmap(widget->window, widget->style->fg_gc[GTK_WIDGET_STATE (widget)], pixmap, event->area.x, event->area.y, event->area.x, event->area.y, event->area.width, event->area.height); return FALSE; } </verb></tscreen> We've now seen how to keep the screen up to date with our pixmap, but how do we actually draw interesting stuff on our pixmap? There are a large number of calls in GTK's GDK library for drawing on <em>drawables</em>. A drawable is simply something that can be drawn upon. It can be a window, a pixmap, or a bitmap (a black and white image). We've already seen two such calls above, <tt>gdk_draw_rectangle()</tt> and <tt>gdk_draw_pixmap()</tt>. The complete list is: <tscreen><verb> gdk_draw_line () gdk_draw_rectangle () gdk_draw_arc () gdk_draw_polygon () gdk_draw_string () gdk_draw_text () gdk_draw_pixmap () gdk_draw_bitmap () gdk_draw_image () gdk_draw_points () gdk_draw_segments () </verb></tscreen> See the reference documentation or the header file <tt><gdk/gdk.h></tt> for further details on these functions. These functions all share the same first two arguments. The first argument is the drawable to draw upon, the second argument is a <em>graphics context</em> (GC). A graphics context encapsulates information about things such as foreground and background color and line width. GDK has a full set of functions for creating and modifying graphics contexts, but to keep things simple we'll just use predefined graphics contexts. Each widget has an associated style. (Which can be modified in a gtkrc file, see the section GTK's rc file.) This, among other things, stores a number of graphics contexts. Some examples of accessing these graphics contexts are: <tscreen><verb> widget->style->white_gc widget->style->black_gc widget->style->fg_gc[GTK_STATE_NORMAL] widget->style->bg_gc[GTK_WIDGET_STATE(widget)] </verb></tscreen> The fields <tt>fg_gc</tt>, <tt>bg_gc</tt>, <tt>dark_gc</tt>, and <tt>light_gc</tt> are indexed by a parameter of type <tt>GtkStateType</tt> which can take on the values: <tscreen><verb> GTK_STATE_NORMAL, GTK_STATE_ACTIVE, GTK_STATE_PRELIGHT, GTK_STATE_SELECTED, GTK_STATE_INSENSITIVE </verb></tscreen> For instance, for <tt/GTK_STATE_SELECTED/ the default foreground color is white and the default background color, dark blue. Our function <tt>draw_brush()</tt>, which does the actual drawing on the screen, is then: <tscreen><verb> /* Draw a rectangle on the screen */ static void draw_brush (GtkWidget *widget, gdouble x, gdouble y) { GdkRectangle update_rect; update_rect.x = x - 5; update_rect.y = y - 5; update_rect.width = 10; update_rect.height = 10; gdk_draw_rectangle (pixmap, widget->style->black_gc, TRUE, update_rect.x, update_rect.y, update_rect.width, update_rect.height); gtk_widget_draw (widget, &update_rect); } </verb></tscreen> After we draw the rectangle representing the brush onto the pixmap, we call the function: <tscreen><verb> void gtk_widget_draw (GtkWidget *widget, GdkRectangle *area); </verb></tscreen> which notifies X that the area given by the <tt>area</tt> parameter needs to be updated. X will eventually generate an expose event (possibly combining the areas passed in several calls to <tt>gtk_widget_draw()</tt>) which will cause our expose event handler to copy the relevant portions to the screen. We have now covered the entire drawing program except for a few mundane details like creating the main window. <!-- ----------------------------------------------------------------- --> <sect1> Adding XInput support <p> It is now possible to buy quite inexpensive input devices such as drawing tablets, which allow drawing with a much greater ease of artistic expression than does a mouse. The simplest way to use such devices is simply as a replacement for the mouse, but that misses out many of the advantages of these devices, such as: <itemize> <item> Pressure sensitivity <item> Tilt reporting <item> Sub-pixel positioning <item> Multiple inputs (for example, a stylus with a point and eraser) </itemize> For information about the XInput extension, see the <htmlurl url="http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO.html" name="XInput-HOWTO">. If we examine the full definition of, for example, the GdkEventMotion structure, we see that it has fields to support extended device information. <tscreen><verb> struct _GdkEventMotion { GdkEventType type; GdkWindow *window; guint32 time; gdouble x; gdouble y; gdouble pressure; gdouble xtilt; gdouble ytilt; guint state; gint16 is_hint; GdkInputSource source; guint32 deviceid; }; </verb></tscreen> <tt/pressure/ gives the pressure as a floating point number between 0 and 1. <tt/xtilt/ and <tt/ytilt/ can take on values between -1 and 1, corresponding to the degree of tilt in each direction. <tt/source/ and <tt/deviceid/ specify the device for which the event occurred in two different ways. <tt/source/ gives some simple information about the type of device. It can take the enumeration values: <tscreen><verb> GDK_SOURCE_MOUSE GDK_SOURCE_PEN GDK_SOURCE_ERASER GDK_SOURCE_CURSOR </verb></tscreen> <tt/deviceid/ specifies a unique numeric ID for the device. This can be used to find out further information about the device using the <tt/gdk_input_list_devices()/ call (see below). The special value <tt/GDK_CORE_POINTER/ is used for the core pointer device. (Usually the mouse.) <sect2> Enabling extended device information <p> To let GTK know about our interest in the extended device information, we merely have to add a single line to our program: <tscreen><verb> gtk_widget_set_extension_events (drawing_area, GDK_EXTENSION_EVENTS_CURSOR); </verb></tscreen> By giving the value <tt/GDK_EXTENSION_EVENTS_CURSOR/ we say that we are interested in extension events, but only if we don't have to draw our own cursor. See the section <ref id="sec_Further_Sophistications" name="Further Sophistications"> below for more information about drawing the cursor. We could also give the values <tt/GDK_EXTENSION_EVENTS_ALL/ if we were willing to draw our own cursor, or <tt/GDK_EXTENSION_EVENTS_NONE/ to revert back to the default condition. This is not completely the end of the story however. By default, no extension devices are enabled. We need a mechanism to allow users to enable and configure their extension devices. GTK provides the InputDialog widget to automate this process. The following procedure manages an InputDialog widget. It creates the dialog if it isn't present, and raises it to the top otherwise. <tscreen><verb> void input_dialog_destroy (GtkWidget *w, gpointer data) { *((GtkWidget **)data) = NULL; } void create_input_dialog () { static GtkWidget *inputd = NULL; if (!inputd) { inputd = gtk_input_dialog_new(); gtk_signal_connect (GTK_OBJECT(inputd), "destroy", (GtkSignalFunc)input_dialog_destroy, &inputd); gtk_signal_connect_object (GTK_OBJECT(GTK_INPUT_DIALOG(inputd)->close_button), "clicked", (GtkSignalFunc)gtk_widget_hide, GTK_OBJECT(inputd)); gtk_widget_hide ( GTK_INPUT_DIALOG(inputd)->save_button); gtk_widget_show (inputd); } else { if (!GTK_WIDGET_MAPPED(inputd)) gtk_widget_show(inputd); else gdk_window_raise(inputd->window); } } </verb></tscreen> (You might want to take note of the way we handle this dialog. By connecting to the "destroy" signal, we make sure that we don't keep a pointer to dialog around after it is destroyed - that could lead to a segfault.) The InputDialog has two buttons "Close" and "Save", which by default have no actions assigned to them. In the above function we make "Close" hide the dialog, hide the "Save" button, since we don't implement saving of XInput options in this program. <sect2> Using extended device information <p> Once we've enabled the device, we can just use the extended device information in the extra fields of the event structures. In fact, it is always safe to use this information since these fields will have reasonable default values even when extended events are not enabled. Once change we do have to make is to call <tt/gdk_input_window_get_pointer()/ instead of <tt/gdk_window_get_pointer/. This is necessary because <tt/gdk_window_get_pointer/ doesn't return the extended device information. <tscreen><verb> void gdk_input_window_get_pointer( GdkWindow *window, guint32 deviceid, gdouble *x, gdouble *y, gdouble *pressure, gdouble *xtilt, gdouble *ytilt, GdkModifierType *mask); </verb></tscreen> When calling this function, we need to specify the device ID as well as the window. Usually, we'll get the device ID from the <tt/deviceid/ field of an event structure. Again, this function will return reasonable values when extension events are not enabled. (In this case, <tt/event->deviceid/ will have the value <tt/GDK_CORE_POINTER/). So the basic structure of our button-press and motion event handlers doesn't change much - we just need to add code to deal with the extended information. <tscreen><verb> static gint button_press_event (GtkWidget *widget, GdkEventButton *event) { print_button_press (event->deviceid); if (event->button == 1 && pixmap != NULL) draw_brush (widget, event->source, event->x, event->y, event->pressure); return TRUE; } static gint motion_notify_event (GtkWidget *widget, GdkEventMotion *event) { gdouble x, y; gdouble pressure; GdkModifierType state; if (event->is_hint) gdk_input_window_get_pointer (event->window, event->deviceid, &x, &y, &pressure, NULL, NULL, &state); else { x = event->x; y = event->y; pressure = event->pressure; state = event->state; } if (state & GDK_BUTTON1_MASK && pixmap != NULL) draw_brush (widget, event->source, x, y, pressure); return TRUE; } </verb></tscreen> We also need to do something with the new information. Our new <tt/draw_brush()/ function draws with a different color for each <tt/event->source/ and changes the brush size depending on the pressure. <tscreen><verb> /* Draw a rectangle on the screen, size depending on pressure, and color on the type of device */ static void draw_brush (GtkWidget *widget, GdkInputSource source, gdouble x, gdouble y, gdouble pressure) { GdkGC *gc; GdkRectangle update_rect; switch (source) { case GDK_SOURCE_MOUSE: gc = widget->style->dark_gc[GTK_WIDGET_STATE (widget)]; break; case GDK_SOURCE_PEN: gc = widget->style->black_gc; break; case GDK_SOURCE_ERASER: gc = widget->style->white_gc; break; default: gc = widget->style->light_gc[GTK_WIDGET_STATE (widget)]; } update_rect.x = x - 10 * pressure; update_rect.y = y - 10 * pressure; update_rect.width = 20 * pressure; update_rect.height = 20 * pressure; gdk_draw_rectangle (pixmap, gc, TRUE, update_rect.x, update_rect.y, update_rect.width, update_rect.height); gtk_widget_draw (widget, &update_rect); } </verb></tscreen> <sect2> Finding out more about a device <p> As an example of how to find out more about a device, our program will print the name of the device that generates each button press. To find out the name of a device, we call the function: <tscreen><verb> GList *gdk_input_list_devices (void); </verb></tscreen> which returns a GList (a linked list type from the GLib library) of GdkDeviceInfo structures. The GdkDeviceInfo structure is defined as: <tscreen><verb> struct _GdkDeviceInfo { guint32 deviceid; gchar *name; GdkInputSource source; GdkInputMode mode; gint has_cursor; gint num_axes; GdkAxisUse *axes; gint num_keys; GdkDeviceKey *keys; }; </verb></tscreen> Most of these fields are configuration information that you can ignore unless you are implementing XInput configuration saving. The fieldwe are interested in here is <tt/name/ which is simply the name that X assigns to the device. The other field that isn't configuration information is <tt/has_cursor/. If <tt/has_cursor/ is false, then we we need to draw our own cursor. But since we've specified <tt/GDK_EXTENSION_EVENTS_CURSOR/, we don't have to worry about this. Our <tt/print_button_press()/ function simply iterates through the returned list until it finds a match, then prints out the name of the device. <tscreen><verb> static void print_button_press (guint32 deviceid) { GList *tmp_list; /* gdk_input_list_devices returns an internal list, so we shouldn't free it afterwards */ tmp_list = gdk_input_list_devices(); while (tmp_list) { GdkDeviceInfo *info = (GdkDeviceInfo *)tmp_list->data; if (info->deviceid == deviceid) { printf("Button press on device '%s'\n", info->name); return; } tmp_list = tmp_list->next; } } </verb></tscreen> That completes the changes to "XInputize" our program. <sect2> Further sophistications <label id="sec_Further_Sophistications"> <p> Although our program now supports XInput quite well, it lacks some features we would want in a full-featured application. First, the user probably doesn't want to have to configure their device each time they run the program, so we should allow them to save the device configuration. This is done by iterating through the return of <tt/gdk_input_list_devices()/ and writing out the configuration to a file. To restore the state next time the program is run, GDK provides functions to change device configuration: <tscreen><verb> gdk_input_set_extension_events() gdk_input_set_source() gdk_input_set_mode() gdk_input_set_axes() gdk_input_set_key() </verb></tscreen> (The list returned from <tt/gdk_input_list_devices()/ should not be modified directly.) An example of doing this can be found in the drawing program gsumi. (Available from <htmlurl url="http://www.msc.cornell.edu/~otaylor/gsumi/" name="http://www.msc.cornell.edu/~otaylor/gsumi/">) Eventually, it would be nice to have a standard way of doing this for all applications. This probably belongs at a slightly higher level than GTK, perhaps in the GNOME library. Another major omission that we have mentioned above is the lack of cursor drawing. Platforms other than XFree86 currently do not allow simultaneously using a device as both the core pointer and directly by an application. See the <url url="http://www.msc.cornell.edu/~otaylor/xinput/XInput-HOWTO.html" name="XInput-HOWTO"> for more information about this. This means that applications that want to support the widest audience need to draw their own cursor. An application that draws its own cursor needs to do two things: determine if the current device needs a cursor drawn or not, and determine if the current device is in proximity. (If the current device is a drawing tablet, it's a nice touch to make the cursor disappear when the stylus is lifted from the tablet. When the device is touching the stylus, that is called "in proximity.") The first is done by searching the device list, as we did to find out the device name. The second is achieved by selecting "proximity_out" events. An example of drawing one's own cursor is found in the "testinput" program found in the GTK distribution. <!-- ***************************************************************** --> <sect>Tips For Writing GTK Applications <!-- ***************************************************************** --> <p> This section is simply a gathering of wisdom, general style guidelines and hints to creating good GTK applications. Currently this section is very short, but I hope it will get longer in future editions of this tutorial. Use GNU autoconf and automake! They are your friends :) Automake examines C files, determines how they depend on each other, and generates a Makefile so the files can be compiled in the correct order. Autoconf permits automatic configuration of software installation, handling a large number of system quirks to increase portability. I am planning to make a quick intro on them here. When writing C code, use only C comments (beginning with "/*" and ending with "*/"), and don't use C++-style comments ("//"). Although many C compilers understand C++ comments, others don't, and the ANSI C standard does not require that C++-style comments be processed as comments. <!-- ***************************************************************** --> <sect>Contributing <label id="sec_Contributing"> <!-- ***************************************************************** --> <p> This document, like so much other great software out there, was created for free by volunteers. If you are at all knowledgeable about any aspect of GTK that does not already have documentation, please consider contributing to this document. If you do decide to contribute, please mail your text to Tony Gale, <tt><htmlurl url="mailto:gale@gtk.org" name="gale@gtk.org"></tt>. Also, be aware that the entirety of this document is free, and any addition by you provide must also be free. That is, people may use any portion of your examples in their programs, and copies of this document may be distributed at will, etc. Thank you. <!-- ***************************************************************** --> <sect>Credits <!-- ***************************************************************** --> <p> We would like to thank the following for their contributions to this text. <itemize> <item>Bawer Dagdeviren, <tt><htmlurl url="mailto:chamele0n@geocities.com" name="chamele0n@geocities.com"></tt> for the menus tutorial. <item>Raph Levien, <tt><htmlurl url="mailto:raph@acm.org" name="raph@acm.org"></tt> for hello world ala GTK, widget packing, and general all around wisdom. He's also generously donated a home for this tutorial. <item>Peter Mattis, <tt><htmlurl url="mailto:petm@xcf.berkeley.edu" name="petm@xcf.berkeley.edu"></tt> for the simplest GTK program.. and the ability to make it :) <item>Werner Koch <tt><htmlurl url="mailto:werner.koch@guug.de" name="werner.koch@guug.de"></tt> for converting the original plain text to SGML, and the widget class hierarchy. <item>Mark Crichton <tt><htmlurl url="mailto:crichton@expert.cc.purdue.edu" name="crichton@expert.cc.purdue.edu"></tt> for the menu factory code, and the table packing tutorial. <item>Owen Taylor <tt><htmlurl url="mailto:owt1@cornell.edu" name="owt1@cornell.edu"></tt> for the EventBox widget section (and the patch to the distro). He's also responsible for the selections code and tutorial, as well as the sections on writing your own GTK widgets, and the example application. Thanks a lot Owen for all you help! <item>Mark VanderBoom <tt><htmlurl url="mailto:mvboom42@calvin.edu" name="mvboom42@calvin.edu"></tt> for his wonderful work on the Notebook, Progress Bar, Dialogs, and File selection widgets. Thanks a lot Mark! You've been a great help. <item>Tim Janik <tt><htmlurl url="mailto:timj@gtk.org" name="timj@gtk.org"></tt> for his great job on the Lists Widget. His excellent work on automatically extracting the widget tree and signal information from GTK. Thanks Tim :) <item>Rajat Datta <tt><htmlurl url="mailto:rajat@ix.netcom.com" name="rajat@ix.netcom.com"</tt> for the excellent job on the Pixmap tutorial. <item>Michael K. Johnson <tt><htmlurl url="mailto:johnsonm@redhat.com" name="johnsonm@redhat.com"></tt> for info and code for popup menus. <item>David Huggins-Daines <tt><htmlurl url="mailto:bn711@freenet.carleton.ca" name="bn711@freenet.carleton.ca"></tt> for the Range Widgets and Tree Widget sections. <item>Stefan Mars <tt><htmlurl url="mailto:mars@lysator.liu.se" name="mars@lysator.liu.se"></tt> for the CList section. <item>David A. Wheeler <tt><htmlurl url="mailto:dwheeler@ida.org" name="dwheeler@ida.org"></tt> for portions of the text on GLib and various tutorial fixups and improvements. The GLib text was in turn based on material developed by Damon Chaplin <tt><htmlurl url="mailto:DAChaplin@msn.com" name="DAChaplin@msn.com"></tt> <item>David King for style checking the entire document. </itemize> And to all of you who commented on and helped refine this document. Thanks. <!-- ***************************************************************** --> <sect> Tutorial Copyright and Permissions Notice <!-- ***************************************************************** --> <p> The GTK Tutorial is Copyright (C) 1997 Ian Main. Copyright (C) 1998-1999 Tony Gale. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this document under the conditions for verbatim copying, provided that this copyright notice is included exactly as in the original, and that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. <P>Permission is granted to copy and distribute translations of this document into another language, under the above conditions for modified versions. If you are intending to incorporate this document into a published work, please contact the maintainer, and we will make an effort to ensure that you have the most up to date information available. There is no guarantee that this document lives up to its intended purpose. This is simply provided as a free resource. As such, the authors and maintainers of the information provided within can not make any guarantee that the information is even accurate. <!-- ***************************************************************** --> <appendix> <!-- ***************************************************************** --> <!-- ***************************************************************** --> <sect> GTK Signals <label id="sec_GTK_Signals"> <!-- ***************************************************************** --> <p> As GTK is an object oriented widget set, it has a hierarchy of inheritance. This inheritance mechanism applies for signals. Therefore, you should refer to the widget hierarchy tree when using the signals listed in this section. <!-- ----------------------------------------------------------------- --> <sect1>GtkObject <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkObject::destroy (GtkObject *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkWidget <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkWidget::show (GtkWidget *, gpointer); void GtkWidget::hide (GtkWidget *, gpointer); void GtkWidget::map (GtkWidget *, gpointer); void GtkWidget::unmap (GtkWidget *, gpointer); void GtkWidget::realize (GtkWidget *, gpointer); void GtkWidget::unrealize (GtkWidget *, gpointer); void GtkWidget::draw (GtkWidget *, ggpointer, gpointer); void GtkWidget::draw-focus (GtkWidget *, gpointer); void GtkWidget::draw-default (GtkWidget *, gpointer); void GtkWidget::size-request (GtkWidget *, ggpointer, gpointer); void GtkWidget::size-allocate (GtkWidget *, ggpointer, gpointer); void GtkWidget::state-changed (GtkWidget *, GtkStateType, gpointer); void GtkWidget::parent-set (GtkWidget *, GtkObject *, gpointer); void GtkWidget::style-set (GtkWidget *, GtkStyle *, gpointer); void GtkWidget::add-accelerator (GtkWidget *, gguint, GtkAccelGroup *, gguint, GdkModifierType, GtkAccelFlags, gpointer); void GtkWidget::remove-accelerator (GtkWidget *, GtkAccelGroup *, gguint, GdkModifierType, gpointer); gboolean GtkWidget::event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::button-press-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::button-release-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::motion-notify-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::delete-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::destroy-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::expose-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::key-press-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::key-release-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::enter-notify-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::leave-notify-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::configure-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::focus-in-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::focus-out-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::map-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::unmap-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::property-notify-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::selection-clear-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::selection-request-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::selection-notify-event (GtkWidget *, GdkEvent *, gpointer); void GtkWidget::selection-get (GtkWidget *, GtkSelectionData *, gguint, gpointer); void GtkWidget::selection-received (GtkWidget *, GtkSelectionData *, gguint, gpointer); gboolean GtkWidget::proximity-in-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::proximity-out-event (GtkWidget *, GdkEvent *, gpointer); void GtkWidget::drag-begin (GtkWidget *, GdkDragContext *, gpointer); void GtkWidget::drag-end (GtkWidget *, GdkDragContext *, gpointer); void GtkWidget::drag-data-delete (GtkWidget *, GdkDragContext *, gpointer); void GtkWidget::drag-leave (GtkWidget *, GdkDragContext *, gguint, gpointer); gboolean GtkWidget::drag-motion (GtkWidget *, GdkDragContext *, ggint, ggint, gguint, gpointer); gboolean GtkWidget::drag-drop (GtkWidget *, GdkDragContext *, ggint, ggint, gguint, gpointer); void GtkWidget::drag-data-get (GtkWidget *, GdkDragContext *, GtkSelectionData *, gguint, gguint, gpointer); void GtkWidget::drag-data-received (GtkWidget *, GdkDragContext *, ggint, ggint, GtkSelectionData *, gguint, gguint, gpointer); gboolean GtkWidget::client-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::no-expose-event (GtkWidget *, GdkEvent *, gpointer); gboolean GtkWidget::visibility-notify-event (GtkWidget *, GdkEvent *, gpointer); void GtkWidget::debug-msg (GtkWidget *, GtkString *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkData <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkData::disconnect (GtkData *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkContainer <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkContainer::add (GtkContainer *, GtkWidget *, gpointer); void GtkContainer::remove (GtkContainer *, GtkWidget *, gpointer); void GtkContainer::check-resize (GtkContainer *, gpointer); GtkDirectionType GtkContainer::focus (GtkContainer *, GtkDirectionType, gpointer); void GtkContainer::set-focus-child (GtkContainer *, GtkWidget *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkCalendar <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkCalendar::month-changed (GtkCalendar *, gpointer); void GtkCalendar::day-selected (GtkCalendar *, gpointer); void GtkCalendar::day-selected-double-click (GtkCalendar *, gpointer); void GtkCalendar::prev-month (GtkCalendar *, gpointer); void GtkCalendar::next-month (GtkCalendar *, gpointer); void GtkCalendar::prev-year (GtkCalendar *, gpointer); void GtkCalendar::next-year (GtkCalendar *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkEditable <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkEditable::changed (GtkEditable *, gpointer); void GtkEditable::insert-text (GtkEditable *, GtkString *, ggint, ggpointer, gpointer); void GtkEditable::delete-text (GtkEditable *, ggint, ggint, gpointer); void GtkEditable::activate (GtkEditable *, gpointer); void GtkEditable::set-editable (GtkEditable *, gboolean, gpointer); void GtkEditable::move-cursor (GtkEditable *, ggint, ggint, gpointer); void GtkEditable::move-word (GtkEditable *, ggint, gpointer); void GtkEditable::move-page (GtkEditable *, ggint, ggint, gpointer); void GtkEditable::move-to-row (GtkEditable *, ggint, gpointer); void GtkEditable::move-to-column (GtkEditable *, ggint, gpointer); void GtkEditable::kill-char (GtkEditable *, ggint, gpointer); void GtkEditable::kill-word (GtkEditable *, ggint, gpointer); void GtkEditable::kill-line (GtkEditable *, ggint, gpointer); void GtkEditable::cut-clipboard (GtkEditable *, gpointer); void GtkEditable::copy-clipboard (GtkEditable *, gpointer); void GtkEditable::paste-clipboard (GtkEditable *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkTipsQuery <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkTipsQuery::start-query (GtkTipsQuery *, gpointer); void GtkTipsQuery::stop-query (GtkTipsQuery *, gpointer); void GtkTipsQuery::widget-entered (GtkTipsQuery *, GtkWidget *, GtkString *, GtkString *, gpointer); gboolean GtkTipsQuery::widget-selected (GtkTipsQuery *, GtkWidget *, GtkString *, GtkString *, GdkEvent *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkCList <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkCList::select-row (GtkCList *, ggint, ggint, GdkEvent *, gpointer); void GtkCList::unselect-row (GtkCList *, ggint, ggint, GdkEvent *, gpointer); void GtkCList::row-move (GtkCList *, ggint, ggint, gpointer); void GtkCList::click-column (GtkCList *, ggint, gpointer); void GtkCList::resize-column (GtkCList *, ggint, ggint, gpointer); void GtkCList::toggle-focus-row (GtkCList *, gpointer); void GtkCList::select-all (GtkCList *, gpointer); void GtkCList::unselect-all (GtkCList *, gpointer); void GtkCList::undo-selection (GtkCList *, gpointer); void GtkCList::start-selection (GtkCList *, gpointer); void GtkCList::end-selection (GtkCList *, gpointer); void GtkCList::toggle-add-mode (GtkCList *, gpointer); void GtkCList::extend-selection (GtkCList *, GtkScrollType, ggfloat, gboolean, gpointer); void GtkCList::scroll-vertical (GtkCList *, GtkScrollType, ggfloat, gpointer); void GtkCList::scroll-horizontal (GtkCList *, GtkScrollType, ggfloat, gpointer); void GtkCList::abort-column-resize (GtkCList *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkNotebook <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkNotebook::switch-page (GtkNotebook *, ggpointer, gguint, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkList <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkList::selection-changed (GtkList *, gpointer); void GtkList::select-child (GtkList *, GtkWidget *, gpointer); void GtkList::unselect-child (GtkList *, GtkWidget *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkMenuShell <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkMenuShell::deactivate (GtkMenuShell *, gpointer); void GtkMenuShell::selection-done (GtkMenuShell *, gpointer); void GtkMenuShell::move-current (GtkMenuShell *, GtkMenuDirectionType, gpointer); void GtkMenuShell::activate-current (GtkMenuShell *, gboolean, gpointer); void GtkMenuShell::cancel (GtkMenuShell *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkToolbar <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkToolbar::orientation-changed (GtkToolbar *, ggint, gpointer); void GtkToolbar::style-changed (GtkToolbar *, ggint, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkTree <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkTree::selection-changed (GtkTree *, gpointer); void GtkTree::select-child (GtkTree *, GtkWidget *, gpointer); void GtkTree::unselect-child (GtkTree *, GtkWidget *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkButton <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkButton::pressed (GtkButton *, gpointer); void GtkButton::released (GtkButton *, gpointer); void GtkButton::clicked (GtkButton *, gpointer); void GtkButton::enter (GtkButton *, gpointer); void GtkButton::leave (GtkButton *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkItem <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkItem::select (GtkItem *, gpointer); void GtkItem::deselect (GtkItem *, gpointer); void GtkItem::toggle (GtkItem *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkWindow <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkWindow::set-focus (GtkWindow *, ggpointer, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkHandleBox <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkHandleBox::child-attached (GtkHandleBox *, GtkWidget *, gpointer); void GtkHandleBox::child-detached (GtkHandleBox *, GtkWidget *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkToggleButton <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkToggleButton::toggled (GtkToggleButton *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkMenuItem <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkMenuItem::activate (GtkMenuItem *, gpointer); void GtkMenuItem::activate-item (GtkMenuItem *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkListItem <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkListItem::toggle-focus-row (GtkListItem *, gpointer); void GtkListItem::select-all (GtkListItem *, gpointer); void GtkListItem::unselect-all (GtkListItem *, gpointer); void GtkListItem::undo-selection (GtkListItem *, gpointer); void GtkListItem::start-selection (GtkListItem *, gpointer); void GtkListItem::end-selection (GtkListItem *, gpointer); void GtkListItem::toggle-add-mode (GtkListItem *, gpointer); void GtkListItem::extend-selection (GtkListItem *, GtkEnum, ggfloat, gboolean, gpointer); void GtkListItem::scroll-vertical (GtkListItem *, GtkEnum, ggfloat, gpointer); void GtkListItem::scroll-horizontal (GtkListItem *, GtkEnum, ggfloat, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkTreeItem <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkTreeItem::collapse (GtkTreeItem *, gpointer); void GtkTreeItem::expand (GtkTreeItem *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkCheckMenuItem <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkCheckMenuItem::toggled (GtkCheckMenuItem *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkInputDialog <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkInputDialog::enable-device (GtkInputDialog *, ggint, gpointer); void GtkInputDialog::disable-device (GtkInputDialog *, ggint, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkColorSelection <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkColorSelection::color-changed (GtkColorSelection *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkStatusBar <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkStatusbar::text-pushed (GtkStatusbar *, gguint, GtkString *, gpointer); void GtkStatusbar::text-popped (GtkStatusbar *, gguint, GtkString *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkCTree <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkCTree::tree-select-row (GtkCTree *, GtkCTreeNode *, ggint, gpointer); void GtkCTree::tree-unselect-row (GtkCTree *, GtkCTreeNode *, ggint, gpointer); void GtkCTree::tree-expand (GtkCTree *, GtkCTreeNode *, gpointer); void GtkCTree::tree-collapse (GtkCTree *, ggpointer, gpointer); void GtkCTree::tree-move (GtkCTree *, GtkCTreeNode *, GtkCTreeNode *, GtkCTreeNode *, gpointer); void GtkCTree::change-focus-row-expansion (GtkCTree *, GtkCTreeExpansionType, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkCurve <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkCurve::curve-type-changed (GtkCurve *, gpointer); </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1>GtkAdjustment <!-- ----------------------------------------------------------------- --> <p> <tscreen><verb> void GtkAdjustment::changed (GtkAdjustment *, gpointer); void GtkAdjustment::value-changed (GtkAdjustment *, gpointer); </verb></tscreen> <!-- ***************************************************************** --> <sect> GDK Event Types<label id="sec_GDK_Event_Types"> <!-- ***************************************************************** --> <p> The following data types are passed into event handlers by GTK+. For each data type listed, the signals that use this data type are listed. <itemize> <item> GdkEvent <itemize> <item>drag_end_event </itemize> <item> GdkEventType <item> GdkEventAny <itemize> <item>delete_event <item>destroy_event <item>map_event <item>unmap_event <item>no_expose_event </itemize> <item> GdkEventExpose <itemize> <item>expose_event </itemize> <item> GdkEventNoExpose <item> GdkEventVisibility <item> GdkEventMotion <itemize> <item>motion_notify_event </itemize> <item> GdkEventButton <itemize> <item>button_press_event <item>button_release_event </itemize> <item> GdkEventKey <itemize> <item>key_press_event <item>key_release_event </itemize> <item> GdkEventCrossing <itemize> <item>enter_notify_event <item>leave_notify_event </itemize> <item> GdkEventFocus <itemize> <item>focus_in_event <item>focus_out_event </itemize> <item> GdkEventConfigure <itemize> <item>configure_event </itemize> <item> GdkEventProperty <itemize> <item>property_notify_event </itemize> <item> GdkEventSelection <itemize> <item>selection_clear_event <item>selection_request_event <item>selection_notify_event </itemize> <item> GdkEventProximity <itemize> <item>proximity_in_event <item>proximity_out_event </itemize> <item> GdkEventDragBegin <itemize> <item>drag_begin_event </itemize> <item> GdkEventDragRequest <itemize> <item>drag_request_event </itemize> <item> GdkEventDropEnter <itemize> <item>drop_enter_event </itemize> <item> GdkEventDropLeave <itemize> <item>drop_leave_event </itemize> <item> GdkEventDropDataAvailable <itemize> <item>drop_data_available_event </itemize> <item> GdkEventClient <itemize> <item>client_event </itemize> <item> GdkEventOther <itemize> <item>other_event </itemize> </itemize> The data type <tt/GdkEventType/ is a special data type that is used by all the other data types as an indicator of the data type being passed to the signal handler. As you will see below, each of the event data structures has a member of this type. It is defined as an enumeration type as follows: <tscreen><verb> typedef enum { GDK_NOTHING = -1, GDK_DELETE = 0, GDK_DESTROY = 1, GDK_EXPOSE = 2, GDK_MOTION_NOTIFY = 3, GDK_BUTTON_PRESS = 4, GDK_2BUTTON_PRESS = 5, GDK_3BUTTON_PRESS = 6, GDK_BUTTON_RELEASE = 7, GDK_KEY_PRESS = 8, GDK_KEY_RELEASE = 9, GDK_ENTER_NOTIFY = 10, GDK_LEAVE_NOTIFY = 11, GDK_FOCUS_CHANGE = 12, GDK_CONFIGURE = 13, GDK_MAP = 14, GDK_UNMAP = 15, GDK_PROPERTY_NOTIFY = 16, GDK_SELECTION_CLEAR = 17, GDK_SELECTION_REQUEST = 18, GDK_SELECTION_NOTIFY = 19, GDK_PROXIMITY_IN = 20, GDK_PROXIMITY_OUT = 21, GDK_DRAG_BEGIN = 22, GDK_DRAG_REQUEST = 23, GDK_DROP_ENTER = 24, GDK_DROP_LEAVE = 25, GDK_DROP_DATA_AVAIL = 26, GDK_CLIENT_EVENT = 27, GDK_VISIBILITY_NOTIFY = 28, GDK_NO_EXPOSE = 29, GDK_OTHER_EVENT = 9999 /* Deprecated, use filters instead */ } GdkEventType; </verb></tscreen> The other event type that is different from the others is <tt/GdkEvent/ itself. This is a union of all the other data types, which allows it to be cast to a specific event data type within a signal handler. <!-- Just a big list for now, needs expanding upon - TRG --> So, the event data types are defined as follows: <tscreen><verb> struct _GdkEventAny { GdkEventType type; GdkWindow *window; gint8 send_event; }; struct _GdkEventExpose { GdkEventType type; GdkWindow *window; gint8 send_event; GdkRectangle area; gint count; /* If non-zero, how many more events follow. */ }; struct _GdkEventNoExpose { GdkEventType type; GdkWindow *window; gint8 send_event; /* XXX: does anyone need the X major_code or minor_code fields? */ }; struct _GdkEventVisibility { GdkEventType type; GdkWindow *window; gint8 send_event; GdkVisibilityState state; }; struct _GdkEventMotion { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 time; gdouble x; gdouble y; gdouble pressure; gdouble xtilt; gdouble ytilt; guint state; gint16 is_hint; GdkInputSource source; guint32 deviceid; gdouble x_root, y_root; }; struct _GdkEventButton { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 time; gdouble x; gdouble y; gdouble pressure; gdouble xtilt; gdouble ytilt; guint state; guint button; GdkInputSource source; guint32 deviceid; gdouble x_root, y_root; }; struct _GdkEventKey { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 time; guint state; guint keyval; gint length; gchar *string; }; struct _GdkEventCrossing { GdkEventType type; GdkWindow *window; gint8 send_event; GdkWindow *subwindow; GdkNotifyType detail; }; struct _GdkEventFocus { GdkEventType type; GdkWindow *window; gint8 send_event; gint16 in; }; struct _GdkEventConfigure { GdkEventType type; GdkWindow *window; gint8 send_event; gint16 x, y; gint16 width; gint16 height; }; struct _GdkEventProperty { GdkEventType type; GdkWindow *window; gint8 send_event; GdkAtom atom; guint32 time; guint state; }; struct _GdkEventSelection { GdkEventType type; GdkWindow *window; gint8 send_event; GdkAtom selection; GdkAtom target; GdkAtom property; guint32 requestor; guint32 time; }; /* This event type will be used pretty rarely. It only is important for XInput aware programs that are drawing their own cursor */ struct _GdkEventProximity { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 time; GdkInputSource source; guint32 deviceid; }; struct _GdkEventDragRequest { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 requestor; union { struct { guint protocol_version:4; guint sendreply:1; guint willaccept:1; guint delete_data:1; /* Do *not* delete if link is sent, only if data is sent */ guint senddata:1; guint reserved:22; } flags; glong allflags; } u; guint8 isdrop; /* This gdk event can be generated by a couple of X events - this lets the app know whether the drop really occurred or we just set the data */ GdkPoint drop_coords; gchar *data_type; guint32 timestamp; }; struct _GdkEventDragBegin { GdkEventType type; GdkWindow *window; gint8 send_event; union { struct { guint protocol_version:4; guint reserved:28; } flags; glong allflags; } u; }; struct _GdkEventDropEnter { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 requestor; union { struct { guint protocol_version:4; guint sendreply:1; guint extended_typelist:1; guint reserved:26; } flags; glong allflags; } u; }; struct _GdkEventDropLeave { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 requestor; union { struct { guint protocol_version:4; guint reserved:28; } flags; glong allflags; } u; }; struct _GdkEventDropDataAvailable { GdkEventType type; GdkWindow *window; gint8 send_event; guint32 requestor; union { struct { guint protocol_version:4; guint isdrop:1; guint reserved:25; } flags; glong allflags; } u; gchar *data_type; /* MIME type */ gulong data_numbytes; gpointer data; guint32 timestamp; GdkPoint coords; }; struct _GdkEventClient { GdkEventType type; GdkWindow *window; gint8 send_event; GdkAtom message_type; gushort data_format; union { char b[20]; short s[10]; long l[5]; } data; }; struct _GdkEventOther { GdkEventType type; GdkWindow *window; gint8 send_event; GdkXEvent *xevent; }; </verb></tscreen> <!-- ***************************************************************** --> <sect> Code Examples <!-- ***************************************************************** --> <p> Below are the code examples that are used in the above text which are not included in complete form elsewhere. <!-- ----------------------------------------------------------------- --> <sect1>Tictactoe <!-- ----------------------------------------------------------------- --> <sect2>tictactoe.h <p> <tscreen><verb> /* example-start tictactoe tictactoe.h */ /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef __TICTACTOE_H__ #define __TICTACTOE_H__ #include <gdk/gdk.h> #include <gtk/gtkvbox.h> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define TICTACTOE(obj) GTK_CHECK_CAST (obj, tictactoe_get_type (), Tictactoe) #define TICTACTOE_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, tictactoe_get_type (), TictactoeClass) #define IS_TICTACTOE(obj) GTK_CHECK_TYPE (obj, tictactoe_get_type ()) typedef struct _Tictactoe Tictactoe; typedef struct _TictactoeClass TictactoeClass; struct _Tictactoe { GtkVBox vbox; GtkWidget *buttons[3][3]; }; struct _TictactoeClass { GtkVBoxClass parent_class; void (* tictactoe) (Tictactoe *ttt); }; guint tictactoe_get_type (void); GtkWidget* tictactoe_new (void); void tictactoe_clear (Tictactoe *ttt); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __TICTACTOE_H__ */ /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2>tictactoe.c <p> <tscreen><verb> /* example-start tictactoe tictactoe.c */ /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include "gtk/gtksignal.h" #include "gtk/gtktable.h" #include "gtk/gtktogglebutton.h" #include "tictactoe.h" enum { TICTACTOE_SIGNAL, LAST_SIGNAL }; static void tictactoe_class_init (TictactoeClass *klass); static void tictactoe_init (Tictactoe *ttt); static void tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt); static gint tictactoe_signals[LAST_SIGNAL] = { 0 }; guint tictactoe_get_type () { static guint ttt_type = 0; if (!ttt_type) { GtkTypeInfo ttt_info = { "Tictactoe", sizeof (Tictactoe), sizeof (TictactoeClass), (GtkClassInitFunc) tictactoe_class_init, (GtkObjectInitFunc) tictactoe_init, (GtkArgSetFunc) NULL, (GtkArgGetFunc) NULL }; ttt_type = gtk_type_unique (gtk_vbox_get_type (), &ttt_info); } return ttt_type; } static void tictactoe_class_init (TictactoeClass *class) { GtkObjectClass *object_class; object_class = (GtkObjectClass*) class; tictactoe_signals[TICTACTOE_SIGNAL] = gtk_signal_new ("tictactoe", GTK_RUN_FIRST, object_class->type, GTK_SIGNAL_OFFSET (TictactoeClass, tictactoe), gtk_signal_default_marshaller, GTK_TYPE_NONE, 0); gtk_object_class_add_signals (object_class, tictactoe_signals, LAST_SIGNAL); class->tictactoe = NULL; } static void tictactoe_init (Tictactoe *ttt) { GtkWidget *table; gint i,j; table = gtk_table_new (3, 3, TRUE); gtk_container_add (GTK_CONTAINER(ttt), table); gtk_widget_show (table); for (i=0;i<3; i++) for (j=0;j<3; j++) { ttt->buttons[i][j] = gtk_toggle_button_new (); gtk_table_attach_defaults (GTK_TABLE(table), ttt->buttons[i][j], i, i+1, j, j+1); gtk_signal_connect (GTK_OBJECT (ttt->buttons[i][j]), "toggled", GTK_SIGNAL_FUNC (tictactoe_toggle), ttt); gtk_widget_set_usize (ttt->buttons[i][j], 20, 20); gtk_widget_show (ttt->buttons[i][j]); } } GtkWidget* tictactoe_new () { return GTK_WIDGET ( gtk_type_new (tictactoe_get_type ())); } void tictactoe_clear (Tictactoe *ttt) { int i,j; for (i=0;i<3;i++) for (j=0;j<3;j++) { gtk_signal_handler_block_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt); gtk_toggle_button_set_active (GTK_TOGGLE_BUTTON (ttt->buttons[i][j]), FALSE); gtk_signal_handler_unblock_by_data (GTK_OBJECT(ttt->buttons[i][j]), ttt); } } static void tictactoe_toggle (GtkWidget *widget, Tictactoe *ttt) { int i,k; static int rwins[8][3] = { { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } }; static int cwins[8][3] = { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 0, 0 }, { 1, 1, 1 }, { 2, 2, 2 }, { 0, 1, 2 }, { 2, 1, 0 } }; int success, found; for (k=0; k<8; k++) { success = TRUE; found = FALSE; for (i=0;i<3;i++) { success = success && GTK_TOGGLE_BUTTON(ttt->buttons[rwins[k][i]][cwins[k][i]])->active; found = found || ttt->buttons[rwins[k][i]][cwins[k][i]] == widget; } if (success && found) { gtk_signal_emit (GTK_OBJECT (ttt), tictactoe_signals[TICTACTOE_SIGNAL]); break; } } } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2>ttt_test.c <p> <tscreen><verb> /* example-start tictactoe ttt_test.c */ #include <gtk/gtk.h> #include "tictactoe.h" void win( GtkWidget *widget, gpointer data ) { g_print ("Yay!\n"); tictactoe_clear (TICTACTOE (widget)); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *ttt; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Aspect Frame"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_container_set_border_width (GTK_CONTAINER (window), 10); ttt = tictactoe_new (); gtk_container_add (GTK_CONTAINER (window), ttt); gtk_widget_show (ttt); gtk_signal_connect (GTK_OBJECT (ttt), "tictactoe", GTK_SIGNAL_FUNC (win), NULL); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> GtkDial <!-- ----------------------------------------------------------------- --> <sect2> gtkdial.h <p> <tscreen><verb> /* example-start gtkdial gtkdial.h */ /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifndef __GTK_DIAL_H__ #define __GTK_DIAL_H__ #include <gdk/gdk.h> #include <gtk/gtkadjustment.h> #include <gtk/gtkwidget.h> #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ #define GTK_DIAL(obj) GTK_CHECK_CAST (obj, gtk_dial_get_type (), GtkDial) #define GTK_DIAL_CLASS(klass) GTK_CHECK_CLASS_CAST (klass, gtk_dial_get_type (), GtkDialClass) #define GTK_IS_DIAL(obj) GTK_CHECK_TYPE (obj, gtk_dial_get_type ()) typedef struct _GtkDial GtkDial; typedef struct _GtkDialClass GtkDialClass; struct _GtkDial { GtkWidget widget; /* update policy (GTK_UPDATE_[CONTINUOUS/DELAYED/DISCONTINUOUS]) */ guint policy : 2; /* Button currently pressed or 0 if none */ guint8 button; /* Dimensions of dial components */ gint radius; gint pointer_width; /* ID of update timer, or 0 if none */ guint32 timer; /* Current angle */ gfloat angle; gfloat last_angle; /* Old values from adjustment stored so we know when something changes */ gfloat old_value; gfloat old_lower; gfloat old_upper; /* The adjustment object that stores the data for this dial */ GtkAdjustment *adjustment; }; struct _GtkDialClass { GtkWidgetClass parent_class; }; GtkWidget* gtk_dial_new (GtkAdjustment *adjustment); guint gtk_dial_get_type (void); GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial); void gtk_dial_set_update_policy (GtkDial *dial, GtkUpdateType policy); void gtk_dial_set_adjustment (GtkDial *dial, GtkAdjustment *adjustment); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __GTK_DIAL_H__ */ /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> gtkdial.c <p> <tscreen><verb> /* example-start gtkdial gtkdial.c */ /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include <math.h> #include <stdio.h> #include <gtk/gtkmain.h> #include <gtk/gtksignal.h> #include "gtkdial.h" #define SCROLL_DELAY_LENGTH 300 #define DIAL_DEFAULT_SIZE 100 /* Forward declarations */ static void gtk_dial_class_init (GtkDialClass *klass); static void gtk_dial_init (GtkDial *dial); static void gtk_dial_destroy (GtkObject *object); static void gtk_dial_realize (GtkWidget *widget); static void gtk_dial_size_request (GtkWidget *widget, GtkRequisition *requisition); static void gtk_dial_size_allocate (GtkWidget *widget, GtkAllocation *allocation); static gint gtk_dial_expose (GtkWidget *widget, GdkEventExpose *event); static gint gtk_dial_button_press (GtkWidget *widget, GdkEventButton *event); static gint gtk_dial_button_release (GtkWidget *widget, GdkEventButton *event); static gint gtk_dial_motion_notify (GtkWidget *widget, GdkEventMotion *event); static gint gtk_dial_timer (GtkDial *dial); static void gtk_dial_update_mouse (GtkDial *dial, gint x, gint y); static void gtk_dial_update (GtkDial *dial); static void gtk_dial_adjustment_changed (GtkAdjustment *adjustment, gpointer data); static void gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment, gpointer data); /* Local data */ static GtkWidgetClass *parent_class = NULL; guint gtk_dial_get_type () { static guint dial_type = 0; if (!dial_type) { GtkTypeInfo dial_info = { "GtkDial", sizeof (GtkDial), sizeof (GtkDialClass), (GtkClassInitFunc) gtk_dial_class_init, (GtkObjectInitFunc) gtk_dial_init, (GtkArgSetFunc) NULL, (GtkArgGetFunc) NULL, }; dial_type = gtk_type_unique (gtk_widget_get_type (), &dial_info); } return dial_type; } static void gtk_dial_class_init (GtkDialClass *class) { GtkObjectClass *object_class; GtkWidgetClass *widget_class; object_class = (GtkObjectClass*) class; widget_class = (GtkWidgetClass*) class; parent_class = gtk_type_class (gtk_widget_get_type ()); object_class->destroy = gtk_dial_destroy; widget_class->realize = gtk_dial_realize; widget_class->expose_event = gtk_dial_expose; widget_class->size_request = gtk_dial_size_request; widget_class->size_allocate = gtk_dial_size_allocate; widget_class->button_press_event = gtk_dial_button_press; widget_class->button_release_event = gtk_dial_button_release; widget_class->motion_notify_event = gtk_dial_motion_notify; } static void gtk_dial_init (GtkDial *dial) { dial->button = 0; dial->policy = GTK_UPDATE_CONTINUOUS; dial->timer = 0; dial->radius = 0; dial->pointer_width = 0; dial->angle = 0.0; dial->old_value = 0.0; dial->old_lower = 0.0; dial->old_upper = 0.0; dial->adjustment = NULL; } GtkWidget* gtk_dial_new (GtkAdjustment *adjustment) { GtkDial *dial; dial = gtk_type_new (gtk_dial_get_type ()); if (!adjustment) adjustment = (GtkAdjustment*) gtk_adjustment_new (0.0, 0.0, 0.0, 0.0, 0.0, 0.0); gtk_dial_set_adjustment (dial, adjustment); return GTK_WIDGET (dial); } static void gtk_dial_destroy (GtkObject *object) { GtkDial *dial; g_return_if_fail (object != NULL); g_return_if_fail (GTK_IS_DIAL (object)); dial = GTK_DIAL (object); if (dial->adjustment) gtk_object_unref (GTK_OBJECT (dial->adjustment)); if (GTK_OBJECT_CLASS (parent_class)->destroy) (* GTK_OBJECT_CLASS (parent_class)->destroy) (object); } GtkAdjustment* gtk_dial_get_adjustment (GtkDial *dial) { g_return_val_if_fail (dial != NULL, NULL); g_return_val_if_fail (GTK_IS_DIAL (dial), NULL); return dial->adjustment; } void gtk_dial_set_update_policy (GtkDial *dial, GtkUpdateType policy) { g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); dial->policy = policy; } void gtk_dial_set_adjustment (GtkDial *dial, GtkAdjustment *adjustment) { g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); if (dial->adjustment) { gtk_signal_disconnect_by_data (GTK_OBJECT (dial->adjustment), (gpointer) dial); gtk_object_unref (GTK_OBJECT (dial->adjustment)); } dial->adjustment = adjustment; gtk_object_ref (GTK_OBJECT (dial->adjustment)); gtk_signal_connect (GTK_OBJECT (adjustment), "changed", (GtkSignalFunc) gtk_dial_adjustment_changed, (gpointer) dial); gtk_signal_connect (GTK_OBJECT (adjustment), "value_changed", (GtkSignalFunc) gtk_dial_adjustment_value_changed, (gpointer) dial); dial->old_value = adjustment->value; dial->old_lower = adjustment->lower; dial->old_upper = adjustment->upper; gtk_dial_update (dial); } static void gtk_dial_realize (GtkWidget *widget) { GtkDial *dial; GdkWindowAttr attributes; gint attributes_mask; g_return_if_fail (widget != NULL); g_return_if_fail (GTK_IS_DIAL (widget)); GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED); dial = GTK_DIAL (widget); attributes.x = widget->allocation.x; attributes.y = widget->allocation.y; attributes.width = widget->allocation.width; attributes.height = widget->allocation.height; attributes.wclass = GDK_INPUT_OUTPUT; attributes.window_type = GDK_WINDOW_CHILD; attributes.event_mask = gtk_widget_get_events (widget) | GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK; attributes.visual = gtk_widget_get_visual (widget); attributes.colormap = gtk_widget_get_colormap (widget); attributes_mask = GDK_WA_X | GDK_WA_Y | GDK_WA_VISUAL | GDK_WA_COLORMAP; widget->window = gdk_window_new (widget->parent->window, &attributes, attributes_mask); widget->style = gtk_style_attach (widget->style, widget->window); gdk_window_set_user_data (widget->window, widget); gtk_style_set_background (widget->style, widget->window, GTK_STATE_ACTIVE); } static void gtk_dial_size_request (GtkWidget *widget, GtkRequisition *requisition) { requisition->width = DIAL_DEFAULT_SIZE; requisition->height = DIAL_DEFAULT_SIZE; } static void gtk_dial_size_allocate (GtkWidget *widget, GtkAllocation *allocation) { GtkDial *dial; g_return_if_fail (widget != NULL); g_return_if_fail (GTK_IS_DIAL (widget)); g_return_if_fail (allocation != NULL); widget->allocation = *allocation; dial = GTK_DIAL (widget); if (GTK_WIDGET_REALIZED (widget)) { gdk_window_move_resize (widget->window, allocation->x, allocation->y, allocation->width, allocation->height); } dial->radius = MIN(allocation->width,allocation->height) * 0.45; dial->pointer_width = dial->radius / 5; } static gint gtk_dial_expose (GtkWidget *widget, GdkEventExpose *event) { GtkDial *dial; GdkPoint points[6]; gdouble s,c; gdouble theta, last, increment; GtkStyle *blankstyle; gint xc, yc; gint upper, lower; gint tick_length; gint i, inc; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); if (event->count > 0) return FALSE; dial = GTK_DIAL (widget); /* gdk_window_clear_area (widget->window, 0, 0, widget->allocation.width, widget->allocation.height); */ xc = widget->allocation.width/2; yc = widget->allocation.height/2; upper = dial->adjustment->upper; lower = dial->adjustment->lower; /* Erase old pointer */ s = sin(dial->last_angle); c = cos(dial->last_angle); dial->last_angle = dial->angle; points[0].x = xc + s*dial->pointer_width/2; points[0].y = yc + c*dial->pointer_width/2; points[1].x = xc + c*dial->radius; points[1].y = yc - s*dial->radius; points[2].x = xc - s*dial->pointer_width/2; points[2].y = yc - c*dial->pointer_width/2; points[3].x = xc - c*dial->radius/10; points[3].y = yc + s*dial->radius/10; points[4].x = points[0].x; points[4].y = points[0].y; blankstyle = gtk_style_new (); blankstyle->bg_gc[GTK_STATE_NORMAL] = widget->style->bg_gc[GTK_STATE_NORMAL]; blankstyle->dark_gc[GTK_STATE_NORMAL] = widget->style->bg_gc[GTK_STATE_NORMAL]; blankstyle->light_gc[GTK_STATE_NORMAL] = widget->style->bg_gc[GTK_STATE_NORMAL]; blankstyle->black_gc = widget->style->bg_gc[GTK_STATE_NORMAL]; gtk_draw_polygon (blankstyle, widget->window, GTK_STATE_NORMAL, GTK_SHADOW_OUT, points, 5, FALSE); gtk_style_unref(blankstyle); /* Draw ticks */ if ((upper - lower) == 0) return; increment = (100*M_PI)/(dial->radius*dial->radius); inc = (upper - lower); while (inc < 100) inc *=10; while (inc >= 1000) inc /=10; last = -1; for (i=0; i<=inc; i++) { theta = ((gfloat)i*M_PI/(18*inc/24.) - M_PI/6.); if ((theta - last) < (increment)) continue; last = theta; s = sin(theta); c = cos(theta); tick_length = (i%(inc/10) == 0) ? dial->pointer_width : dial->pointer_width/2; gdk_draw_line (widget->window, widget->style->fg_gc[widget->state], xc + c*(dial->radius - tick_length), yc - s*(dial->radius - tick_length), xc + c*dial->radius, yc - s*dial->radius); } /* Draw pointer */ s = sin(dial->angle); c = cos(dial->angle); dial->last_angle = dial->angle; points[0].x = xc + s*dial->pointer_width/2; points[0].y = yc + c*dial->pointer_width/2; points[1].x = xc + c*dial->radius; points[1].y = yc - s*dial->radius; points[2].x = xc - s*dial->pointer_width/2; points[2].y = yc - c*dial->pointer_width/2; points[3].x = xc - c*dial->radius/10; points[3].y = yc + s*dial->radius/10; points[4].x = points[0].x; points[4].y = points[0].y; gtk_draw_polygon (widget->style, widget->window, GTK_STATE_NORMAL, GTK_SHADOW_OUT, points, 5, TRUE); return FALSE; } static gint gtk_dial_button_press (GtkWidget *widget, GdkEventButton *event) { GtkDial *dial; gint dx, dy; double s, c; double d_parallel; double d_perpendicular; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); /* Determine if button press was within pointer region - we do this by computing the parallel and perpendicular distance of the point where the mouse was pressed from the line passing through the pointer */ dx = event->x - widget->allocation.width / 2; dy = widget->allocation.height / 2 - event->y; s = sin(dial->angle); c = cos(dial->angle); d_parallel = s*dy + c*dx; d_perpendicular = fabs(s*dx - c*dy); if (!dial->button && (d_perpendicular < dial->pointer_width/2) && (d_parallel > - dial->pointer_width)) { gtk_grab_add (widget); dial->button = event->button; gtk_dial_update_mouse (dial, event->x, event->y); } return FALSE; } static gint gtk_dial_button_release (GtkWidget *widget, GdkEventButton *event) { GtkDial *dial; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); if (dial->button == event->button) { gtk_grab_remove (widget); dial->button = 0; if (dial->policy == GTK_UPDATE_DELAYED) gtk_timeout_remove (dial->timer); if ((dial->policy != GTK_UPDATE_CONTINUOUS) && (dial->old_value != dial->adjustment->value)) gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } return FALSE; } static gint gtk_dial_motion_notify (GtkWidget *widget, GdkEventMotion *event) { GtkDial *dial; GdkModifierType mods; gint x, y, mask; g_return_val_if_fail (widget != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (widget), FALSE); g_return_val_if_fail (event != NULL, FALSE); dial = GTK_DIAL (widget); if (dial->button != 0) { x = event->x; y = event->y; if (event->is_hint || (event->window != widget->window)) gdk_window_get_pointer (widget->window, &x, &y, &mods); switch (dial->button) { case 1: mask = GDK_BUTTON1_MASK; break; case 2: mask = GDK_BUTTON2_MASK; break; case 3: mask = GDK_BUTTON3_MASK; break; default: mask = 0; break; } if (mods & mask) gtk_dial_update_mouse (dial, x,y); } return FALSE; } static gint gtk_dial_timer (GtkDial *dial) { g_return_val_if_fail (dial != NULL, FALSE); g_return_val_if_fail (GTK_IS_DIAL (dial), FALSE); if (dial->policy == GTK_UPDATE_DELAYED) gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); return FALSE; } static void gtk_dial_update_mouse (GtkDial *dial, gint x, gint y) { gint xc, yc; gfloat old_value; g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); xc = GTK_WIDGET(dial)->allocation.width / 2; yc = GTK_WIDGET(dial)->allocation.height / 2; old_value = dial->adjustment->value; dial->angle = atan2(yc-y, x-xc); if (dial->angle < -M_PI/2.) dial->angle += 2*M_PI; if (dial->angle < -M_PI/6) dial->angle = -M_PI/6; if (dial->angle > 7.*M_PI/6.) dial->angle = 7.*M_PI/6.; dial->adjustment->value = dial->adjustment->lower + (7.*M_PI/6 - dial->angle) * (dial->adjustment->upper - dial->adjustment->lower) / (4.*M_PI/3.); if (dial->adjustment->value != old_value) { if (dial->policy == GTK_UPDATE_CONTINUOUS) { gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } else { gtk_widget_draw (GTK_WIDGET(dial), NULL); if (dial->policy == GTK_UPDATE_DELAYED) { if (dial->timer) gtk_timeout_remove (dial->timer); dial->timer = gtk_timeout_add (SCROLL_DELAY_LENGTH, (GtkFunction) gtk_dial_timer, (gpointer) dial); } } } } static void gtk_dial_update (GtkDial *dial) { gfloat new_value; g_return_if_fail (dial != NULL); g_return_if_fail (GTK_IS_DIAL (dial)); new_value = dial->adjustment->value; if (new_value < dial->adjustment->lower) new_value = dial->adjustment->lower; if (new_value > dial->adjustment->upper) new_value = dial->adjustment->upper; if (new_value != dial->adjustment->value) { dial->adjustment->value = new_value; gtk_signal_emit_by_name (GTK_OBJECT (dial->adjustment), "value_changed"); } dial->angle = 7.*M_PI/6. - (new_value - dial->adjustment->lower) * 4.*M_PI/3. / (dial->adjustment->upper - dial->adjustment->lower); gtk_widget_draw (GTK_WIDGET(dial), NULL); } static void gtk_dial_adjustment_changed (GtkAdjustment *adjustment, gpointer data) { GtkDial *dial; g_return_if_fail (adjustment != NULL); g_return_if_fail (data != NULL); dial = GTK_DIAL (data); if ((dial->old_value != adjustment->value) || (dial->old_lower != adjustment->lower) || (dial->old_upper != adjustment->upper)) { gtk_dial_update (dial); dial->old_value = adjustment->value; dial->old_lower = adjustment->lower; dial->old_upper = adjustment->upper; } } static void gtk_dial_adjustment_value_changed (GtkAdjustment *adjustment, gpointer data) { GtkDial *dial; g_return_if_fail (adjustment != NULL); g_return_if_fail (data != NULL); dial = GTK_DIAL (data); if (dial->old_value != adjustment->value) { gtk_dial_update (dial); dial->old_value = adjustment->value; } } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> dial_test.c <p> <tscreen><verb> #include <stdio.h> #include <gtk/gtk.h> #include "gtkdial.h" void value_changed( GtkAdjustment *adjustment, GtkWidget *label ) { char buffer[16]; sprintf(buffer,"%4.2f",adjustment->value); gtk_label_set (GTK_LABEL (label), buffer); } int main( int argc, char *argv[]) { GtkWidget *window; GtkAdjustment *adjustment; GtkWidget *dial; GtkWidget *frame; GtkWidget *vbox; GtkWidget *label; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_title (GTK_WINDOW (window), "Dial"); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (gtk_exit), NULL); gtk_container_border_width (GTK_CONTAINER (window), 10); vbox = gtk_vbox_new (FALSE, 5); gtk_container_add (GTK_CONTAINER (window), vbox); gtk_widget_show(vbox); frame = gtk_frame_new (NULL); gtk_frame_set_shadow_type (GTK_FRAME(frame), GTK_SHADOW_IN); gtk_container_add (GTK_CONTAINER (vbox), frame); gtk_widget_show (frame); adjustment = GTK_ADJUSTMENT(gtk_adjustment_new (0, 0, 100, 0.01, 0.1, 0)); dial = gtk_dial_new(adjustment); gtk_dial_set_update_policy (GTK_DIAL(dial), GTK_UPDATE_DELAYED); /* gtk_widget_set_usize (dial, 100, 100); */ gtk_container_add (GTK_CONTAINER (frame), dial); gtk_widget_show (dial); label = gtk_label_new("0.00"); gtk_box_pack_end (GTK_BOX(vbox), label, 0, 0, 0); gtk_widget_show (label); gtk_signal_connect (GTK_OBJECT(adjustment), "value_changed", GTK_SIGNAL_FUNC (value_changed), label); gtk_widget_show (window); gtk_main (); return 0; } </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> Scribble <p> <!-- ----------------------------------------------------------------- --> <sect2> scribble-simple.c <p> <tscreen><verb> /* example-start scribble-simple scribble-simple.c */ /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include <gtk/gtk.h> /* Backing pixmap for drawing area */ static GdkPixmap *pixmap = NULL; /* Create a new backing pixmap of the appropriate size */ static gint configure_event( GtkWidget *widget, GdkEventConfigure *event ) { if (pixmap) gdk_pixmap_unref(pixmap); pixmap = gdk_pixmap_new(widget->window, widget->allocation.width, widget->allocation.height, -1); gdk_draw_rectangle (pixmap, widget->style->white_gc, TRUE, 0, 0, widget->allocation.width, widget->allocation.height); return TRUE; } /* Redraw the screen from the backing pixmap */ static gint expose_event( GtkWidget *widget, GdkEventExpose *event ) { gdk_draw_pixmap(widget->window, widget->style->fg_gc[GTK_WIDGET_STATE (widget)], pixmap, event->area.x, event->area.y, event->area.x, event->area.y, event->area.width, event->area.height); return FALSE; } /* Draw a rectangle on the screen */ static void draw_brush( GtkWidget *widget, gdouble x, gdouble y) { GdkRectangle update_rect; update_rect.x = x - 5; update_rect.y = y - 5; update_rect.width = 10; update_rect.height = 10; gdk_draw_rectangle (pixmap, widget->style->black_gc, TRUE, update_rect.x, update_rect.y, update_rect.width, update_rect.height); gtk_widget_draw (widget, &update_rect); } static gint button_press_event( GtkWidget *widget, GdkEventButton *event ) { if (event->button == 1 && pixmap != NULL) draw_brush (widget, event->x, event->y); return TRUE; } static gint motion_notify_event( GtkWidget *widget, GdkEventMotion *event ) { int x, y; GdkModifierType state; if (event->is_hint) gdk_window_get_pointer (event->window, &x, &y, &state); else { x = event->x; y = event->y; state = event->state; } if (state & GDK_BUTTON1_MASK && pixmap != NULL) draw_brush (widget, x, y); return TRUE; } void quit () { gtk_exit (0); } int main( int argc, char *argv[] ) { GtkWidget *window; GtkWidget *drawing_area; GtkWidget *vbox; GtkWidget *button; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_set_name (window, "Test Input"); vbox = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), vbox); gtk_widget_show (vbox); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (quit), NULL); /* Create the drawing area */ drawing_area = gtk_drawing_area_new (); gtk_drawing_area_size (GTK_DRAWING_AREA (drawing_area), 200, 200); gtk_box_pack_start (GTK_BOX (vbox), drawing_area, TRUE, TRUE, 0); gtk_widget_show (drawing_area); /* Signals used to handle backing pixmap */ gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event", (GtkSignalFunc) expose_event, NULL); gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event", (GtkSignalFunc) configure_event, NULL); /* Event signals */ gtk_signal_connect (GTK_OBJECT (drawing_area), "motion_notify_event", (GtkSignalFunc) motion_notify_event, NULL); gtk_signal_connect (GTK_OBJECT (drawing_area), "button_press_event", (GtkSignalFunc) button_press_event, NULL); gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK | GDK_LEAVE_NOTIFY_MASK | GDK_BUTTON_PRESS_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK); /* .. And a quit button */ button = gtk_button_new_with_label ("Quit"); gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); gtk_widget_show (button); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect2> scribble-xinput.c <p> <tscreen><verb> /* example-start scribble-xinput scribble-xinput.c */ /* GTK - The GIMP Toolkit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include <gtk/gtk.h> /* Backing pixmap for drawing area */ static GdkPixmap *pixmap = NULL; /* Create a new backing pixmap of the appropriate size */ static gint configure_event (GtkWidget *widget, GdkEventConfigure *event) { if (pixmap) gdk_pixmap_unref(pixmap); pixmap = gdk_pixmap_new(widget->window, widget->allocation.width, widget->allocation.height, -1); gdk_draw_rectangle (pixmap, widget->style->white_gc, TRUE, 0, 0, widget->allocation.width, widget->allocation.height); return TRUE; } /* Redraw the screen from the backing pixmap */ static gint expose_event (GtkWidget *widget, GdkEventExpose *event) { gdk_draw_pixmap(widget->window, widget->style->fg_gc[GTK_WIDGET_STATE (widget)], pixmap, event->area.x, event->area.y, event->area.x, event->area.y, event->area.width, event->area.height); return FALSE; } /* Draw a rectangle on the screen, size depending on pressure, and color on the type of device */ static void draw_brush (GtkWidget *widget, GdkInputSource source, gdouble x, gdouble y, gdouble pressure) { GdkGC *gc; GdkRectangle update_rect; switch (source) { case GDK_SOURCE_MOUSE: gc = widget->style->dark_gc[GTK_WIDGET_STATE (widget)]; break; case GDK_SOURCE_PEN: gc = widget->style->black_gc; break; case GDK_SOURCE_ERASER: gc = widget->style->white_gc; break; default: gc = widget->style->light_gc[GTK_WIDGET_STATE (widget)]; } update_rect.x = x - 10 * pressure; update_rect.y = y - 10 * pressure; update_rect.width = 20 * pressure; update_rect.height = 20 * pressure; gdk_draw_rectangle (pixmap, gc, TRUE, update_rect.x, update_rect.y, update_rect.width, update_rect.height); gtk_widget_draw (widget, &update_rect); } static void print_button_press (guint32 deviceid) { GList *tmp_list; /* gdk_input_list_devices returns an internal list, so we shouldn't free it afterwards */ tmp_list = gdk_input_list_devices(); while (tmp_list) { GdkDeviceInfo *info = (GdkDeviceInfo *)tmp_list->data; if (info->deviceid == deviceid) { g_print("Button press on device '%s'\n", info->name); return; } tmp_list = tmp_list->next; } } static gint button_press_event (GtkWidget *widget, GdkEventButton *event) { print_button_press (event->deviceid); if (event->button == 1 && pixmap != NULL) draw_brush (widget, event->source, event->x, event->y, event->pressure); return TRUE; } static gint motion_notify_event (GtkWidget *widget, GdkEventMotion *event) { gdouble x, y; gdouble pressure; GdkModifierType state; if (event->is_hint) gdk_input_window_get_pointer (event->window, event->deviceid, &x, &y, &pressure, NULL, NULL, &state); else { x = event->x; y = event->y; pressure = event->pressure; state = event->state; } if (state & GDK_BUTTON1_MASK && pixmap != NULL) draw_brush (widget, event->source, x, y, pressure); return TRUE; } void input_dialog_destroy (GtkWidget *w, gpointer data) { *((GtkWidget **)data) = NULL; } void create_input_dialog () { static GtkWidget *inputd = NULL; if (!inputd) { inputd = gtk_input_dialog_new(); gtk_signal_connect (GTK_OBJECT(inputd), "destroy", (GtkSignalFunc)input_dialog_destroy, &inputd); gtk_signal_connect_object (GTK_OBJECT(GTK_INPUT_DIALOG(inputd)->close_button), "clicked", (GtkSignalFunc)gtk_widget_hide, GTK_OBJECT(inputd)); gtk_widget_hide ( GTK_INPUT_DIALOG(inputd)->save_button); gtk_widget_show (inputd); } else { if (!GTK_WIDGET_MAPPED(inputd)) gtk_widget_show(inputd); else gdk_window_raise(inputd->window); } } void quit () { gtk_exit (0); } int main (int argc, char *argv[]) { GtkWidget *window; GtkWidget *drawing_area; GtkWidget *vbox; GtkWidget *button; gtk_init (&argc, &argv); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_widget_set_name (window, "Test Input"); vbox = gtk_vbox_new (FALSE, 0); gtk_container_add (GTK_CONTAINER (window), vbox); gtk_widget_show (vbox); gtk_signal_connect (GTK_OBJECT (window), "destroy", GTK_SIGNAL_FUNC (quit), NULL); /* Create the drawing area */ drawing_area = gtk_drawing_area_new (); gtk_drawing_area_size (GTK_DRAWING_AREA (drawing_area), 200, 200); gtk_box_pack_start (GTK_BOX (vbox), drawing_area, TRUE, TRUE, 0); gtk_widget_show (drawing_area); /* Signals used to handle backing pixmap */ gtk_signal_connect (GTK_OBJECT (drawing_area), "expose_event", (GtkSignalFunc) expose_event, NULL); gtk_signal_connect (GTK_OBJECT(drawing_area),"configure_event", (GtkSignalFunc) configure_event, NULL); /* Event signals */ gtk_signal_connect (GTK_OBJECT (drawing_area), "motion_notify_event", (GtkSignalFunc) motion_notify_event, NULL); gtk_signal_connect (GTK_OBJECT (drawing_area), "button_press_event", (GtkSignalFunc) button_press_event, NULL); gtk_widget_set_events (drawing_area, GDK_EXPOSURE_MASK | GDK_LEAVE_NOTIFY_MASK | GDK_BUTTON_PRESS_MASK | GDK_POINTER_MOTION_MASK | GDK_POINTER_MOTION_HINT_MASK); /* The following call enables tracking and processing of extension events for the drawing area */ gtk_widget_set_extension_events (drawing_area, GDK_EXTENSION_EVENTS_CURSOR); /* .. And some buttons */ button = gtk_button_new_with_label ("Input Dialog"); gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0); gtk_signal_connect (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (create_input_dialog), NULL); gtk_widget_show (button); button = gtk_button_new_with_label ("Quit"); gtk_box_pack_start (GTK_BOX (vbox), button, FALSE, FALSE, 0); gtk_signal_connect_object (GTK_OBJECT (button), "clicked", GTK_SIGNAL_FUNC (gtk_widget_destroy), GTK_OBJECT (window)); gtk_widget_show (button); gtk_widget_show (window); gtk_main (); return 0; } /* example-end */ </verb></tscreen> <!-- ***************************************************************** --> <sect> List Widget <!-- ***************************************************************** --> <p> NOTE: The List widget has been superseded by the CList widget. It is detailed here just for completeness. The List widget is designed to act as a vertical container for widgets that should be of the type ListItem. A List widget has its own window to receive events and its own background color which is usually white. As it is directly derived from a Container it can be treated as such by using the GTK_CONTAINER(List) macro, see the Container widget for more on this. One should already be familiar with the usage of a GList and its related functions g_list_*() to be able to use the List widget to it full extent. There is one field inside the structure definition of the List widget that will be of greater interest to us, this is: <tscreen><verb> struct _GtkList { ... GList *selection; guint selection_mode; ... }; </verb></tscreen> The selection field of a List points to a linked list of all items that are currently selected, or NULL if the selection is empty. So to learn about the current selection we read the GTK_LIST()->selection field, but do not modify it since the internal fields are maintained by the gtk_list_*() functions. The selection_mode of the List determines the selection facilities of a List and therefore the contents of the GTK_LIST()->selection field. The selection_mode may be one of the following: <itemize> <item> <tt/GTK_SELECTION_SINGLE/ - The selection is either NULL or contains a GList pointer for a single selected item. <item> <tt/GTK_SELECTION_BROWSE/ - The selection is NULL if the list contains no widgets or insensitive ones only, otherwise it contains a GList pointer for one GList structure, and therefore exactly one list item. <item> <tt/GTK_SELECTION_MULTIPLE/ - The selection is NULL if no list items are selected or a GList pointer for the first selected item. That in turn points to a GList structure for the second selected item and so on. <item> <tt/GTK_SELECTION_EXTENDED/ - The selection is always NULL. </itemize> The default is <tt/GTK_SELECTION_MULTIPLE/. <!-- ----------------------------------------------------------------- --> <sect1> Signals <p> <tscreen><verb> void selection_changed( GtkList *list ); </verb></tscreen> This signal will be invoked whenever the selection field of a List has changed. This happens when a child of thekList got selected or deselected. <tscreen><verb> void select_child( GtkList *list, GtkWidget *child); </verb></tscreen> This signal is invoked when a child of the List is about to get selected. This happens mainly on calls to gtk_list_select_item(), gtk_list_select_child(), button presses and sometimes indirectly triggered on some else occasions where children get added to or removed from the List. <tscreen><verb> void unselect_child( GtkList *list, GtkWidget *child ); </verb></tscreen> This signal is invoked when a child of the List is about to get deselected. This happens mainly on calls to gtk_list_unselect_item(), gtk_list_unselect_child(), button presses and sometimes indirectly triggered on some else occasions where children get added to or removed from the List. <!-- ----------------------------------------------------------------- --> <sect1> Functions <p> <tscreen><verb> guint gtk_list_get_type( void ); </verb></tscreen> Returns the "GtkList" type identifier. <tscreen><verb> GtkWidget *gtk_list_new( void ); </verb></tscreen> Create a new List object. The new widget is returned as a pointer to a GtkWidget object. NULL is returned on failure. <tscreen><verb> void gtk_list_insert_items( GtkList *list, GList *items, gint position ); </verb></tscreen> Insert list items into the list, starting at <tt/position/. <tt/items/ is a doubly linked list where each nodes data pointer is expected to point to a newly created ListItem. The GList nodes of <tt/items/ are taken over by the list. <tscreen><verb> void gtk_list_append_items( GtkList *list, GList *items); </verb></tscreen> Insert list items just like gtk_list_insert_items() at the end of the list. The GList nodes of <tt/items/ are taken over by the list. <tscreen><verb> void gtk_list_prepend_items( GtkList *list, GList *items); </verb></tscreen> Insert list items just like gtk_list_insert_items() at the very beginning of the list. The GList nodes of <tt/items/ are taken over by the list. <tscreen><verb> void gtk_list_remove_items( GtkList *list, GList *items); </verb></tscreen> Remove list items from the list. <tt/items/ is a doubly linked list where each nodes data pointer is expected to point to a direct child of list. It is the callers responsibility to make a call to g_list_free(items) afterwards. Also the caller has to destroy the list items himself. <tscreen><verb> void gtk_list_clear_items( GtkList *list, gint start, gint end ); </verb></tscreen> Remove and destroy list items from the list. A widget is affected if its current position within the list is in the range specified by <tt/start/ and <tt/end/. <tscreen><verb> void gtk_list_select_item( GtkList *list, gint item ); </verb></tscreen> Invoke the select_child signal for a list item specified through its current position within the list. <tscreen><verb> void gtk_list_unselect_item( GtkList *list, gint item); </verb></tscreen> Invoke the unselect_child signal for a list item specified through its current position within the list. <tscreen><verb> void gtk_list_select_child( GtkList *list, GtkWidget *child); </verb></tscreen> Invoke the select_child signal for the specified child. <tscreen><verb> void gtk_list_unselect_child( GtkList *list, GtkWidget *child); </verb></tscreen> Invoke the unselect_child signal for the specified child. <tscreen><verb> gint gtk_list_child_position( GtkList *list, GtkWidget *child); </verb></tscreen> Return the position of <tt/child/ within the list. "-1" is returned on failure. <tscreen><verb> void gtk_list_set_selection_mode( GtkList *list, GtkSelectionMode mode ); </verb></tscreen> Set the selection mode MODE which can be of GTK_SELECTION_SINGLE, GTK_SELECTION_BROWSE, GTK_SELECTION_MULTIPLE or GTK_SELECTION_EXTENDED. <tscreen><verb> GtkList *GTK_LIST( gpointer obj ); </verb></tscreen> Cast a generic pointer to "GtkList *". <tscreen><verb> GtkListClass *GTK_LIST_CLASS( gpointer class); </verb></tscreen> Cast a generic pointer to "GtkListClass *". <tscreen><verb> gint GTK_IS_LIST( gpointer obj); </verb></tscreen> Determine if a generic pointer refers to a "GtkList" object. <!-- ----------------------------------------------------------------- --> <sect1> Example <p> Following is an example program that will print out the changes of the selection of a List, and lets you "arrest" list items into a prison by selecting them with the rightmost mouse button. <tscreen><verb> /* example-start list list.c */ /* Include the GTK header files * Include stdio.h, we need that for the printf() function */ #include <gtk/gtk.h> #include <stdio.h> /* This is our data identification string to store * data in list items */ const gchar *list_item_data_key="list_item_data"; /* prototypes for signal handler that we are going to connect * to the List widget */ static void sigh_print_selection( GtkWidget *gtklist, gpointer func_data); static void sigh_button_event( GtkWidget *gtklist, GdkEventButton *event, GtkWidget *frame ); /* Main function to set up the user interface */ gint main( int argc, gchar *argv[] ) { GtkWidget *separator; GtkWidget *window; GtkWidget *vbox; GtkWidget *scrolled_window; GtkWidget *frame; GtkWidget *gtklist; GtkWidget *button; GtkWidget *list_item; GList *dlist; guint i; gchar buffer[64]; /* Initialize GTK (and subsequently GDK) */ gtk_init(&argc, &argv); /* Create a window to put all the widgets in * connect gtk_main_quit() to the "destroy" event of * the window to handle window manager close-window-events */ window=gtk_window_new(GTK_WINDOW_TOPLEVEL); gtk_window_set_title(GTK_WINDOW(window), "GtkList Example"); gtk_signal_connect(GTK_OBJECT(window), "destroy", GTK_SIGNAL_FUNC(gtk_main_quit), NULL); /* Inside the window we need a box to arrange the widgets * vertically */ vbox=gtk_vbox_new(FALSE, 5); gtk_container_set_border_width(GTK_CONTAINER(vbox), 5); gtk_container_add(GTK_CONTAINER(window), vbox); gtk_widget_show(vbox); /* This is the scrolled window to put the List widget inside */ scrolled_window=gtk_scrolled_window_new(NULL, NULL); gtk_widget_set_usize(scrolled_window, 250, 150); gtk_container_add(GTK_CONTAINER(vbox), scrolled_window); gtk_widget_show(scrolled_window); /* Create thekList widget. * Connect the sigh_print_selection() signal handler * function to the "selection_changed" signal of the List * to print out the selected items each time the selection * has changed */ gtklist=gtk_list_new(); gtk_scrolled_window_add_with_viewport( GTK_SCROLLED_WINDOW(scrolled_window), gtklist); gtk_widget_show(gtklist); gtk_signal_connect(GTK_OBJECT(gtklist), "selection_changed", GTK_SIGNAL_FUNC(sigh_print_selection), NULL); /* We create a "Prison" to put a list item in ;) */ frame=gtk_frame_new("Prison"); gtk_widget_set_usize(frame, 200, 50); gtk_container_set_border_width(GTK_CONTAINER(frame), 5); gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_OUT); gtk_container_add(GTK_CONTAINER(vbox), frame); gtk_widget_show(frame); /* Connect the sigh_button_event() signal handler to the List * which will handle the "arresting" of list items */ gtk_signal_connect(GTK_OBJECT(gtklist), "button_release_event", GTK_SIGNAL_FUNC(sigh_button_event), frame); /* Create a separator */ separator=gtk_hseparator_new(); gtk_container_add(GTK_CONTAINER(vbox), separator); gtk_widget_show(separator); /* Finally create a button and connect its "clicked" signal * to the destruction of the window */ button=gtk_button_new_with_label("Close"); gtk_container_add(GTK_CONTAINER(vbox), button); gtk_widget_show(button); gtk_signal_connect_object(GTK_OBJECT(button), "clicked", GTK_SIGNAL_FUNC(gtk_widget_destroy), GTK_OBJECT(window)); /* Now we create 5 list items, each having its own * label and add them to the List using gtk_container_add() * Also we query the text string from the label and * associate it with the list_item_data_key for each list item */ for (i=0; i<5; i++) { GtkWidget *label; gchar *string; sprintf(buffer, "ListItemContainer with Label #%d", i); label=gtk_label_new(buffer); list_item=gtk_list_item_new(); gtk_container_add(GTK_CONTAINER(list_item), label); gtk_widget_show(label); gtk_container_add(GTK_CONTAINER(gtklist), list_item); gtk_widget_show(list_item); gtk_label_get(GTK_LABEL(label), &string); gtk_object_set_data(GTK_OBJECT(list_item), list_item_data_key, string); } /* Here, we are creating another 5 labels, this time * we use gtk_list_item_new_with_label() for the creation * we can't query the text string from the label because * we don't have the labels pointer and therefore * we just associate the list_item_data_key of each * list item with the same text string. * For adding of the list items we put them all into a doubly * linked list (GList), and then add them by a single call to * gtk_list_append_items(). * Because we use g_list_prepend() to put the items into the * doubly linked list, their order will be descending (instead * of ascending when using g_list_append()) */ dlist=NULL; for (; i<10; i++) { sprintf(buffer, "List Item with Label %d", i); list_item=gtk_list_item_new_with_label(buffer); dlist=g_list_prepend(dlist, list_item); gtk_widget_show(list_item); gtk_object_set_data(GTK_OBJECT(list_item), list_item_data_key, "ListItem with integrated Label"); } gtk_list_append_items(GTK_LIST(gtklist), dlist); /* Finally we want to see the window, don't we? ;) */ gtk_widget_show(window); /* Fire up the main event loop of gtk */ gtk_main(); /* We get here after gtk_main_quit() has been called which * happens if the main window gets destroyed */ return(0); } /* This is the signal handler that got connected to button * press/release events of the List */ void sigh_button_event( GtkWidget *gtklist, GdkEventButton *event, GtkWidget *frame ) { /* We only do something if the third (rightmost mouse button * was released */ if (event->type==GDK_BUTTON_RELEASE && event->button==3) { GList *dlist, *free_list; GtkWidget *new_prisoner; /* Fetch the currently selected list item which * will be our next prisoner ;) */ dlist=GTK_LIST(gtklist)->selection; if (dlist) new_prisoner=GTK_WIDGET(dlist->data); else new_prisoner=NULL; /* Look for already imprisoned list items, we * will put them back into the list. * Remember to free the doubly linked list that * gtk_container_children() returns */ dlist=gtk_container_children(GTK_CONTAINER(frame)); free_list=dlist; while (dlist) { GtkWidget *list_item; list_item=dlist->data; gtk_widget_reparent(list_item, gtklist); dlist=dlist->next; } g_list_free(free_list); /* If we have a new prisoner, remove him from the * List and put him into the frame "Prison". * We need to unselect the item first. */ if (new_prisoner) { GList static_dlist; static_dlist.data=new_prisoner; static_dlist.next=NULL; static_dlist.prev=NULL; gtk_list_unselect_child(GTK_LIST(gtklist), new_prisoner); gtk_widget_reparent(new_prisoner, frame); } } } /* This is the signal handler that gets called if List * emits the "selection_changed" signal */ void sigh_print_selection( GtkWidget *gtklist, gpointer func_data ) { GList *dlist; /* Fetch the doubly linked list of selected items * of the List, remember to treat this as read-only! */ dlist=GTK_LIST(gtklist)->selection; /* If there are no selected items there is nothing more * to do than just telling the user so */ if (!dlist) { g_print("Selection cleared\n"); return; } /* Ok, we got a selection and so we print it */ g_print("The selection is a "); /* Get the list item from the doubly linked list * and then query the data associated with list_item_data_key. * We then just print it */ while (dlist) { GtkObject *list_item; gchar *item_data_string; list_item=GTK_OBJECT(dlist->data); item_data_string=gtk_object_get_data(list_item, list_item_data_key); g_print("%s ", item_data_string); dlist=dlist->next; } g_print("\n"); } /* example-end */ </verb></tscreen> <!-- ----------------------------------------------------------------- --> <sect1> List Item Widget <p> The ListItem widget is designed to act as a container holding up to one child, providing functions for selection/deselection just like the List widget requires them for its children. A ListItem has its own window to receive events and has its own background color which is usually white. As it is directly derived from an Item it can be treated as such by using the GTK_ITEM(ListItem) macro, see the Item widget for more on this. Usually a ListItem just holds a label to identify, e.g., a filename within a List -- therefore the convenience function gtk_list_item_new_with_label() is provided. The same effect can be achieved by creating a Label on its own, setting its alignment to xalign=0 and yalign=0.5 with a subsequent container addition to the ListItem. As one is not forced to add a GtkLabel to a GtkListItem, you could also add a GtkVBox or a GtkArrow etc. to the GtkListItem. <!-- ----------------------------------------------------------------- --> <sect1> Signals <p> AkListItem does not create new signals on its own, but inherits the signals of a Item. <!-- ----------------------------------------------------------------- --> <sect1> Functions <p> <tscreen><verb> guint gtk_list_item_get_type( void ); </verb></tscreen> Returns the "GtkListItem" type identifier. <tscreen><verb> GtkWidget *gtk_list_item_new( void ); </verb></tscreen> Create a new ListItem object. The new widget is returned as a pointer to a GtkWidget object. NULL is returned on failure. <tscreen><verb> GtkWidget *gtk_list_item_new_with_label( gchar *label ); </verb></tscreen> Create a new ListItem object, having a single GtkLabel as the sole child. The new widget is returned as a pointer to a GtkWidget object. NULL is returned on failure. <tscreen><verb> void gtk_list_item_select( GtkListItem *list_item ); </verb></tscreen> This function is basically a wrapper around a call to gtk_item_select (GTK_ITEM (list_item)) which will emit the select signal. *Note GtkItem::, for more info. <tscreen><verb> void gtk_list_item_deselect( GtkListItem *list_item ); </verb></tscreen> This function is basically a wrapper around a call to gtk_item_deselect (GTK_ITEM (list_item)) which will emit the deselect signal. *Note GtkItem::, for more info. <tscreen><verb> GtkListItem *GTK_LIST_ITEM( gpointer obj ); </verb></tscreen> Cast a generic pointer to "GtkListItem *". <tscreen><verb> GtkListItemClass *GTK_LIST_ITEM_CLASS( gpointer class ); </verb></tscreen> Cast a generic pointer to GtkListItemClass*. *Note Standard Macros::, for more info. <tscreen><verb> gint GTK_IS_LIST_ITEM( gpointer obj ); </verb></tscreen> Determine if a generic pointer refers to a `GtkListItem' object. *Note Standard Macros::, for more info. <!-- ----------------------------------------------------------------- --> <sect1> Example <p> Please see the List example on this, which covers the usage of a ListItem as well. </article>