/* * Copyright © 2020 Benjamin Otte * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . * * Authors: Benjamin Otte */ #pragma once #include "gskpath.h" #include "gskpathbuilder.h" G_BEGIN_DECLS /* We assume that arrays of graphene_point_t are aligned on an 8-byte * boundary, which means we can use the lowest 3 bits to represent up * to 8 distinct path operations. */ #define GSK_PATHOP_OPERATION_MASK (0x7) /* graphene_point_t is a struct containing two floats, so an array of * graphene_point_t on the stack is not necessarily 8-byte aligned * unless we force it to be. * * Using a union for this means the compiler will warn or error if we * have not handled these correctly: for example we can go from a * GskAlignedPoint * to a graphene_point_t * (which is always OK) with: * * GskAlignedPoint *gap = ...; * graphene_point_t *gpt; * gpt = &gap[0].pt; * * but going back the other way is not possible without a cast or a * compiler warning. */ typedef union { graphene_point_t pt; /* On many platforms this will be enough to force the correct alignment. */ guint64 alignment; /* Unfortunately not all platforms require guint64 to be naturally-aligned * (for example on i386, only 4-byte alignment is required) so we have to * try harder. */ #ifdef __GNUC__ __attribute__((aligned(8))) guint64 really_aligned; #elif defined(_MSC_VER) __declspec(align(8)) guint64 really_aligned; #endif } GskAlignedPoint; G_STATIC_ASSERT (sizeof (GskAlignedPoint) == sizeof (graphene_point_t)); G_STATIC_ASSERT (G_ALIGNOF (GskAlignedPoint) >= GSK_PATHOP_OPERATION_MASK + 1); typedef gpointer gskpathop; static inline gskpathop gsk_pathop_encode (GskPathOperation op, const GskAlignedPoint *pts); static inline const GskAlignedPoint *gsk_pathop_aligned_points (gskpathop pop); static inline const graphene_point_t *gsk_pathop_points (gskpathop pop); static inline GskPathOperation gsk_pathop_op (gskpathop pop); static inline gboolean gsk_pathop_foreach (gskpathop pop, GskPathForeachFunc func, gpointer user_data); /* included inline so tests can use them */ static inline void gsk_path_builder_pathop_to (GskPathBuilder *builder, gskpathop op); static inline void gsk_path_builder_pathop_reverse_to (GskPathBuilder *builder, gskpathop op); /* IMPLEMENTATION */ /* Note: * * The weight of conics is encoded as p[2].x, and the endpoint is p[3]. * This is important, since contours store the points of adjacent * operations overlapping, so we can't put the weight at the end. */ static inline gskpathop gsk_pathop_encode (GskPathOperation op, const GskAlignedPoint *pts) { /* g_assert (op & GSK_PATHOP_OPERATION_MASK == op); */ g_assert ((GPOINTER_TO_SIZE (pts) & GSK_PATHOP_OPERATION_MASK) == 0); return GSIZE_TO_POINTER (GPOINTER_TO_SIZE (pts) | op); } static inline const GskAlignedPoint * gsk_pathop_aligned_points (gskpathop pop) { return GSIZE_TO_POINTER (GPOINTER_TO_SIZE (pop) & ~GSK_PATHOP_OPERATION_MASK); } static inline const graphene_point_t * gsk_pathop_points (gskpathop pop) { return &(gsk_pathop_aligned_points (pop)->pt); } static inline GskPathOperation gsk_pathop_op (gskpathop pop) { return GPOINTER_TO_SIZE (pop) & GSK_PATHOP_OPERATION_MASK; } static inline gboolean gsk_pathop_foreach (gskpathop pop, GskPathForeachFunc func, gpointer user_data) { switch (gsk_pathop_op (pop)) { case GSK_PATH_MOVE: return func (gsk_pathop_op (pop), gsk_pathop_points (pop), 1, 0, user_data); case GSK_PATH_CLOSE: case GSK_PATH_LINE: return func (gsk_pathop_op (pop), gsk_pathop_points (pop), 2, 0, user_data); case GSK_PATH_QUAD: return func (gsk_pathop_op (pop), gsk_pathop_points (pop), 3, 0, user_data); case GSK_PATH_CUBIC: return func (gsk_pathop_op (pop), gsk_pathop_points (pop), 4, 0, user_data); case GSK_PATH_CONIC: { const graphene_point_t *pts = gsk_pathop_points (pop); return func (gsk_pathop_op (pop), (graphene_point_t[3]) { pts[0], pts[1], pts[3] }, 3, pts[2].x, user_data); } default: g_assert_not_reached (); return TRUE; } } static inline void gsk_path_builder_pathop_to (GskPathBuilder *builder, gskpathop op) { const graphene_point_t *pts = gsk_pathop_points (op); switch (gsk_pathop_op (op)) { case GSK_PATH_MOVE: gsk_path_builder_move_to (builder, pts[0].x, pts[0].y); break; case GSK_PATH_CLOSE: gsk_path_builder_close (builder); break; case GSK_PATH_LINE: gsk_path_builder_line_to (builder, pts[1].x, pts[1].y); break; case GSK_PATH_QUAD: gsk_path_builder_quad_to (builder, pts[1].x, pts[1].y, pts[2].x, pts[2].y); break; case GSK_PATH_CUBIC: gsk_path_builder_cubic_to (builder, pts[1].x, pts[1].y, pts[2].x, pts[2].y, pts[3].x, pts[3].y); break; case GSK_PATH_CONIC: gsk_path_builder_conic_to (builder, pts[1].x, pts[1].y, pts[3].x, pts[3].y, pts[2].x); break; default: g_assert_not_reached (); break; } } static inline void gsk_path_builder_pathop_reverse_to (GskPathBuilder *builder, gskpathop op) { const graphene_point_t *pts = gsk_pathop_points (op); switch (gsk_pathop_op (op)) { case GSK_PATH_MOVE: gsk_path_builder_move_to (builder, pts[0].x, pts[0].y); break; case GSK_PATH_CLOSE: gsk_path_builder_line_to (builder, pts[0].x, pts[0].y); break; case GSK_PATH_LINE: gsk_path_builder_line_to (builder, pts[1].x, pts[1].y); break; case GSK_PATH_QUAD: gsk_path_builder_quad_to (builder, pts[1].x, pts[1].y, pts[0].x, pts[0].y); break; case GSK_PATH_CUBIC: gsk_path_builder_cubic_to (builder, pts[2].x, pts[2].y, pts[1].x, pts[1].y, pts[0].x, pts[0].y); break; case GSK_PATH_CONIC: gsk_path_builder_conic_to (builder, pts[1].x, pts[1].y, pts[0].x, pts[0].y, pts[2].x); break; default: g_assert_not_reached (); break; } } G_END_DECLS