/* GDK - The GIMP Drawing Kit * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Modified by the GTK+ Team and others 1997-2010. See the AUTHORS * file for a list of people on the GTK+ Team. See the ChangeLog * files for a list of changes. These files are distributed with * GTK+ at ftp://ftp.gtk.org/pub/gtk/. */ #include "config.h" #include "gdkframeclockidleprivate.h" #include "gdkdebugprivate.h" #include "gdkframeclockprivate.h" #include "gdkprivate.h" #include "gdkprofilerprivate.h" #ifdef G_OS_WIN32 #include #endif #define FRAME_INTERVAL 16667 /* microseconds */ typedef enum { SMOOTH_PHASE_STATE_VALID = 0, /* explicit, since we count on zero-init */ SMOOTH_PHASE_STATE_AWAIT_FIRST, SMOOTH_PHASE_STATE_AWAIT_DRAWN, } SmoothDeltaState; struct _GdkFrameClockIdlePrivate { gint64 frame_time; /* The exact time we last ran the clock cycle, or 0 if never */ gint64 smoothed_frame_time_base; /* A grid-aligned version of frame_time (grid size == refresh period), never more than half a grid from frame_time */ gint64 smoothed_frame_time_period; /* The grid size that smoothed_frame_time_base is aligned to */ gint64 smoothed_frame_time_reported; /* Ensures we are always monotonic */ gint64 smoothed_frame_time_phase; /* The offset of the first reported frame time, in the current animation sequence, from the preceding vsync */ gint64 min_next_frame_time; /* We're not synced to vblank, so wait at least until this before next cycle to avoid busy looping */ SmoothDeltaState smooth_phase_state; /* The state of smoothed_frame_time_phase - is it valid, awaiting vsync etc. Thanks to zero-init, the initial value of smoothed_frame_time_phase is `0`. This is valid, since we didn't get a "frame drawn" event yet. Accordingly, the initial value of smooth_phase_state is SMOOTH_PHASE_STATE_VALID. See the comment in gdk_frame_clock_paint_idle() for details. */ gint64 sleep_serial; gint64 freeze_time; /* in microseconds */ guint flush_idle_id; guint paint_idle_id; guint freeze_count; guint updating_count; GdkFrameClockPhase requested; GdkFrameClockPhase phase; guint in_paint_idle : 1; guint paint_is_thaw : 1; #ifdef G_OS_WIN32 guint begin_period : 1; #endif }; static gboolean gdk_frame_clock_flush_idle (void *data); static gboolean gdk_frame_clock_paint_idle (void *data); G_DEFINE_TYPE_WITH_PRIVATE (GdkFrameClockIdle, gdk_frame_clock_idle, GDK_TYPE_FRAME_CLOCK) static gint64 sleep_serial; static gint64 sleep_source_prepare_time; static GSource *sleep_source; static gboolean sleep_source_prepare (GSource *source, int *timeout) { sleep_source_prepare_time = g_source_get_time (source); *timeout = -1; return FALSE; } static gboolean sleep_source_check (GSource *source) { if (g_source_get_time (source) != sleep_source_prepare_time) sleep_serial++; return FALSE; } static gboolean sleep_source_dispatch (GSource *source, GSourceFunc callback, gpointer user_data) { return TRUE; } static GSourceFuncs sleep_source_funcs = { sleep_source_prepare, sleep_source_check, sleep_source_dispatch, NULL /* finalize */ }; static gint64 get_sleep_serial (void) { if (sleep_source == NULL) { sleep_source = g_source_new (&sleep_source_funcs, sizeof (GSource)); g_source_set_static_name (sleep_source, "[gtk] sleep serial"); g_source_set_priority (sleep_source, G_PRIORITY_HIGH); g_source_attach (sleep_source, NULL); g_source_unref (sleep_source); } return sleep_serial; } static void gdk_frame_clock_idle_init (GdkFrameClockIdle *frame_clock_idle) { GdkFrameClockIdlePrivate *priv; frame_clock_idle->priv = priv = gdk_frame_clock_idle_get_instance_private (frame_clock_idle); priv->freeze_count = 0; priv->smoothed_frame_time_period = FRAME_INTERVAL; } static void gdk_frame_clock_idle_dispose (GObject *object) { GdkFrameClockIdlePrivate *priv = GDK_FRAME_CLOCK_IDLE (object)->priv; if (priv->flush_idle_id != 0) { g_source_remove (priv->flush_idle_id); priv->flush_idle_id = 0; } if (priv->paint_idle_id != 0) { g_source_remove (priv->paint_idle_id); priv->paint_idle_id = 0; } #ifdef G_OS_WIN32 if (priv->begin_period) { timeEndPeriod(1); priv->begin_period = FALSE; } #endif G_OBJECT_CLASS (gdk_frame_clock_idle_parent_class)->dispose (object); } /* Note: This is never called on first frame, so * smoothed_frame_time_base != 0 and we have a valid frame_interval. */ static gint64 compute_smooth_frame_time (GdkFrameClock *clock, gint64 new_frame_time, gboolean new_frame_time_is_vsync_related, gint64 smoothed_frame_time_base, gint64 frame_interval) { GdkFrameClockIdlePrivate *priv = GDK_FRAME_CLOCK_IDLE (clock)->priv; int frames_passed; gint64 new_smoothed_time; gint64 current_error; gint64 correction_magnitude; /* Consecutive frame, assume it is an integer number of frames later, so round to nearest such */ /* NOTE: This is >= 0, because smoothed_frame_time_base is < frame_interval/2 from old_frame_time * and new_frame_time >= old_frame_time. */ frames_passed = (new_frame_time - smoothed_frame_time_base + frame_interval / 2) / frame_interval; /* We use an approximately whole number of frames in the future from * last smoothed frame time. This way we avoid minor jitter in the * frame times making the animation speed uneven, but still animate * evenly in case of whole frame skips. */ new_smoothed_time = smoothed_frame_time_base + frames_passed * frame_interval; /* However, sometimes the smoothed time is too much off from the * real time. For example, if the first frame clock cycle happened * not due to a frame rendering but an input event, then * new_frame_time could happen to be near the middle between two * frames. If that happens and we then start regularly animating at * the refresh_rate, then the jitter in the real time may cause us * to randomly sometimes round up, and sometimes down. * * To combat this we converge the smooth time towards the real time * in a way that is slow when they are near and fast when they are * far from each other. * * This is done by using the square of the error as the correction * magnitude. I.e. if the error is 0.5 frame, we correct by * 0.5*0.5=0.25 frame, if the error is 0.25 we correct by 0.125, if * the error is 0.1, frame we correct by 0.01 frame, etc. * * The actual computation is: * (current_error/frame_interval)*(current_error/frame_interval)*frame_interval * But this can be simplified as below. * * Note: We only do this correction if the new frame is caused by a * thaw of the frame clock, so that we know the time is actually * related to the physical vblank. For frameclock cycles triggered * by other events we always step up in whole frames from the last * reported time. */ if (new_frame_time_is_vsync_related) { current_error = new_smoothed_time - new_frame_time; correction_magnitude = current_error * current_error / frame_interval; /* Note, this is always > 0 due to the square */ if (current_error > 0) new_smoothed_time -= correction_magnitude; else new_smoothed_time += correction_magnitude; } /* Ensure we're always monotonic */ if (new_smoothed_time <= priv->smoothed_frame_time_reported) new_smoothed_time = priv->smoothed_frame_time_reported; return new_smoothed_time; } static gint64 gdk_frame_clock_idle_get_frame_time (GdkFrameClock *clock) { GdkFrameClockIdlePrivate *priv = GDK_FRAME_CLOCK_IDLE (clock)->priv; gint64 now; gint64 new_smoothed_time; /* can't change frame time during a paint */ if (priv->phase != GDK_FRAME_CLOCK_PHASE_NONE && priv->phase != GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS && (priv->phase != GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT || priv->in_paint_idle)) return priv->smoothed_frame_time_base; /* Outside a paint, pick something smoothed close to now */ now = g_get_monotonic_time (); /* First time frame, just return something */ if (priv->smoothed_frame_time_base == 0) { priv->smoothed_frame_time_reported = now; return now; } /* Since time is monotonic this is <= what we will pick for the next cycle, but more likely than not it will be equal if we're doing a constant animation. */ new_smoothed_time = compute_smooth_frame_time (clock, now, FALSE, priv->smoothed_frame_time_base, priv->smoothed_frame_time_period); priv->smoothed_frame_time_reported = new_smoothed_time; return new_smoothed_time; } static inline gboolean gdk_frame_clock_idle_is_frozen (GdkFrameClockIdle *self) { GdkFrameClockIdlePrivate *priv = self->priv; if (GDK_DEBUG_CHECK (NO_VSYNC)) return FALSE; return priv->freeze_count > 0; } static inline gboolean should_run_flush_idle (GdkFrameClockIdle *self) { GdkFrameClockIdlePrivate *priv = self->priv; return !gdk_frame_clock_idle_is_frozen (self) && (priv->requested & GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS) != 0; } /* The reason why we track updating_count separately here and don't * just add GDK_FRAME_CLOCK_PHASE_UPDATE into ->request on every frame * is so that we can avoid doing one more frame when an animation * is cancelled. */ static inline gboolean should_run_paint_idle (GdkFrameClockIdle *self) { GdkFrameClockIdlePrivate *priv = self->priv; return !gdk_frame_clock_idle_is_frozen (self) && ((priv->requested & ~GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS) != 0 || priv->updating_count > 0); } static void maybe_start_idle (GdkFrameClockIdle *self, gboolean caused_by_thaw) { GdkFrameClockIdlePrivate *priv = self->priv; if (should_run_flush_idle (self) || should_run_paint_idle (self)) { guint min_interval = 0; if (priv->min_next_frame_time != 0 && !GDK_DEBUG_CHECK (NO_VSYNC)) { gint64 now = g_get_monotonic_time (); gint64 min_interval_us = MAX (priv->min_next_frame_time, now) - now; min_interval = (min_interval_us + 500) / 1000; } if (priv->flush_idle_id == 0 && should_run_flush_idle (self)) { GSource *source; priv->flush_idle_id = g_timeout_add_full (GDK_PRIORITY_EVENTS + 1, min_interval, gdk_frame_clock_flush_idle, g_object_ref (self), (GDestroyNotify) g_object_unref); source = g_main_context_find_source_by_id (NULL, priv->flush_idle_id); g_source_set_static_name (source, "[gtk] gdk_frame_clock_flush_idle"); } if (!priv->in_paint_idle && priv->paint_idle_id == 0 && should_run_paint_idle (self)) { priv->paint_is_thaw = caused_by_thaw; priv->paint_idle_id = g_timeout_add_full (GDK_PRIORITY_REDRAW, min_interval, gdk_frame_clock_paint_idle, g_object_ref (self), (GDestroyNotify) g_object_unref); gdk_source_set_static_name_by_id (priv->paint_idle_id, "[gtk] gdk_frame_clock_paint_idle"); } } } static void maybe_stop_idle (GdkFrameClockIdle *self) { GdkFrameClockIdlePrivate *priv = self->priv; if (priv->flush_idle_id != 0 && !should_run_flush_idle (self)) { g_source_remove (priv->flush_idle_id); priv->flush_idle_id = 0; } if (priv->paint_idle_id != 0 && !should_run_paint_idle (self)) { g_source_remove (priv->paint_idle_id); priv->paint_idle_id = 0; } } static gboolean gdk_frame_clock_flush_idle (void *data) { GdkFrameClock *clock = GDK_FRAME_CLOCK (data); GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; priv->flush_idle_id = 0; if (priv->phase != GDK_FRAME_CLOCK_PHASE_NONE) return FALSE; priv->phase = GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS; priv->requested &= ~GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS; _gdk_frame_clock_emit_flush_events (clock); if ((priv->requested & ~GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS) != 0 || priv->updating_count > 0) priv->phase = GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT; else priv->phase = GDK_FRAME_CLOCK_PHASE_NONE; g_clear_handle_id (&priv->paint_idle_id, g_source_remove); gdk_frame_clock_paint_idle (data); return FALSE; } /* * Returns the positive remainder. * * As an example, lets consider (-5) % 16: * * (-5) % 16 = (0 * 16) + (-5) = -5 * * If we only want positive remainders, we can instead calculate * * (-5) % 16 = (1 * 16) + (-5) = 11 * * The built-in `%` operator returns the former, positive_modulo() returns the latter. */ static int positive_modulo (int i, int n) { return (i % n + n) % n; } static gboolean gdk_frame_clock_paint_idle (void *data) { GdkFrameClock *clock = GDK_FRAME_CLOCK (data); GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; gboolean skip_to_resume_events; GdkFrameTimings *timings = NULL; gint64 before G_GNUC_UNUSED; before = GDK_PROFILER_CURRENT_TIME; priv->paint_idle_id = 0; priv->in_paint_idle = TRUE; priv->min_next_frame_time = 0; skip_to_resume_events = (priv->requested & ~(GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS | GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS)) == 0 && priv->updating_count == 0; if (priv->phase > GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT) { timings = gdk_frame_clock_get_current_timings (clock); } if (!skip_to_resume_events) { switch (priv->phase) { case GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS: break; case GDK_FRAME_CLOCK_PHASE_NONE: case GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT: if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { gint64 frame_interval = FRAME_INTERVAL; GdkFrameTimings *prev_timings = gdk_frame_clock_get_current_timings (clock); if (prev_timings && prev_timings->refresh_interval) frame_interval = prev_timings->refresh_interval; priv->frame_time = g_get_monotonic_time (); /* * The first clock cycle of an animation might have been triggered by some external event. An external * event can be an input event, an expired timer, data arriving over the network etc. This can happen at * any time, so the cycle could have been scheduled at some random time rather then immediately after a * frame completion. The offset between the start of the first animation cycle and the preceding vsync is * called the "phase" of the clock cycle start time (not to be confused with the phase of the frame * clock). * * In this first clock cycle, the "smooth" frame time is simply the time when the cycle was started. This * could be followed by several cycles which are not vsync-related. As long as we don't get a "frame * drawn" signal from the compositor, the clock cycles will occur every about frame_interval. Once we do * get a "frame drawn" signal, from this point on the frame clock cycles will start shortly after the * corresponding vsync signals, again every about frame_interval. The first vsync-related clock cycle * might occur less than a refresh interval away from the last non-vsync-related cycle. See the diagram * below for details. So while the cadence stays the same - a frame clock cycle every about frame_interval * - the phase of the cycles start time has changed. * * Since we might have already reported the frame time to the application in the previous clock cycles, we * have to adjust future reported frame times. We want the first vsync-related smooth time to be separated * by exactly 1 frame_interval from the previous one, in order to maintain the regularity of the reported * frame times. To achieve that, from this point on we add the phase of the first clock cycle start time to * the smooth time. In order to compute that phase, accounting for possible skipped frames (e.g. due to * compositor stalls), we want the following to be true: * * first_vsync_smooth_time = last_non_vsync_smooth_time + frame_interval * (1 + frames_skipped) * * We can assign the following known/desired values to the above equation: * * last_non_vsync_smooth_time = smoothed_frame_time_base * first_vsync_smooth_time = frame_time + smoothed_frame_time_phase * * That leads us to the following, from which we can extract smoothed_frame_time_phase: * * frame_time + smoothed_frame_time_phase = smoothed_frame_time_base + * frame_interval * (1 + frames_skipped) * * In the following diagram, '|' mark a vsync, '*' mark the start of a clock cycle, '+' is the adjusted * frame time, '!' marks the reception of "frame drawn" events from the compositor. Note that the clock * cycle cadence changed after the first vsync-related cycle. This cadence is kept even if we don't * receive a 'frame drawn' signal in a subsequent frame, since then we schedule the clock at intervals of * refresh_interval. * * vsync | | | | | |... * frame drawn | | |! |! | |... * cycle start | * | * |* |* |* |... * adjusted times | * | * | + | + | + |... * phase ^------^ */ if (priv->smooth_phase_state == SMOOTH_PHASE_STATE_AWAIT_FIRST) { /* First animation cycle - usually unrelated to vsync */ priv->smoothed_frame_time_base = 0; priv->smoothed_frame_time_phase = 0; priv->smooth_phase_state = SMOOTH_PHASE_STATE_AWAIT_DRAWN; } else if (priv->smooth_phase_state == SMOOTH_PHASE_STATE_AWAIT_DRAWN && priv->paint_is_thaw) { /* First vsync-related animation cycle, we can now compute the phase. We want the phase to satisfy 0 <= phase < frame_interval */ priv->smoothed_frame_time_phase = positive_modulo (priv->smoothed_frame_time_base - priv->frame_time, frame_interval); priv->smooth_phase_state = SMOOTH_PHASE_STATE_VALID; } if (priv->smoothed_frame_time_base == 0) { /* First frame ever, or first cycle in a new animation sequence. Ensure monotonicity */ priv->smoothed_frame_time_base = MAX (priv->frame_time, priv->smoothed_frame_time_reported); } else { /* compute_smooth_frame_time() ensures monotonicity */ priv->smoothed_frame_time_base = compute_smooth_frame_time (clock, priv->frame_time + priv->smoothed_frame_time_phase, priv->paint_is_thaw, priv->smoothed_frame_time_base, priv->smoothed_frame_time_period); } priv->smoothed_frame_time_period = frame_interval; priv->smoothed_frame_time_reported = priv->smoothed_frame_time_base; _gdk_frame_clock_begin_frame (clock); /* Note "current" is different now so timings != prev_timings */ timings = gdk_frame_clock_get_current_timings (clock); timings->frame_time = priv->frame_time; timings->smoothed_frame_time = priv->smoothed_frame_time_base; timings->slept_before = priv->sleep_serial != get_sleep_serial (); priv->phase = GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT; /* We always emit ::before-paint and ::after-paint if * any of the intermediate phases are requested and * they don't get repeated if you freeze/thaw while * in them. */ priv->requested &= ~GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT; _gdk_frame_clock_emit_before_paint (clock); priv->phase = GDK_FRAME_CLOCK_PHASE_UPDATE; } G_GNUC_FALLTHROUGH; case GDK_FRAME_CLOCK_PHASE_UPDATE: if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { if ((priv->requested & GDK_FRAME_CLOCK_PHASE_UPDATE) != 0 || priv->updating_count > 0) { priv->requested &= ~GDK_FRAME_CLOCK_PHASE_UPDATE; _gdk_frame_clock_emit_update (clock); } } G_GNUC_FALLTHROUGH; case GDK_FRAME_CLOCK_PHASE_LAYOUT: if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { int iter; if (GDK_DEBUG_CHECK (FRAMES)) { if (priv->phase != GDK_FRAME_CLOCK_PHASE_LAYOUT && (priv->requested & GDK_FRAME_CLOCK_PHASE_LAYOUT)) timings->layout_start_time = g_get_monotonic_time (); } priv->phase = GDK_FRAME_CLOCK_PHASE_LAYOUT; /* We loop in the layout phase, because we don't want to progress * into the paint phase with invalid size allocations. This may * happen in some situation like races between user window * resizes and natural size changes. */ iter = 0; while ((priv->requested & GDK_FRAME_CLOCK_PHASE_LAYOUT) && !gdk_frame_clock_idle_is_frozen (clock_idle) && iter++ < 4) { priv->requested &= ~GDK_FRAME_CLOCK_PHASE_LAYOUT; _gdk_frame_clock_emit_layout (clock); } if (iter == 5) g_warning ("gdk-frame-clock: layout continuously requested, giving up after 4 tries"); } G_GNUC_FALLTHROUGH; case GDK_FRAME_CLOCK_PHASE_PAINT: if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { if (GDK_DEBUG_CHECK (FRAMES)) { if (priv->phase != GDK_FRAME_CLOCK_PHASE_PAINT && (priv->requested & GDK_FRAME_CLOCK_PHASE_PAINT)) timings->paint_start_time = g_get_monotonic_time (); } priv->phase = GDK_FRAME_CLOCK_PHASE_PAINT; if (priv->requested & GDK_FRAME_CLOCK_PHASE_PAINT) { priv->requested &= ~GDK_FRAME_CLOCK_PHASE_PAINT; _gdk_frame_clock_emit_paint (clock); } } G_GNUC_FALLTHROUGH; case GDK_FRAME_CLOCK_PHASE_AFTER_PAINT: if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { priv->requested &= ~GDK_FRAME_CLOCK_PHASE_AFTER_PAINT; _gdk_frame_clock_emit_after_paint (clock); /* the ::after-paint phase doesn't get repeated on freeze/thaw, */ priv->phase = GDK_FRAME_CLOCK_PHASE_NONE; } if (GDK_DEBUG_CHECK (FRAMES)) { if (timings) timings->frame_end_time = g_get_monotonic_time (); } G_GNUC_FALLTHROUGH; case GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS: default: ; } } if (priv->requested & GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS) { priv->requested &= ~GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS; _gdk_frame_clock_emit_resume_events (clock); } if (!gdk_frame_clock_idle_is_frozen (clock_idle)) priv->phase = GDK_FRAME_CLOCK_PHASE_NONE; priv->in_paint_idle = FALSE; /* If there is throttling in the backend layer, then we'll do another * update as soon as the backend unthrottles (if there is work to do), * otherwise we need to figure when the next frame should be. */ if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { /* * If we don't receive "frame drawn" events, smooth_cycle_start will simply be advanced in constant increments of * the refresh interval. That way we get absolute target times for the next cycles, which should prevent skewing * in the scheduling of the frame clock. * * Once we do receive "frame drawn" events, smooth_cycle_start will track the vsync, and do so in a more stable * way compared to frame_time. If we then no longer receive "frame drawn" events, smooth_cycle_start will again be * simply advanced in increments of the refresh interval, but this time we are in sync with the vsync. If we start * receiving "frame drawn" events shortly after losing them, then we should still be in sync. */ gint64 smooth_cycle_start = priv->smoothed_frame_time_base - priv->smoothed_frame_time_phase; priv->min_next_frame_time = smooth_cycle_start + priv->smoothed_frame_time_period; maybe_start_idle (clock_idle, FALSE); } if (!gdk_frame_clock_idle_is_frozen (clock_idle)) priv->sleep_serial = get_sleep_serial (); gdk_profiler_end_mark (before, "frameclock cycle", NULL); return FALSE; } static void gdk_frame_clock_idle_request_phase (GdkFrameClock *clock, GdkFrameClockPhase phase) { GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; priv->requested |= phase; maybe_start_idle (clock_idle, FALSE); } static void gdk_frame_clock_idle_begin_updating (GdkFrameClock *clock) { GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; #ifdef G_OS_WIN32 /* We need a higher resolution timer while doing animations */ if (priv->updating_count == 0 && !priv->begin_period) { timeBeginPeriod(1); priv->begin_period = TRUE; } #endif if (priv->updating_count == 0) { priv->smooth_phase_state = SMOOTH_PHASE_STATE_AWAIT_FIRST; } priv->updating_count++; maybe_start_idle (clock_idle, FALSE); } static void gdk_frame_clock_idle_end_updating (GdkFrameClock *clock) { GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; g_return_if_fail (priv->updating_count > 0); priv->updating_count--; maybe_stop_idle (clock_idle); if (priv->updating_count == 0) { priv->smooth_phase_state = SMOOTH_PHASE_STATE_VALID; } #ifdef G_OS_WIN32 if (priv->updating_count == 0 && priv->begin_period) { timeEndPeriod(1); priv->begin_period = FALSE; } #endif } static void gdk_frame_clock_idle_freeze (GdkFrameClock *clock) { GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { if (GDK_PROFILER_IS_RUNNING) priv->freeze_time = g_get_monotonic_time (); } priv->freeze_count++; maybe_stop_idle (clock_idle); } static void gdk_frame_clock_idle_thaw (GdkFrameClock *clock) { GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock); GdkFrameClockIdlePrivate *priv = clock_idle->priv; g_return_if_fail (priv->freeze_count > 0); priv->freeze_count--; if (!gdk_frame_clock_idle_is_frozen (clock_idle)) { maybe_start_idle (clock_idle, TRUE); /* If nothing is requested so we didn't start an idle, we need * to skip to the end of the state chain, since the idle won't * run and do it for us. */ if (priv->paint_idle_id == 0) priv->phase = GDK_FRAME_CLOCK_PHASE_NONE; priv->sleep_serial = get_sleep_serial (); if (GDK_PROFILER_IS_RUNNING) { if (gdk_frame_clock_idle_is_frozen (clock_idle)) { gdk_profiler_end_mark (priv->freeze_time * 1000, "frameclock frozen", NULL); priv->freeze_time = 0; } } } } static void gdk_frame_clock_idle_class_init (GdkFrameClockIdleClass *klass) { GObjectClass *gobject_class = (GObjectClass*) klass; GdkFrameClockClass *frame_clock_class = (GdkFrameClockClass *)klass; gobject_class->dispose = gdk_frame_clock_idle_dispose; frame_clock_class->get_frame_time = gdk_frame_clock_idle_get_frame_time; frame_clock_class->request_phase = gdk_frame_clock_idle_request_phase; frame_clock_class->begin_updating = gdk_frame_clock_idle_begin_updating; frame_clock_class->end_updating = gdk_frame_clock_idle_end_updating; frame_clock_class->freeze = gdk_frame_clock_idle_freeze; frame_clock_class->thaw = gdk_frame_clock_idle_thaw; } GdkFrameClock * _gdk_frame_clock_idle_new (void) { GdkFrameClockIdle *clock; clock = g_object_new (GDK_TYPE_FRAME_CLOCK_IDLE, NULL); return GDK_FRAME_CLOCK (clock); }