/* GSK - The GTK Scene Kit * * Copyright 2016 Endless * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . */ #include "config.h" #include "gskrendernodeprivate.h" #include "gskcairoblurprivate.h" #include "gskdebugprivate.h" #include "gskdiffprivate.h" #include "gskrendererprivate.h" #include "gskroundedrectprivate.h" #include "gsktransformprivate.h" #include "gdk/gdktextureprivate.h" #include static inline void gsk_cairo_rectangle (cairo_t *cr, const graphene_rect_t *rect) { cairo_rectangle (cr, rect->origin.x, rect->origin.y, rect->size.width, rect->size.height); } static void rectangle_init_from_graphene (cairo_rectangle_int_t *cairo, const graphene_rect_t *graphene) { cairo->x = floorf (graphene->origin.x); cairo->y = floorf (graphene->origin.y); cairo->width = ceilf (graphene->origin.x + graphene->size.width) - cairo->x; cairo->height = ceilf (graphene->origin.y + graphene->size.height) - cairo->y; } /*** GSK_COLOR_NODE ***/ /** * GskColorNode: * * A render node for a solid color. */ struct _GskColorNode { GskRenderNode render_node; GdkRGBA color; }; static void gsk_color_node_draw (GskRenderNode *node, cairo_t *cr) { GskColorNode *self = (GskColorNode *) node; gdk_cairo_set_source_rgba (cr, &self->color); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_color_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskColorNode *self1 = (GskColorNode *) node1; GskColorNode *self2 = (GskColorNode *) node2; if (graphene_rect_equal (&node1->bounds, &node2->bounds) && gdk_rgba_equal (&self1->color, &self2->color)) return; gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_color_node_get_color: * @node: (type GskColorNode): a #GskColorNode * * Retrieves the color of the given @node. * * Returns: (transfer none): the color of the node */ const GdkRGBA * gsk_color_node_get_color (GskRenderNode *node) { GskColorNode *self = (GskColorNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_NODE), NULL); return &self->color; } /** * gsk_color_node_new: * @rgba: a #GdkRGBA specifying a color * @bounds: the rectangle to render the color into * * Creates a #GskRenderNode that will render the color specified by @rgba into * the area given by @bounds. * * Returns: (transfer full) (type GskColorNode): A new #GskRenderNode */ GskRenderNode * gsk_color_node_new (const GdkRGBA *rgba, const graphene_rect_t *bounds) { GskColorNode *self; GskRenderNode *node; g_return_val_if_fail (rgba != NULL, NULL); g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_COLOR_NODE); node = (GskRenderNode *) self; self->color = *rgba; graphene_rect_init_from_rect (&node->bounds, bounds); return node; } /*** GSK_LINEAR_GRADIENT_NODE ***/ /** * GskRepeatingLinearGradientNode: * * A render node for a repeating linear gradient. */ /** * GskLinearGradientNode: * * A render node for a linear gradient. */ struct _GskLinearGradientNode { GskRenderNode render_node; graphene_point_t start; graphene_point_t end; gsize n_stops; GskColorStop *stops; }; static void gsk_linear_gradient_node_finalize (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_LINEAR_GRADIENT_NODE)); g_free (self->stops); parent_class->finalize (node); } static void gsk_linear_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; cairo_pattern_t *pattern; gsize i; pattern = cairo_pattern_create_linear (self->start.x, self->start.y, self->end.x, self->end.y); if (gsk_render_node_get_node_type (node) == GSK_REPEATING_LINEAR_GRADIENT_NODE) cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); for (i = 0; i < self->n_stops; i++) { cairo_pattern_add_color_stop_rgba (pattern, self->stops[i].offset, self->stops[i].color.red, self->stops[i].color.green, self->stops[i].color.blue, self->stops[i].color.alpha); } cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_linear_gradient_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskLinearGradientNode *self1 = (GskLinearGradientNode *) node1; GskLinearGradientNode *self2 = (GskLinearGradientNode *) node2; if (graphene_point_equal (&self1->start, &self2->start) && graphene_point_equal (&self1->end, &self2->end) && self1->n_stops == self2->n_stops) { gsize i; for (i = 0; i < self1->n_stops; i++) { GskColorStop *stop1 = &self1->stops[i]; GskColorStop *stop2 = &self2->stops[i]; if (stop1->offset == stop2->offset && gdk_rgba_equal (&stop1->color, &stop2->color)) continue; gsk_render_node_diff_impossible (node1, node2, region); return; } return; } gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_linear_gradient_node_new: * @bounds: the rectangle to render the linear gradient into * @start: the point at which the linear gradient will begin * @end: the point at which the linear gradient will finish * @color_stops: (array length=n_color_stops): a pointer to an array of #GskColorStop defining the gradient * The offsets of all color steps must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a #GskRenderNode that will create a linear gradient from the given * points and color stops, and render that into the area given by @bounds. * * Returns: (transfer full) (type GskLinearGradientNode): A new #GskRenderNode */ GskRenderNode * gsk_linear_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *start, const graphene_point_t *end, const GskColorStop *color_stops, gsize n_color_stops) { GskLinearGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (start != NULL, NULL); g_return_val_if_fail (end != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_LINEAR_GRADIENT_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->start, start); graphene_point_init_from_point (&self->end, end); self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_repeating_linear_gradient_node_new: * @bounds: the rectangle to render the linear gradient into * @start: the point at which the linear gradient will begin * @end: the point at which the linear gradient will finish * @color_stops: (array length=n_color_stops): a pointer to an array of #GskColorStop defining the gradient * The offsets of all color steps must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a #GskRenderNode that will create a repeating linear gradient * from the given points and color stops, and render that into the area * given by @bounds. * * Returns: (transfer full) (type GskRepeatingLinearGradientNode): A new #GskRenderNode */ GskRenderNode * gsk_repeating_linear_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *start, const graphene_point_t *end, const GskColorStop *color_stops, gsize n_color_stops) { GskLinearGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (start != NULL, NULL); g_return_val_if_fail (end != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_REPEATING_LINEAR_GRADIENT_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->start, start); graphene_point_init_from_point (&self->end, end); self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); self->n_stops = n_color_stops; return node; } /** * gsk_linear_gradient_node_get_start: * @node: (type GskLinearGradientNode): a #GskRenderNode for a linear gradient * * Retrieves the initial point of the linear gradient. * * Returns: (transfer none): the initial point */ const graphene_point_t * gsk_linear_gradient_node_get_start (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return &self->start; } /** * gsk_linear_gradient_node_get_end: * @node: (type GskLinearGradientNode): a #GskRenderNode for a linear gradient * * Retrieves the final point of the linear gradient. * * Returns: (transfer none): the final point */ const graphene_point_t * gsk_linear_gradient_node_get_end (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return &self->end; } /** * gsk_linear_gradient_node_get_n_color_stops: * @node: (type GskLinearGradientNode): a #GskRenderNode for a linear gradient * * Retrieves the number of color stops in the gradient. * * Returns: the number of color stops */ gsize gsk_linear_gradient_node_get_n_color_stops (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; return self->n_stops; } /** * gsk_linear_gradient_node_get_color_stops: * @node: (type GskLinearGradientNode): a #GskRenderNode for a linear gradient * @n_stops: (out) (optional): the number of color stops in the returned array * * Retrieves the color stops in the gradient. * * Returns: (array length=n_stops): the color stops in the gradient */ const GskColorStop * gsk_linear_gradient_node_get_color_stops (GskRenderNode *node, gsize *n_stops) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; if (n_stops != NULL) *n_stops = self->n_stops; return self->stops; } /*** GSK_RADIAL_GRADIENT_NODE ***/ /** * GskRepeatingRadialGradientNode: * * A render node for a repeating radial gradient. */ /** * GskRadialGradientNode: * * A render node for a radial gradient. */ struct _GskRadialGradientNode { GskRenderNode render_node; graphene_point_t center; float hradius; float vradius; float start; float end; gsize n_stops; GskColorStop *stops; }; static void gsk_radial_gradient_node_finalize (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_RADIAL_GRADIENT_NODE)); g_free (self->stops); parent_class->finalize (node); } static void gsk_radial_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; cairo_pattern_t *pattern; gsize i; pattern = cairo_pattern_create_radial (0, 0, self->hradius * self->start, 0, 0, self->hradius * self->end); if (self->hradius != self->vradius) { cairo_matrix_t matrix; cairo_matrix_init_scale (&matrix, 1.0, self->hradius / self->vradius); cairo_pattern_set_matrix (pattern, &matrix); } if (gsk_render_node_get_node_type (node) == GSK_REPEATING_RADIAL_GRADIENT_NODE) cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); else cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); for (i = 0; i < self->n_stops; i++) cairo_pattern_add_color_stop_rgba (pattern, self->stops[i].offset, self->stops[i].color.red, self->stops[i].color.green, self->stops[i].color.blue, self->stops[i].color.alpha); gsk_cairo_rectangle (cr, &node->bounds); cairo_translate (cr, self->center.x, self->center.y); cairo_set_source (cr, pattern); cairo_fill (cr); cairo_pattern_destroy (pattern); } static void gsk_radial_gradient_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskRadialGradientNode *self1 = (GskRadialGradientNode *) node1; GskRadialGradientNode *self2 = (GskRadialGradientNode *) node2; if (graphene_point_equal (&self1->center, &self2->center) && self1->hradius == self2->hradius && self1->vradius == self2->vradius && self1->start == self2->start && self1->end == self2->end && self1->n_stops == self2->n_stops) { gsize i; for (i = 0; i < self1->n_stops; i++) { GskColorStop *stop1 = &self1->stops[i]; GskColorStop *stop2 = &self2->stops[i]; if (stop1->offset == stop2->offset && gdk_rgba_equal (&stop1->color, &stop2->color)) continue; gsk_render_node_diff_impossible (node1, node2, region); return; } return; } gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_radial_gradient_node_new: * @bounds: the bounds of the node * @center: the center of the gradient * @hradius: the horizontal radius * @vradius: the vertical radius * @start: a percentage >= 0 that defines the start of the gradient around @center * @end: a percentage >= 0 that defines the end of the gradient around @center * @color_stops: (array length=n_color_stops): a pointer to an array of #GskColorStop defining the gradient * The offsets of all color steps must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a #GskRenderNode that draws a radial gradient. The radial gradient * starts around @center. The size of the gradient is dictated by @hradius * in horizontal orientation and by @vradius in vertial orientation. * * Returns: (transfer full) (type GskRadialGradientNode): A new #GskRenderNode */ GskRenderNode * gsk_radial_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *center, float hradius, float vradius, float start, float end, const GskColorStop *color_stops, gsize n_color_stops) { GskRadialGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (center != NULL, NULL); g_return_val_if_fail (hradius > 0., NULL); g_return_val_if_fail (vradius > 0., NULL); g_return_val_if_fail (start >= 0., NULL); g_return_val_if_fail (end >= 0., NULL); g_return_val_if_fail (end > start, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_RADIAL_GRADIENT_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->center, center); self->hradius = hradius; self->vradius = vradius; self->start = start; self->end = end; self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_repeating_radial_gradient_node_new: * @bounds: the bounds of the node * @center: the center of the gradient * @hradius: the horizontal radius * @vradius: the vertical radius * @start: a percentage >= 0 that defines the start of the gradient around @center * @end: a percentage >= 0 that defines the end of the gradient around @center * @color_stops: (array length=n_color_stops): a pointer to an array of #GskColorStop defining the gradient * The offsets of all color steps must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a #GskRenderNode that draws a repeating radial gradient. The radial gradient * starts around @center. The size of the gradient is dictated by @hradius * in horizontal orientation and by @vradius in vertial orientation. * * Returns: (transfer full) (type GskRepeatingRadialGradientNode): A new #GskRenderNode */ GskRenderNode * gsk_repeating_radial_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *center, float hradius, float vradius, float start, float end, const GskColorStop *color_stops, gsize n_color_stops) { GskRadialGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (center != NULL, NULL); g_return_val_if_fail (hradius > 0., NULL); g_return_val_if_fail (vradius > 0., NULL); g_return_val_if_fail (start >= 0., NULL); g_return_val_if_fail (end >= 0., NULL); g_return_val_if_fail (end > start, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_REPEATING_RADIAL_GRADIENT_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->center, center); self->hradius = hradius; self->vradius = vradius; self->start = start; self->end = end; self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_radial_gradient_node_get_n_color_stops: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * * Retrieves the number of color stops in the gradient. * * Returns: the number of color stops */ gsize gsk_radial_gradient_node_get_n_color_stops (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; return self->n_stops; } /** * gsk_radial_gradient_node_get_color_stops: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * @n_stops: (out) (optional): the number of color stops in the returned array * * Retrieves the color stops in the gradient. * * Returns: (array length=n_stops): the color stops in the gradient */ const GskColorStop * gsk_radial_gradient_node_get_color_stops (GskRenderNode *node, gsize *n_stops) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; if (n_stops != NULL) *n_stops = self->n_stops; return self->stops; } /** * gsk_radial_gradient_node_get_center: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * * Retrieves the center pointer for the gradient. * * Returns: the center point for the gradient */ const graphene_point_t * gsk_radial_gradient_node_get_center (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; return &self->center; } /** * gsk_radial_gradient_node_get_hradius: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * * Retrieves the horizonal radius for the gradient. * * Returns: the horizontal radius for the gradient */ float gsk_radial_gradient_node_get_hradius (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; return self->hradius; } /** * gsk_radial_gradient_node_get_vradius: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * * Retrieves the vertical radius for the gradient. * * Returns: the vertical radius for the gradient */ float gsk_radial_gradient_node_get_vradius (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; return self->vradius; } /** * gsk_radial_gradient_node_get_start: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * * Retrieves the start value for the gradient. * * Returns: the start value for the gradient */ float gsk_radial_gradient_node_get_start (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; return self->start; } /** * gsk_radial_gradient_node_get_end: * @node: (type GskRadialGradientNode): a #GskRenderNode for a radial gradient * * Retrieves the end value for the gradient. * * Returns: the end value for the gradient */ float gsk_radial_gradient_node_get_end (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; return self->end; } /*** GSK_CONIC_GRADIENT_NODE ***/ /** * GskConicGradientNode: * * A render node for a conic gradient. */ struct _GskConicGradientNode { GskRenderNode render_node; graphene_point_t center; float rotation; gsize n_stops; GskColorStop *stops; }; static void gsk_conic_gradient_node_finalize (GskRenderNode *node) { GskConicGradientNode *self = (GskConicGradientNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CONIC_GRADIENT_NODE)); g_free (self->stops); parent_class->finalize (node); } #define DEG_TO_RAD(x) ((x) * (G_PI / 180.f)) static void _cairo_mesh_pattern_set_corner_rgba (cairo_pattern_t *pattern, guint corner_num, const GdkRGBA *rgba) { cairo_mesh_pattern_set_corner_color_rgba (pattern, corner_num, rgba->red, rgba->green, rgba->blue, rgba->alpha); } static void project (double angle, double radius, double *x_out, double *y_out) { double x, y; x = radius * cos (angle); y = radius * sin (angle); if (copysign (x, 1.0) > copysign (y, 1.0)) { *x_out = copysign (radius, x); *y_out = y * radius / copysign (x, 1.0); } else { *x_out = x * radius / copysign (y, 1.0); *y_out = copysign (radius, y); } } static void gsk_conic_gradient_node_add_patch (cairo_pattern_t *pattern, float radius, float start_angle, const GdkRGBA *start_color, float end_angle, const GdkRGBA *end_color) { double x, y; cairo_mesh_pattern_begin_patch (pattern); cairo_mesh_pattern_move_to (pattern, 0, 0); project (start_angle, radius, &x, &y); cairo_mesh_pattern_line_to (pattern, x, y); project (end_angle, radius, &x, &y); cairo_mesh_pattern_line_to (pattern, x, y); cairo_mesh_pattern_line_to (pattern, 0, 0); _cairo_mesh_pattern_set_corner_rgba (pattern, 0, start_color); _cairo_mesh_pattern_set_corner_rgba (pattern, 1, start_color); _cairo_mesh_pattern_set_corner_rgba (pattern, 2, end_color); _cairo_mesh_pattern_set_corner_rgba (pattern, 3, end_color); cairo_mesh_pattern_end_patch (pattern); } static void gdk_rgba_color_interpolate (GdkRGBA *dest, const GdkRGBA *src1, const GdkRGBA *src2, double progress) { double alpha = src1->alpha * (1.0 - progress) + src2->alpha * progress; dest->alpha = alpha; if (alpha == 0) { dest->red = src1->red * (1.0 - progress) + src2->red * progress; dest->green = src1->green * (1.0 - progress) + src2->green * progress; dest->blue = src1->blue * (1.0 - progress) + src2->blue * progress; } else { dest->red = (src1->red * src1->alpha * (1.0 - progress) + src2->red * src2->alpha * progress) / alpha; dest->green = (src1->green * src1->alpha * (1.0 - progress) + src2->green * src2->alpha * progress) / alpha; dest->blue = (src1->blue * src1->alpha * (1.0 - progress) + src2->blue * src2->alpha * progress) / alpha; } } static void gsk_conic_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskConicGradientNode *self = (GskConicGradientNode *) node; cairo_pattern_t *pattern; graphene_point_t corner; float radius; gsize i; pattern = cairo_pattern_create_mesh (); graphene_rect_get_top_right (&node->bounds, &corner); radius = graphene_point_distance (&self->center, &corner, NULL, NULL); graphene_rect_get_bottom_right (&node->bounds, &corner); radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL)); graphene_rect_get_bottom_left (&node->bounds, &corner); radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL)); graphene_rect_get_top_left (&node->bounds, &corner); radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL)); for (i = 0; i <= self->n_stops; i++) { GskColorStop *stop1 = &self->stops[MAX (i, 1) - 1]; GskColorStop *stop2 = &self->stops[MIN (i, self->n_stops - 1)]; double offset1 = i > 0 ? stop1->offset : 0; double offset2 = i < self->n_stops ? stop2->offset : 1; double start_angle, end_angle; offset1 = offset1 * 360 + self->rotation - 90; offset2 = offset2 * 360 + self->rotation - 90; for (start_angle = offset1; start_angle < offset2; start_angle = end_angle) { GdkRGBA start_color, end_color; end_angle = (floor (start_angle / 45) + 1) * 45; end_angle = MIN (end_angle, offset2); gdk_rgba_color_interpolate (&start_color, &stop1->color, &stop2->color, (start_angle - offset1) / (offset2 - offset1)); gdk_rgba_color_interpolate (&end_color, &stop1->color, &stop2->color, (end_angle - offset1) / (offset2 - offset1)); gsk_conic_gradient_node_add_patch (pattern, radius, DEG_TO_RAD (start_angle), &start_color, DEG_TO_RAD (end_angle), &end_color); } } cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); gsk_cairo_rectangle (cr, &node->bounds); cairo_translate (cr, self->center.x, self->center.y); cairo_set_source (cr, pattern); cairo_fill (cr); cairo_pattern_destroy (pattern); } static void gsk_conic_gradient_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskConicGradientNode *self1 = (GskConicGradientNode *) node1; GskConicGradientNode *self2 = (GskConicGradientNode *) node2; gsize i; if (!graphene_point_equal (&self1->center, &self2->center) || self1->rotation != self2->rotation || self1->n_stops != self2->n_stops) { gsk_render_node_diff_impossible (node1, node2, region); return; } for (i = 0; i < self1->n_stops; i++) { GskColorStop *stop1 = &self1->stops[i]; GskColorStop *stop2 = &self2->stops[i]; if (stop1->offset != stop2->offset || !gdk_rgba_equal (&stop1->color, &stop2->color)) { gsk_render_node_diff_impossible (node1, node2, region); return; } } } /** * gsk_conic_gradient_node_new: * @bounds: the bounds of the node * @center: the center of the gradient * @rotation: the rotation of the gradient in degrees * @color_stops: (array length=n_color_stops): a pointer to an array of #GskColorStop defining the gradient * The offsets of all color steps must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a #GskRenderNode that draws a conic gradient. The conic gradient * starts around @center in the direction of @rotation. A rotation of 0 means * that the gradient points up. Color stops are then added clockwise. * * Returns: (transfer full) (type GskConicGradientNode): A new #GskRenderNode */ GskRenderNode * gsk_conic_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *center, float rotation, const GskColorStop *color_stops, gsize n_color_stops) { GskConicGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (center != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_CONIC_GRADIENT_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->center, center); self->rotation = rotation; self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_conic_gradient_node_get_n_color_stops: * @node: (type GskConicGradientNode): a #GskRenderNode for a conic gradient * * Retrieves the number of color stops in the gradient. * * Returns: the number of color stops */ gsize gsk_conic_gradient_node_get_n_color_stops (GskRenderNode *node) { GskConicGradientNode *self = (GskConicGradientNode *) node; return self->n_stops; } /** * gsk_conic_gradient_node_get_color_stops: * @node: (type GskConicGradientNode): a #GskRenderNode for a conic gradient * @n_stops: (out) (optional): the number of color stops in the returned array * * Retrieves the color stops in the gradient. * * Returns: (array length=n_stops): the color stops in the gradient */ const GskColorStop * gsk_conic_gradient_node_get_color_stops (GskRenderNode *node, gsize *n_stops) { GskConicGradientNode *self = (GskConicGradientNode *) node; if (n_stops != NULL) *n_stops = self->n_stops; return self->stops; } /** * gsk_conic_gradient_node_get_center: * @node: (type GskConicGradientNode): a #GskRenderNode for a conic gradient * * Retrieves the center pointer for the gradient. * * Returns: the center point for the gradient */ const graphene_point_t * gsk_conic_gradient_node_get_center (GskRenderNode *node) { GskConicGradientNode *self = (GskConicGradientNode *) node; return &self->center; } /** * gsk_conic_gradient_node_get_rotation: * @node: (type GskConicGradientNode): a #GskRenderNode for a conic gradient * * Retrieves the rotation for the gradient in degrees. * * Returns: the rotation for the gradient */ float gsk_conic_gradient_node_get_rotation (GskRenderNode *node) { GskConicGradientNode *self = (GskConicGradientNode *) node; return self->rotation; } /*** GSK_BORDER_NODE ***/ /** * GskBorderNode: * * A render node for a border. */ struct _GskBorderNode { GskRenderNode render_node; bool uniform: 1; GskRoundedRect outline; float border_width[4]; GdkRGBA border_color[4]; }; static void gsk_border_node_mesh_add_patch (cairo_pattern_t *pattern, const GdkRGBA *color, double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3) { cairo_mesh_pattern_begin_patch (pattern); cairo_mesh_pattern_move_to (pattern, x0, y0); cairo_mesh_pattern_line_to (pattern, x1, y1); cairo_mesh_pattern_line_to (pattern, x2, y2); cairo_mesh_pattern_line_to (pattern, x3, y3); cairo_mesh_pattern_set_corner_color_rgba (pattern, 0, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_set_corner_color_rgba (pattern, 1, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_set_corner_color_rgba (pattern, 2, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_set_corner_color_rgba (pattern, 3, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_end_patch (pattern); } static void gsk_border_node_draw (GskRenderNode *node, cairo_t *cr) { GskBorderNode *self = (GskBorderNode *) node; GskRoundedRect inside; cairo_save (cr); gsk_rounded_rect_init_copy (&inside, &self->outline); gsk_rounded_rect_shrink (&inside, self->border_width[0], self->border_width[1], self->border_width[2], self->border_width[3]); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (&self->outline, cr); gsk_rounded_rect_path (&inside, cr); if (gdk_rgba_equal (&self->border_color[0], &self->border_color[1]) && gdk_rgba_equal (&self->border_color[0], &self->border_color[2]) && gdk_rgba_equal (&self->border_color[0], &self->border_color[3])) { gdk_cairo_set_source_rgba (cr, &self->border_color[0]); } else { const graphene_rect_t *bounds = &self->outline.bounds; /* distance to center "line": * +-------------------------+ * | | * | | * | ---this-line--- | * | | * | | * +-------------------------+ * That line is equidistant from all sides. It's either horizontal * or vertical, depending on if the rect is wider or taller. * We use the 4 sides spanned up by connecting the line to the corner * points to color the regions of the rectangle differently. * Note that the call to cairo_fill() will add the potential final * segment by closing the path, so we don't have to care. */ cairo_pattern_t *mesh; cairo_matrix_t mat; graphene_point_t tl, br; float scale; mesh = cairo_pattern_create_mesh (); cairo_matrix_init_translate (&mat, -bounds->origin.x, -bounds->origin.y); cairo_pattern_set_matrix (mesh, &mat); scale = MIN (bounds->size.width / (self->border_width[1] + self->border_width[3]), bounds->size.height / (self->border_width[0] + self->border_width[2])); graphene_point_init (&tl, self->border_width[3] * scale, self->border_width[0] * scale); graphene_point_init (&br, bounds->size.width - self->border_width[1] * scale, bounds->size.height - self->border_width[2] * scale); /* Top */ if (self->border_width[0] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[0], 0, 0, tl.x, tl.y, br.x, tl.y, bounds->size.width, 0); } /* Right */ if (self->border_width[1] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[1], bounds->size.width, 0, br.x, tl.y, br.x, br.y, bounds->size.width, bounds->size.height); } /* Bottom */ if (self->border_width[2] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[2], 0, bounds->size.height, tl.x, br.y, br.x, br.y, bounds->size.width, bounds->size.height); } /* Left */ if (self->border_width[3] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[3], 0, 0, tl.x, tl.y, tl.x, br.y, 0, bounds->size.height); } cairo_set_source (cr, mesh); cairo_pattern_destroy (mesh); } cairo_fill (cr); cairo_restore (cr); } static void gsk_border_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskBorderNode *self1 = (GskBorderNode *) node1; GskBorderNode *self2 = (GskBorderNode *) node2; if (self1->uniform && self2->uniform && self1->border_width[0] == self2->border_width[0] && gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->border_color[0], &self2->border_color[0])) return; if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->border_color[0], &self2->border_color[0]) && gdk_rgba_equal (&self1->border_color[1], &self2->border_color[1]) && gdk_rgba_equal (&self1->border_color[2], &self2->border_color[2]) && gdk_rgba_equal (&self1->border_color[3], &self2->border_color[3]) && self1->border_width[0] == self2->border_width[0] && self1->border_width[1] == self2->border_width[1] && self1->border_width[2] == self2->border_width[2] && self1->border_width[3] == self2->border_width[3]) return; gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_border_node_get_outline: * @node: (type GskBorderNode): a #GskRenderNode for a border * * Retrieves the outline of the border. * * Returns: the outline of the border */ const GskRoundedRect * gsk_border_node_get_outline (GskRenderNode *node) { GskBorderNode *self = (GskBorderNode *) node; return &self->outline; } /** * gsk_border_node_get_widths: * @node: (type GskBorderNode): a #GskRenderNode for a border * * Retrieves the stroke widths of the border. * * Returns: (transfer none) (array fixed-size=4): an array of 4 floats * for the top, right, bottom and left stroke width of the border, * respectively */ const float * gsk_border_node_get_widths (GskRenderNode *node) { GskBorderNode *self = (GskBorderNode *) node; return self->border_width; } /** * gsk_border_node_get_colors: * @node: (type GskBorderNode): a #GskRenderNode for a border * * Retrieves the colors of the border. * * Returns: (transfer none): an array of 4 #GdkRGBA structs * for the top, right, bottom and left color of the border */ const GdkRGBA * gsk_border_node_get_colors (GskRenderNode *node) { GskBorderNode *self = (GskBorderNode *) node; return self->border_color; } /** * gsk_border_node_new: * @outline: a #GskRoundedRect describing the outline of the border * @border_width: (array fixed-size=4): the stroke width of the border on * the top, right, bottom and left side respectively. * @border_color: (array fixed-size=4): the color used on the top, right, * bottom and left side. * * Creates a #GskRenderNode that will stroke a border rectangle inside the * given @outline. The 4 sides of the border can have different widths and * colors. * * Returns: (transfer full) (type GskBorderNode): A new #GskRenderNode */ GskRenderNode * gsk_border_node_new (const GskRoundedRect *outline, const float border_width[4], const GdkRGBA border_color[4]) { GskBorderNode *self; GskRenderNode *node; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (border_width != NULL, NULL); g_return_val_if_fail (border_color != NULL, NULL); self = gsk_render_node_alloc (GSK_BORDER_NODE); node = (GskRenderNode *) self; gsk_rounded_rect_init_copy (&self->outline, outline); memcpy (self->border_width, border_width, sizeof (self->border_width)); memcpy (self->border_color, border_color, sizeof (self->border_color)); if (border_width[0] == border_width[1] && border_width[0] == border_width[2] && border_width[0] == border_width[3] && gdk_rgba_equal (&border_color[0], &border_color[1]) && gdk_rgba_equal (&border_color[0], &border_color[2]) && gdk_rgba_equal (&border_color[0], &border_color[3])) self->uniform = TRUE; else self->uniform = FALSE; graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds); return node; } /* Private */ bool gsk_border_node_get_uniform (GskRenderNode *self) { return ((GskBorderNode *)self)->uniform; } /*** GSK_TEXTURE_NODE ***/ /** * GskTextureNode: * * A render node for a #GdkTexture. */ struct _GskTextureNode { GskRenderNode render_node; GdkTexture *texture; }; static void gsk_texture_node_finalize (GskRenderNode *node) { GskTextureNode *self = (GskTextureNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXTURE_NODE)); g_clear_object (&self->texture); parent_class->finalize (node); } static void gsk_texture_node_draw (GskRenderNode *node, cairo_t *cr) { GskTextureNode *self = (GskTextureNode *) node; cairo_surface_t *surface; cairo_pattern_t *pattern; cairo_matrix_t matrix; surface = gdk_texture_download_surface (self->texture); pattern = cairo_pattern_create_for_surface (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); cairo_matrix_init_scale (&matrix, gdk_texture_get_width (self->texture) / node->bounds.size.width, gdk_texture_get_height (self->texture) / node->bounds.size.height); cairo_matrix_translate (&matrix, -node->bounds.origin.x, -node->bounds.origin.y); cairo_pattern_set_matrix (pattern, &matrix); cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); cairo_surface_destroy (surface); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_texture_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskTextureNode *self1 = (GskTextureNode *) node1; GskTextureNode *self2 = (GskTextureNode *) node2; if (graphene_rect_equal (&node1->bounds, &node2->bounds) && self1->texture == self2->texture) return; gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_texture_node_get_texture: * @node: (type GskTextureNode): a #GskRenderNode of type %GSK_TEXTURE_NODE * * Retrieves the #GdkTexture used when creating this #GskRenderNode. * * Returns: (transfer none): the #GdkTexture */ GdkTexture * gsk_texture_node_get_texture (GskRenderNode *node) { GskTextureNode *self = (GskTextureNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXTURE_NODE), 0); return self->texture; } /** * gsk_texture_node_new: * @texture: the #GdkTexture * @bounds: the rectangle to render the texture into * * Creates a #GskRenderNode that will render the given * @texture into the area given by @bounds. * * Returns: (transfer full) (type GskTextureNode): A new #GskRenderNode */ GskRenderNode * gsk_texture_node_new (GdkTexture *texture, const graphene_rect_t *bounds) { GskTextureNode *self; GskRenderNode *node; g_return_val_if_fail (GDK_IS_TEXTURE (texture), NULL); g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_TEXTURE_NODE); node = (GskRenderNode *) self; self->texture = g_object_ref (texture); graphene_rect_init_from_rect (&node->bounds, bounds); return node; } /*** GSK_INSET_SHADOW_NODE ***/ /** * GskInsetShadowNode: * * A render node for an inset shadow. */ struct _GskInsetShadowNode { GskRenderNode render_node; GskRoundedRect outline; GdkRGBA color; float dx; float dy; float spread; float blur_radius; }; static gboolean has_empty_clip (cairo_t *cr) { double x1, y1, x2, y2; cairo_clip_extents (cr, &x1, &y1, &x2, &y2); return x1 == x2 && y1 == y2; } static void draw_shadow (cairo_t *cr, gboolean inset, const GskRoundedRect *box, const GskRoundedRect *clip_box, float radius, const GdkRGBA *color, GskBlurFlags blur_flags) { cairo_t *shadow_cr; if (has_empty_clip (cr)) return; gdk_cairo_set_source_rgba (cr, color); shadow_cr = gsk_cairo_blur_start_drawing (cr, radius, blur_flags); cairo_set_fill_rule (shadow_cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (box, shadow_cr); if (inset) gsk_cairo_rectangle (shadow_cr, &clip_box->bounds); cairo_fill (shadow_cr); gsk_cairo_blur_finish_drawing (shadow_cr, radius, color, blur_flags); } typedef struct { float radius; graphene_size_t corner; } CornerMask; typedef enum { TOP, RIGHT, BOTTOM, LEFT } Side; static guint corner_mask_hash (CornerMask *mask) { return ((guint)mask->radius << 24) ^ ((guint)(mask->corner.width*4)) << 12 ^ ((guint)(mask->corner.height*4)) << 0; } static gboolean corner_mask_equal (CornerMask *mask1, CornerMask *mask2) { return mask1->radius == mask2->radius && mask1->corner.width == mask2->corner.width && mask1->corner.height == mask2->corner.height; } static void draw_shadow_corner (cairo_t *cr, gboolean inset, const GskRoundedRect *box, const GskRoundedRect *clip_box, float radius, const GdkRGBA *color, GskCorner corner, cairo_rectangle_int_t *drawn_rect) { float clip_radius; int x1, x2, x3, y1, y2, y3, x, y; GskRoundedRect corner_box; cairo_t *mask_cr; cairo_surface_t *mask; cairo_pattern_t *pattern; cairo_matrix_t matrix; float sx, sy; static GHashTable *corner_mask_cache = NULL; float max_other; CornerMask key; gboolean overlapped; clip_radius = gsk_cairo_blur_compute_pixels (radius); overlapped = FALSE; if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_BOTTOM_LEFT) { x1 = floor (box->bounds.origin.x - clip_radius); x2 = ceil (box->bounds.origin.x + box->corner[corner].width + clip_radius); x = x1; sx = 1; max_other = MAX(box->corner[GSK_CORNER_TOP_RIGHT].width, box->corner[GSK_CORNER_BOTTOM_RIGHT].width); x3 = floor (box->bounds.origin.x + box->bounds.size.width - max_other - clip_radius); if (x2 > x3) overlapped = TRUE; } else { x1 = floor (box->bounds.origin.x + box->bounds.size.width - box->corner[corner].width - clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); x = x2; sx = -1; max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].width, box->corner[GSK_CORNER_BOTTOM_LEFT].width); x3 = ceil (box->bounds.origin.x + max_other + clip_radius); if (x3 > x1) overlapped = TRUE; } if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_TOP_RIGHT) { y1 = floor (box->bounds.origin.y - clip_radius); y2 = ceil (box->bounds.origin.y + box->corner[corner].height + clip_radius); y = y1; sy = 1; max_other = MAX(box->corner[GSK_CORNER_BOTTOM_LEFT].height, box->corner[GSK_CORNER_BOTTOM_RIGHT].height); y3 = floor (box->bounds.origin.y + box->bounds.size.height - max_other - clip_radius); if (y2 > y3) overlapped = TRUE; } else { y1 = floor (box->bounds.origin.y + box->bounds.size.height - box->corner[corner].height - clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); y = y2; sy = -1; max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].height, box->corner[GSK_CORNER_TOP_RIGHT].height); y3 = ceil (box->bounds.origin.y + max_other + clip_radius); if (y3 > y1) overlapped = TRUE; } drawn_rect->x = x1; drawn_rect->y = y1; drawn_rect->width = x2 - x1; drawn_rect->height = y2 - y1; cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1); cairo_clip (cr); if (inset || overlapped) { /* Fall back to generic path if inset or if the corner radius runs into each other */ draw_shadow (cr, inset, box, clip_box, radius, color, GSK_BLUR_X | GSK_BLUR_Y); return; } if (has_empty_clip (cr)) return; /* At this point we're drawing a blurred outset corner. The only * things that affect the output of the blurred mask in this case * is: * * What corner this is, which defines the orientation (sx,sy) * and position (x,y) * * The blur radius (which also defines the clip_radius) * * The horizontal and vertical corner radius * * We apply the first position and orientation when drawing the * mask, so we cache rendered masks based on the blur radius and the * corner radius. */ if (corner_mask_cache == NULL) corner_mask_cache = g_hash_table_new_full ((GHashFunc)corner_mask_hash, (GEqualFunc)corner_mask_equal, g_free, (GDestroyNotify)cairo_surface_destroy); key.radius = radius; key.corner = box->corner[corner]; mask = g_hash_table_lookup (corner_mask_cache, &key); if (mask == NULL) { mask = cairo_surface_create_similar_image (cairo_get_target (cr), CAIRO_FORMAT_A8, drawn_rect->width + clip_radius, drawn_rect->height + clip_radius); mask_cr = cairo_create (mask); gsk_rounded_rect_init_from_rect (&corner_box, &GRAPHENE_RECT_INIT (clip_radius, clip_radius, 2*drawn_rect->width, 2*drawn_rect->height), 0); corner_box.corner[0] = box->corner[corner]; gsk_rounded_rect_path (&corner_box, mask_cr); cairo_fill (mask_cr); gsk_cairo_blur_surface (mask, radius, GSK_BLUR_X | GSK_BLUR_Y); cairo_destroy (mask_cr); g_hash_table_insert (corner_mask_cache, g_memdup (&key, sizeof (key)), mask); } gdk_cairo_set_source_rgba (cr, color); pattern = cairo_pattern_create_for_surface (mask); cairo_matrix_init_identity (&matrix); cairo_matrix_scale (&matrix, sx, sy); cairo_matrix_translate (&matrix, -x, -y); cairo_pattern_set_matrix (pattern, &matrix); cairo_mask (cr, pattern); cairo_pattern_destroy (pattern); } static void draw_shadow_side (cairo_t *cr, gboolean inset, const GskRoundedRect *box, const GskRoundedRect *clip_box, float radius, const GdkRGBA *color, Side side, cairo_rectangle_int_t *drawn_rect) { GskBlurFlags blur_flags = GSK_BLUR_REPEAT; double clip_radius; int x1, x2, y1, y2; clip_radius = gsk_cairo_blur_compute_pixels (radius); if (side == TOP || side == BOTTOM) { blur_flags |= GSK_BLUR_Y; x1 = floor (box->bounds.origin.x - clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); } else if (side == LEFT) { x1 = floor (box->bounds.origin.x -clip_radius); x2 = ceil (box->bounds.origin.x + clip_radius); } else { x1 = floor (box->bounds.origin.x + box->bounds.size.width -clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); } if (side == LEFT || side == RIGHT) { blur_flags |= GSK_BLUR_X; y1 = floor (box->bounds.origin.y - clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); } else if (side == TOP) { y1 = floor (box->bounds.origin.y -clip_radius); y2 = ceil (box->bounds.origin.y + clip_radius); } else { y1 = floor (box->bounds.origin.y + box->bounds.size.height -clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); } drawn_rect->x = x1; drawn_rect->y = y1; drawn_rect->width = x2 - x1; drawn_rect->height = y2 - y1; cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1); cairo_clip (cr); draw_shadow (cr, inset, box, clip_box, radius, color, blur_flags); } static gboolean needs_blur (double radius) { /* The code doesn't actually do any blurring for radius 1, as it * ends up with box filter size 1 */ if (radius <= 1.0) return FALSE; return TRUE; } static void gsk_inset_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; GskRoundedRect box, clip_box; int clip_radius; double x1c, y1c, x2c, y2c; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&self->color)) return; cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c); if (!gsk_rounded_rect_intersects_rect (&self->outline, &GRAPHENE_RECT_INIT (x1c, y1c, x2c - x1c, y2c - y1c))) return; clip_radius = gsk_cairo_blur_compute_pixels (self->blur_radius); cairo_save (cr); gsk_rounded_rect_path (&self->outline, cr); cairo_clip (cr); gsk_rounded_rect_init_copy (&box, &self->outline); gsk_rounded_rect_offset (&box, self->dx, self->dy); gsk_rounded_rect_shrink (&box, self->spread, self->spread, self->spread, self->spread); gsk_rounded_rect_init_copy (&clip_box, &self->outline); gsk_rounded_rect_shrink (&clip_box, -clip_radius, -clip_radius, -clip_radius, -clip_radius); if (!needs_blur (self->blur_radius)) draw_shadow (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); else { cairo_region_t *remaining; cairo_rectangle_int_t r; int i; /* For the blurred case we divide the rendering into 9 parts, * 4 of the corners, 4 for the horizonat/vertical lines and * one for the interior. We make the non-interior parts * large enough to fit the full radius of the blur, so that * the interior part can be drawn solidly. */ /* In the inset case we want to paint the whole clip-box. * We could remove the part of "box" where the blur doesn't * reach, but computing that is a bit tricky since the * rounded corners are on the "inside" of it. */ r.x = floor (clip_box.bounds.origin.x); r.y = floor (clip_box.bounds.origin.y); r.width = ceil (clip_box.bounds.origin.x + clip_box.bounds.size.width) - r.x; r.height = ceil (clip_box.bounds.origin.y + clip_box.bounds.size.height) - r.y; remaining = cairo_region_create_rectangle (&r); /* First do the corners of box */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_corner (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the sides */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_side (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the rest, which needs no blurring */ cairo_save (cr); gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow (cr, TRUE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); cairo_restore (cr); cairo_region_destroy (remaining); } cairo_restore (cr); } static void gsk_inset_shadow_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskInsetShadowNode *self1 = (GskInsetShadowNode *) node1; GskInsetShadowNode *self2 = (GskInsetShadowNode *) node2; if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->color, &self2->color) && self1->dx == self2->dx && self1->dy == self2->dy && self1->spread == self2->spread && self1->blur_radius == self2->blur_radius) return; gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_inset_shadow_node_new: * @outline: outline of the region containing the shadow * @color: color of the shadow * @dx: horizontal offset of shadow * @dy: vertical offset of shadow * @spread: how far the shadow spreads towards the inside * @blur_radius: how much blur to apply to the shadow * * Creates a #GskRenderNode that will render an inset shadow * into the box given by @outline. * * Returns: (transfer full) (type GskInsetShadowNode): A new #GskRenderNode */ GskRenderNode * gsk_inset_shadow_node_new (const GskRoundedRect *outline, const GdkRGBA *color, float dx, float dy, float spread, float blur_radius) { GskInsetShadowNode *self; GskRenderNode *node; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (color != NULL, NULL); self = gsk_render_node_alloc (GSK_INSET_SHADOW_NODE); node = (GskRenderNode *) self; gsk_rounded_rect_init_copy (&self->outline, outline); self->color = *color; self->dx = dx; self->dy = dy; self->spread = spread; self->blur_radius = blur_radius; graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds); return node; } /** * gsk_inset_shadow_node_get_outline: * @node: (type GskInsetShadowNode): a #GskRenderNode for an inset shadow * * Retrieves the outline rectangle of the inset shadow. * * Returns: (transfer none): a rounded rectangle */ const GskRoundedRect * gsk_inset_shadow_node_get_outline (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_INSET_SHADOW_NODE), NULL); return &self->outline; } /** * gsk_inset_shadow_node_get_color: * @node: (type GskInsetShadowNode): a #GskRenderNode for an inset shadow * * Retrieves the color of the inset shadow. * * Returns: (transfer none): the color of the shadow */ const GdkRGBA * gsk_inset_shadow_node_get_color (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_INSET_SHADOW_NODE), NULL); return &self->color; } /** * gsk_inset_shadow_node_get_dx: * @node: (type GskInsetShadowNode): a #GskRenderNode for an inset shadow * * Retrieves the horizontal offset of the inset shadow. * * Returns: an offset, in pixels */ float gsk_inset_shadow_node_get_dx (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_INSET_SHADOW_NODE), 0.0f); return self->dx; } /** * gsk_inset_shadow_node_get_dy: * @node: (type GskInsetShadowNode): a #GskRenderNode for an inset shadow * * Retrieves the vertical offset of the inset shadow. * * Returns: an offset, in pixels */ float gsk_inset_shadow_node_get_dy (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_INSET_SHADOW_NODE), 0.0f); return self->dy; } /** * gsk_inset_shadow_node_get_spread: * @node: (type GskInsetShadowNode): a #GskRenderNode for an inset shadow * * Retrieves how much the shadow spreads inwards. * * Returns: the size of the shadow, in pixels */ float gsk_inset_shadow_node_get_spread (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_INSET_SHADOW_NODE), 0.0f); return self->spread; } /** * gsk_inset_shadow_node_get_blur_radius: * @node: (type GskInsetShadowNode): a #GskRenderNode for an inset shadow * * Retrieves the blur radius to apply to the shadow. * * Returns: the blur radius, in pixels */ float gsk_inset_shadow_node_get_blur_radius (GskRenderNode *node) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_INSET_SHADOW_NODE), 0.0f); return self->blur_radius; } /*** GSK_OUTSET_SHADOW_NODE ***/ /** * GskOutsetShadowNode: * * A render node for an outset shadow. */ struct _GskOutsetShadowNode { GskRenderNode render_node; GskRoundedRect outline; GdkRGBA color; float dx; float dy; float spread; float blur_radius; }; static void gsk_outset_shadow_get_extents (GskOutsetShadowNode *self, float *top, float *right, float *bottom, float *left) { float clip_radius; clip_radius = gsk_cairo_blur_compute_pixels (self->blur_radius); *top = MAX (0, clip_radius + self->spread - self->dy); *right = MAX (0, ceil (clip_radius + self->spread + self->dx)); *bottom = MAX (0, ceil (clip_radius + self->spread + self->dy)); *left = MAX (0, ceil (clip_radius + self->spread - self->dx)); } static void gsk_outset_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; GskRoundedRect box, clip_box; int clip_radius; double x1c, y1c, x2c, y2c; float top, right, bottom, left; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&self->color)) return; cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c); if (gsk_rounded_rect_contains_rect (&self->outline, &GRAPHENE_RECT_INIT (x1c, y1c, x2c - x1c, y2c - y1c))) return; clip_radius = gsk_cairo_blur_compute_pixels (self->blur_radius); cairo_save (cr); gsk_rounded_rect_init_copy (&clip_box, &self->outline); gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left); gsk_rounded_rect_shrink (&clip_box, -top, -right, -bottom, -left); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (&self->outline, cr); gsk_cairo_rectangle (cr, &clip_box.bounds); cairo_clip (cr); gsk_rounded_rect_init_copy (&box, &self->outline); gsk_rounded_rect_offset (&box, self->dx, self->dy); gsk_rounded_rect_shrink (&box, -self->spread, -self->spread, -self->spread, -self->spread); if (!needs_blur (self->blur_radius)) draw_shadow (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); else { int i; cairo_region_t *remaining; cairo_rectangle_int_t r; /* For the blurred case we divide the rendering into 9 parts, * 4 of the corners, 4 for the horizonat/vertical lines and * one for the interior. We make the non-interior parts * large enough to fit the full radius of the blur, so that * the interior part can be drawn solidly. */ /* In the outset case we want to paint the entire box, plus as far * as the radius reaches from it */ r.x = floor (box.bounds.origin.x - clip_radius); r.y = floor (box.bounds.origin.y - clip_radius); r.width = ceil (box.bounds.origin.x + box.bounds.size.width + clip_radius) - r.x; r.height = ceil (box.bounds.origin.y + box.bounds.size.height + clip_radius) - r.y; remaining = cairo_region_create_rectangle (&r); /* First do the corners of box */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_corner (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the sides */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_side (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the rest, which needs no blurring */ cairo_save (cr); gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow (cr, FALSE, &box, &clip_box, self->blur_radius, &self->color, GSK_BLUR_NONE); cairo_restore (cr); cairo_region_destroy (remaining); } cairo_restore (cr); } static void gsk_outset_shadow_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskOutsetShadowNode *self1 = (GskOutsetShadowNode *) node1; GskOutsetShadowNode *self2 = (GskOutsetShadowNode *) node2; if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->color, &self2->color) && self1->dx == self2->dx && self1->dy == self2->dy && self1->spread == self2->spread && self1->blur_radius == self2->blur_radius) return; gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_outset_shadow_node_new: * @outline: outline of the region surrounded by shadow * @color: color of the shadow * @dx: horizontal offset of shadow * @dy: vertical offset of shadow * @spread: how far the shadow spreads towards the inside * @blur_radius: how much blur to apply to the shadow * * Creates a #GskRenderNode that will render an outset shadow * around the box given by @outline. * * Returns: (transfer full) (type GskOutsetShadowNode): A new #GskRenderNode */ GskRenderNode * gsk_outset_shadow_node_new (const GskRoundedRect *outline, const GdkRGBA *color, float dx, float dy, float spread, float blur_radius) { GskOutsetShadowNode *self; GskRenderNode *node; float top, right, bottom, left; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (color != NULL, NULL); self = gsk_render_node_alloc (GSK_OUTSET_SHADOW_NODE); node = (GskRenderNode *) self; gsk_rounded_rect_init_copy (&self->outline, outline); self->color = *color; self->dx = dx; self->dy = dy; self->spread = spread; self->blur_radius = blur_radius; gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left); graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds); node->bounds.origin.x -= left; node->bounds.origin.y -= top; node->bounds.size.width += left + right; node->bounds.size.height += top + bottom; return node; } /** * gsk_outset_shadow_node_get_outline: * @node: (type GskOutsetShadowNode): a #GskRenderNode for an outset shadow * * Retrieves the outline rectangle of the outset shadow. * * Returns: (transfer none): a rounded rectangle */ const GskRoundedRect * gsk_outset_shadow_node_get_outline (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OUTSET_SHADOW_NODE), NULL); return &self->outline; } /** * gsk_outset_shadow_node_get_color: * @node: (type GskOutsetShadowNode): a #GskRenderNode for an outset shadow * * Retrieves the color of the outset shadow. * * Returns: (transfer none): a color */ const GdkRGBA * gsk_outset_shadow_node_get_color (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OUTSET_SHADOW_NODE), NULL); return &self->color; } /** * gsk_outset_shadow_node_get_dx: * @node: (type GskOutsetShadowNode): a #GskRenderNode for an outset shadow * * Retrieves the horizontal offset of the outset shadow. * * Returns: an offset, in pixels */ float gsk_outset_shadow_node_get_dx (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OUTSET_SHADOW_NODE), 0.0f); return self->dx; } /** * gsk_outset_shadow_node_get_dy: * @node: (type GskOutsetShadowNode): a #GskRenderNode for an outset shadow * * Retrieves the vertical offset of the outset shadow. * * Returns: an offset, in pixels */ float gsk_outset_shadow_node_get_dy (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OUTSET_SHADOW_NODE), 0.0f); return self->dy; } /** * gsk_outset_shadow_node_get_spread: * @node: (type GskOutsetShadowNode): a #GskRenderNode for an outset shadow * * Retrieves how much the shadow spreads outwards. * * Returns: the size of the shadow, in pixels */ float gsk_outset_shadow_node_get_spread (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OUTSET_SHADOW_NODE), 0.0f); return self->spread; } /** * gsk_outset_shadow_node_get_blur_radius: * @node: (type GskOutsetShadowNode): a #GskRenderNode for an outset shadow * * Retrieves the blur radius of the shadow. * * Returns: the blur radius, in pixels */ float gsk_outset_shadow_node_get_blur_radius (GskRenderNode *node) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OUTSET_SHADOW_NODE), 0.0f); return self->blur_radius; } /*** GSK_CAIRO_NODE ***/ /** * GskCairoNode: * * A render node for a Cairo surface. */ struct _GskCairoNode { GskRenderNode render_node; cairo_surface_t *surface; }; static void gsk_cairo_node_finalize (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CAIRO_NODE)); if (self->surface) cairo_surface_destroy (self->surface); parent_class->finalize (node); } static void gsk_cairo_node_draw (GskRenderNode *node, cairo_t *cr) { GskCairoNode *self = (GskCairoNode *) node; if (self->surface == NULL) return; cairo_set_source_surface (cr, self->surface, 0, 0); cairo_paint (cr); } /** * gsk_cairo_node_get_surface: * @node: (type GskCairoNode): a #GskRenderNode for a Cairo surface * * Retrieves the Cairo surface used by the render node. * * Returns: (transfer none): a Cairo surface */ cairo_surface_t * gsk_cairo_node_get_surface (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL); return self->surface; } /** * gsk_cairo_node_new: * @bounds: the rectangle to render to * * Creates a #GskRenderNode that will render a cairo surface * into the area given by @bounds. You can draw to the cairo * surface using gsk_cairo_node_get_draw_context() * * Returns: (transfer full) (type GskCairoNode): A new #GskRenderNode */ GskRenderNode * gsk_cairo_node_new (const graphene_rect_t *bounds) { GskCairoNode *self; GskRenderNode *node; g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_CAIRO_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); return node; } /** * gsk_cairo_node_get_draw_context: * @node: (type GskCairoNode): a #GskRenderNode for a Cairo surface * * Creates a Cairo context for drawing using the surface associated * to the render node. * * If no surface exists yet, a surface will be created optimized for * rendering to @renderer. * * Returns: (transfer full): a Cairo context used for drawing; use * cairo_destroy() when done drawing */ cairo_t * gsk_cairo_node_get_draw_context (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; int width, height; cairo_t *res; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL); width = ceilf (node->bounds.size.width); height = ceilf (node->bounds.size.height); if (width <= 0 || height <= 0) { cairo_surface_t *surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, 0, 0); res = cairo_create (surface); cairo_surface_destroy (surface); } else if (self->surface == NULL) { self->surface = cairo_recording_surface_create (CAIRO_CONTENT_COLOR_ALPHA, &(cairo_rectangle_t) { node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height }); res = cairo_create (self->surface); } else { res = cairo_create (self->surface); } gsk_cairo_rectangle (res, &node->bounds); cairo_clip (res); return res; } /**** GSK_CONTAINER_NODE ***/ /** * GskContainerNode: * * A render node that can contain other render nodes. */ struct _GskContainerNode { GskRenderNode render_node; guint n_children; GskRenderNode **children; }; static void gsk_container_node_finalize (GskRenderNode *node) { GskContainerNode *container = (GskContainerNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CONTAINER_NODE)); for (guint i = 0; i < container->n_children; i++) gsk_render_node_unref (container->children[i]); g_free (container->children); parent_class->finalize (node); } static void gsk_container_node_draw (GskRenderNode *node, cairo_t *cr) { GskContainerNode *container = (GskContainerNode *) node; guint i; for (i = 0; i < container->n_children; i++) { gsk_render_node_draw (container->children[i], cr); } } static void gsk_render_node_add_to_region (GskRenderNode *node, cairo_region_t *region) { cairo_rectangle_int_t rect; rectangle_init_from_graphene (&rect, &node->bounds); cairo_region_union_rectangle (region, &rect); } static int gsk_container_node_compare_func (gconstpointer elem1, gconstpointer elem2, gpointer data) { return gsk_render_node_can_diff ((const GskRenderNode *) elem1, (const GskRenderNode *) elem2) ? 0 : 1; } static void gsk_container_node_keep_func (gconstpointer elem1, gconstpointer elem2, gpointer data) { gsk_render_node_diff ((GskRenderNode *) elem1, (GskRenderNode *) elem2, data); } static void gsk_container_node_change_func (gconstpointer elem, gsize idx, gpointer data) { gsk_render_node_add_to_region ((GskRenderNode *) elem, data); } static GskDiffSettings * gsk_container_node_get_diff_settings (void) { static GskDiffSettings *settings = NULL; if (G_LIKELY (settings)) return settings; settings = gsk_diff_settings_new (gsk_container_node_compare_func, gsk_container_node_keep_func, gsk_container_node_change_func, gsk_container_node_change_func); gsk_diff_settings_set_allow_abort (settings, TRUE); return settings; } static void gsk_container_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskContainerNode *self1 = (GskContainerNode *) node1; GskContainerNode *self2 = (GskContainerNode *) node2; if (gsk_diff ((gconstpointer *) self1->children, self1->n_children, (gconstpointer *) self2->children, self2->n_children, gsk_container_node_get_diff_settings (), region) == GSK_DIFF_OK) return; gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_container_node_new: * @children: (array length=n_children) (transfer none): The children of the node * @n_children: Number of children in the @children array * * Creates a new #GskRenderNode instance for holding the given @children. * The new node will acquire a reference to each of the children. * * Returns: (transfer full) (type GskContainerNode): the new #GskRenderNode */ GskRenderNode * gsk_container_node_new (GskRenderNode **children, guint n_children) { GskContainerNode *self; GskRenderNode *node; self = gsk_render_node_alloc (GSK_CONTAINER_NODE); node = (GskRenderNode *) self; self->n_children = n_children; if (n_children == 0) { graphene_rect_init_from_rect (&node->bounds, graphene_rect_zero ()); } else { graphene_rect_t bounds; self->children = g_malloc_n (n_children, sizeof (GskRenderNode *)); self->children[0] = gsk_render_node_ref (children[0]); graphene_rect_init_from_rect (&bounds, &(children[0]->bounds)); for (guint i = 1; i < n_children; i++) { self->children[i] = gsk_render_node_ref (children[i]); graphene_rect_union (&bounds, &(children[i]->bounds), &bounds); } graphene_rect_init_from_rect (&node->bounds, &bounds); } return node; } /** * gsk_container_node_get_n_children: * @node: (type GskContainerNode): a container #GskRenderNode * * Retrieves the number of direct children of @node. * * Returns: the number of children of the #GskRenderNode */ guint gsk_container_node_get_n_children (GskRenderNode *node) { GskContainerNode *self = (GskContainerNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CONTAINER_NODE), 0); return self->n_children; } /** * gsk_container_node_get_child: * @node: (type GskContainerNode): a container #GskRenderNode * @idx: the position of the child to get * * Gets one of the children of @container. * * Returns: (transfer none): the @idx'th child of @container */ GskRenderNode * gsk_container_node_get_child (GskRenderNode *node, guint idx) { GskContainerNode *self = (GskContainerNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CONTAINER_NODE), NULL); g_return_val_if_fail (idx < self->n_children, 0); return self->children[idx]; } /*** GSK_TRANSFORM_NODE ***/ /** * GskTransformNode: * * A render node applying a #GskTransform to its single child node. */ struct _GskTransformNode { GskRenderNode render_node; GskRenderNode *child; GskTransform *transform; }; static void gsk_transform_node_finalize (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TRANSFORM_NODE)); gsk_render_node_unref (self->child); gsk_transform_unref (self->transform); parent_class->finalize (node); } static void gsk_transform_node_draw (GskRenderNode *node, cairo_t *cr) { GskTransformNode *self = (GskTransformNode *) node; float xx, yx, xy, yy, dx, dy; cairo_matrix_t ctm; if (gsk_transform_get_category (self->transform) < GSK_TRANSFORM_CATEGORY_2D) { cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); return; } gsk_transform_to_2d (self->transform, &xx, &yx, &xy, &yy, &dx, &dy); cairo_matrix_init (&ctm, xx, yx, xy, yy, dx, dy); GSK_NOTE (CAIRO, g_message ("CTM = { .xx = %g, .yx = %g, .xy = %g, .yy = %g, .x0 = %g, .y0 = %g }", ctm.xx, ctm.yx, ctm.xy, ctm.yy, ctm.x0, ctm.y0)); cairo_transform (cr, &ctm); gsk_render_node_draw (self->child, cr); } static gboolean gsk_transform_node_can_diff (const GskRenderNode *node1, const GskRenderNode *node2) { GskTransformNode *self1 = (GskTransformNode *) node1; GskTransformNode *self2 = (GskTransformNode *) node2; if (!gsk_transform_equal (self1->transform, self2->transform)) return FALSE; return gsk_render_node_can_diff (self1->child, self2->child); } static void gsk_transform_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskTransformNode *self1 = (GskTransformNode *) node1; GskTransformNode *self2 = (GskTransformNode *) node2; if (!gsk_transform_equal (self1->transform, self2->transform)) { gsk_render_node_diff_impossible (node1, node2, region); return; } if (self1->child == self2->child) return; switch (gsk_transform_get_category (self1->transform)) { case GSK_TRANSFORM_CATEGORY_IDENTITY: gsk_render_node_diff (self1->child, self2->child, region); break; case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE: { cairo_region_t *sub; float dx, dy; gsk_transform_to_translate (self1->transform, &dx, &dy); sub = cairo_region_create (); gsk_render_node_diff (self1->child, self2->child, sub); cairo_region_translate (sub, floor (dx), floor (dy)); if (floor (dx) != dx) { cairo_region_t *tmp = cairo_region_copy (sub); cairo_region_translate (tmp, 1, 0); cairo_region_union (sub, tmp); cairo_region_destroy (tmp); } if (floor (dy) != dy) { cairo_region_t *tmp = cairo_region_copy (sub); cairo_region_translate (tmp, 0, 1); cairo_region_union (sub, tmp); cairo_region_destroy (tmp); } cairo_region_union (region, sub); cairo_region_destroy (sub); } break; case GSK_TRANSFORM_CATEGORY_UNKNOWN: case GSK_TRANSFORM_CATEGORY_ANY: case GSK_TRANSFORM_CATEGORY_3D: case GSK_TRANSFORM_CATEGORY_2D: case GSK_TRANSFORM_CATEGORY_2D_AFFINE: default: gsk_render_node_diff_impossible (node1, node2, region); break; } } /** * gsk_transform_node_new: * @child: The node to transform * @transform: (transfer none): The transform to apply * * Creates a #GskRenderNode that will transform the given @child * with the given @transform. * * Returns: (transfer full) (type GskTransformNode): A new #GskRenderNode */ GskRenderNode * gsk_transform_node_new (GskRenderNode *child, GskTransform *transform) { GskTransformNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (transform != NULL, NULL); self = gsk_render_node_alloc (GSK_TRANSFORM_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->transform = gsk_transform_ref (transform); gsk_transform_transform_bounds (self->transform, &child->bounds, &node->bounds); return node; } /** * gsk_transform_node_get_child: * @node: (type GskTransformNode): a #GskRenderNode for a transform * * Gets the child node that is getting transformed by the given @node. * * Returns: (transfer none): The child that is getting transformed */ GskRenderNode * gsk_transform_node_get_child (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TRANSFORM_NODE), NULL); return self->child; } /** * gsk_transform_node_get_transform: * @node: (type GskTransformNode): a #GskRenderNode for a transform * * Retrieves the #GskTransform used by the @node. * * Returns: (transfer none): a #GskTransform */ GskTransform * gsk_transform_node_get_transform (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TRANSFORM_NODE), NULL); return self->transform; } /*** GSK_OPACITY_NODE ***/ /** * GskOpacityNode: * * A render node controlling the opacity of its single child node. */ struct _GskOpacityNode { GskRenderNode render_node; GskRenderNode *child; float opacity; }; static void gsk_opacity_node_finalize (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_OPACITY_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_opacity_node_draw (GskRenderNode *node, cairo_t *cr) { GskOpacityNode *self = (GskOpacityNode *) node; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); cairo_pop_group_to_source (cr); cairo_paint_with_alpha (cr, self->opacity); cairo_restore (cr); } static void gsk_opacity_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskOpacityNode *self1 = (GskOpacityNode *) node1; GskOpacityNode *self2 = (GskOpacityNode *) node2; if (self1->opacity == self2->opacity) gsk_render_node_diff (self1->child, self2->child, region); else gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_opacity_node_new: * @child: The node to draw * @opacity: The opacity to apply * * Creates a #GskRenderNode that will drawn the @child with reduced * @opacity. * * Returns: (transfer full) (type GskOpacityNode): A new #GskRenderNode */ GskRenderNode * gsk_opacity_node_new (GskRenderNode *child, float opacity) { GskOpacityNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_OPACITY_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->opacity = CLAMP (opacity, 0.0, 1.0); graphene_rect_init_from_rect (&node->bounds, &child->bounds); return node; } /** * gsk_opacity_node_get_child: * @node: (type GskOpacityNode): a #GskRenderNode for an opacity * * Gets the child node that is getting opacityed by the given @node. * * Returns: (transfer none): The child that is getting opacityed */ GskRenderNode * gsk_opacity_node_get_child (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OPACITY_NODE), NULL); return self->child; } /** * gsk_opacity_node_get_opacity: * @node: (type GskOpacityNode): a #GskRenderNode for an opacity * * Gets the transparency factor for an opacity node. * * Returns: the opacity factor */ float gsk_opacity_node_get_opacity (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_OPACITY_NODE), 1.0); return self->opacity; } /*** GSK_COLOR_MATRIX_NODE ***/ /** * GskColorMatrixNode: * * A render node controlling the color matrix of its single child node. */ struct _GskColorMatrixNode { GskRenderNode render_node; GskRenderNode *child; graphene_matrix_t color_matrix; graphene_vec4_t color_offset; }; static void gsk_color_matrix_node_finalize (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_COLOR_MATRIX_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_color_matrix_node_draw (GskRenderNode *node, cairo_t *cr) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; cairo_pattern_t *pattern; cairo_surface_t *surface, *image_surface; graphene_vec4_t pixel; guint32* pixel_data; guchar *data; gsize x, y, width, height, stride; float alpha; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); cairo_pattern_get_surface (pattern, &surface); image_surface = cairo_surface_map_to_image (surface, NULL); data = cairo_image_surface_get_data (image_surface); width = cairo_image_surface_get_width (image_surface); height = cairo_image_surface_get_height (image_surface); stride = cairo_image_surface_get_stride (image_surface); for (y = 0; y < height; y++) { pixel_data = (guint32 *) data; for (x = 0; x < width; x++) { alpha = ((pixel_data[x] >> 24) & 0xFF) / 255.0; if (alpha == 0) { graphene_vec4_init (&pixel, 0.0, 0.0, 0.0, 0.0); } else { graphene_vec4_init (&pixel, ((pixel_data[x] >> 16) & 0xFF) / (255.0 * alpha), ((pixel_data[x] >> 8) & 0xFF) / (255.0 * alpha), ( pixel_data[x] & 0xFF) / (255.0 * alpha), alpha); graphene_matrix_transform_vec4 (&self->color_matrix, &pixel, &pixel); } graphene_vec4_add (&pixel, &self->color_offset, &pixel); alpha = graphene_vec4_get_w (&pixel); if (alpha > 0.0) { alpha = MIN (alpha, 1.0); pixel_data[x] = (((guint32) roundf (alpha * 255)) << 24) | (((guint32) roundf (CLAMP (graphene_vec4_get_x (&pixel), 0, 1) * alpha * 255)) << 16) | (((guint32) roundf (CLAMP (graphene_vec4_get_y (&pixel), 0, 1) * alpha * 255)) << 8) | ((guint32) roundf (CLAMP (graphene_vec4_get_z (&pixel), 0, 1) * alpha * 255)); } else { pixel_data[x] = 0; } } data += stride; } cairo_surface_mark_dirty (image_surface); cairo_surface_unmap_image (surface, image_surface); cairo_set_source (cr, pattern); cairo_paint (cr); cairo_restore (cr); cairo_pattern_destroy (pattern); } static void gsk_color_matrix_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskColorMatrixNode *self1 = (GskColorMatrixNode *) node1; GskColorMatrixNode *self2 = (GskColorMatrixNode *) node2; if (!graphene_vec4_equal (&self1->color_offset, &self2->color_offset)) goto nope; if (!graphene_matrix_equal_fast (&self1->color_matrix, &self2->color_matrix)) goto nope; gsk_render_node_diff (self1->child, self2->child, region); return; nope: gsk_render_node_diff_impossible (node1, node2, region); return; } /** * gsk_color_matrix_node_new: * @child: The node to draw * @color_matrix: The matrix to apply * @color_offset: Values to add to the color * * Creates a #GskRenderNode that will drawn the @child with reduced * @color_matrix. * * In particular, the node will transform the operation * * |[ * pixel = color_matrix * pixel + color_offset * ]| * * for every pixel. * * Returns: (transfer full) (type GskColorMatrixNode): A new #GskRenderNode */ GskRenderNode * gsk_color_matrix_node_new (GskRenderNode *child, const graphene_matrix_t *color_matrix, const graphene_vec4_t *color_offset) { GskColorMatrixNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_COLOR_MATRIX_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); graphene_matrix_init_from_matrix (&self->color_matrix, color_matrix); graphene_vec4_init_from_vec4 (&self->color_offset, color_offset); graphene_rect_init_from_rect (&node->bounds, &child->bounds); return node; } /** * gsk_color_matrix_node_get_child: * @node: (type GskColorMatrixNode): a color matrix #GskRenderNode * * Gets the child node that is getting its colors modified by the given @node. * * Returns: (transfer none): The child that is getting its colors modified **/ GskRenderNode * gsk_color_matrix_node_get_child (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_MATRIX_NODE), NULL); return self->child; } /** * gsk_color_matrix_node_get_color_matrix: * @node: (type GskColorMatrixNode): a color matrix #GskRenderNode * * Retrieves the color matrix used by the @node. * * Returns: a 4x4 color matrix */ const graphene_matrix_t * gsk_color_matrix_node_get_color_matrix (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_MATRIX_NODE), NULL); return &self->color_matrix; } /** * gsk_color_matrix_node_get_color_offset: * @node: (type GskColorMatrixNode): a color matrix #GskRenderNode * * Retrieves the color offset used by the @node. * * Returns: a color vector */ const graphene_vec4_t * gsk_color_matrix_node_get_color_offset (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_MATRIX_NODE), NULL); return &self->color_offset; } /*** GSK_REPEAT_NODE ***/ /** * GskRepeatNode: * * A render node repeating its single child node. */ struct _GskRepeatNode { GskRenderNode render_node; GskRenderNode *child; graphene_rect_t child_bounds; }; static void gsk_repeat_node_finalize (GskRenderNode *node) { GskRepeatNode *self = (GskRepeatNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_REPEAT_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_repeat_node_draw (GskRenderNode *node, cairo_t *cr) { GskRepeatNode *self = (GskRepeatNode *) node; cairo_pattern_t *pattern; cairo_surface_t *surface; cairo_t *surface_cr; surface = cairo_surface_create_similar (cairo_get_target (cr), CAIRO_CONTENT_COLOR_ALPHA, ceilf (self->child_bounds.size.width), ceilf (self->child_bounds.size.height)); surface_cr = cairo_create (surface); cairo_translate (surface_cr, - self->child_bounds.origin.x, - self->child_bounds.origin.y); gsk_render_node_draw (self->child, surface_cr); cairo_destroy (surface_cr); pattern = cairo_pattern_create_for_surface (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); cairo_pattern_set_matrix (pattern, &(cairo_matrix_t) { .xx = 1.0, .yy = 1.0, .x0 = - self->child_bounds.origin.x, .y0 = - self->child_bounds.origin.y }); cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); cairo_surface_destroy (surface); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } /** * gsk_repeat_node_new: * @bounds: The bounds of the area to be painted * @child: The child to repeat * @child_bounds: (allow-none): The area of the child to repeat or %NULL to * use the child's bounds * * Creates a #GskRenderNode that will repeat the drawing of @child across * the given @bounds. * * Returns: (transfer full) (type GskRepeatNode): A new #GskRenderNode */ GskRenderNode * gsk_repeat_node_new (const graphene_rect_t *bounds, GskRenderNode *child, const graphene_rect_t *child_bounds) { GskRepeatNode *self; GskRenderNode *node; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_REPEAT_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); self->child = gsk_render_node_ref (child); if (child_bounds) graphene_rect_init_from_rect (&self->child_bounds, child_bounds); else graphene_rect_init_from_rect (&self->child_bounds, &child->bounds); return node; } /** * gsk_repeat_node_get_child: * @node: (type GskRepeatNode): a repeat #GskRenderNode * * Retrieves the child of @node. * * Returns: (transfer none): a #GskRenderNode */ GskRenderNode * gsk_repeat_node_get_child (GskRenderNode *node) { GskRepeatNode *self = (GskRepeatNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_REPEAT_NODE), NULL); return self->child; } /** * gsk_repeat_node_get_child_bounds: * @node: (type GskRepeatNode): a repeat #GskRenderNode * * Retrieves the bounding rectangle of the child of @node. * * Returns: (transfer none): a bounding rectangle */ const graphene_rect_t * gsk_repeat_node_get_child_bounds (GskRenderNode *node) { GskRepeatNode *self = (GskRepeatNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_REPEAT_NODE), NULL); return &self->child_bounds; } /*** GSK_CLIP_NODE ***/ /** * GskClipNode: * * A render node applying a rectangular clip to its single child node. */ struct _GskClipNode { GskRenderNode render_node; GskRenderNode *child; graphene_rect_t clip; }; static void gsk_clip_node_finalize (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CLIP_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_clip_node_draw (GskRenderNode *node, cairo_t *cr) { GskClipNode *self = (GskClipNode *) node; cairo_save (cr); gsk_cairo_rectangle (cr, &self->clip); cairo_clip (cr); gsk_render_node_draw (self->child, cr); cairo_restore (cr); } static void gsk_clip_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskClipNode *self1 = (GskClipNode *) node1; GskClipNode *self2 = (GskClipNode *) node2; if (graphene_rect_equal (&self1->clip, &self2->clip)) { cairo_region_t *sub; cairo_rectangle_int_t clip_rect; sub = cairo_region_create(); gsk_render_node_diff (self1->child, self2->child, sub); rectangle_init_from_graphene (&clip_rect, &self1->clip); cairo_region_intersect_rectangle (sub, &clip_rect); cairo_region_union (region, sub); cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, region); } } /** * gsk_clip_node_new: * @child: The node to draw * @clip: The clip to apply * * Creates a #GskRenderNode that will clip the @child to the area * given by @clip. * * Returns: (transfer full) (type GskClipNode): A new #GskRenderNode */ GskRenderNode * gsk_clip_node_new (GskRenderNode *child, const graphene_rect_t *clip) { GskClipNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (clip != NULL, NULL); self = gsk_render_node_alloc (GSK_CLIP_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); graphene_rect_normalize_r (clip, &self->clip); graphene_rect_intersection (&self->clip, &child->bounds, &node->bounds); return node; } /** * gsk_clip_node_get_child: * @node: (type GskClipNode): a clip @GskRenderNode * * Gets the child node that is getting clipped by the given @node. * * Returns: (transfer none): The child that is getting clipped **/ GskRenderNode * gsk_clip_node_get_child (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CLIP_NODE), NULL); return self->child; } /** * gsk_clip_node_get_clip: * @node: (type GskClipNode): a #GskClipNode * * Retrieves the clip rectangle for @node. * * Returns: a clip rectangle */ const graphene_rect_t * gsk_clip_node_get_clip (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CLIP_NODE), NULL); return &self->clip; } /*** GSK_ROUNDED_CLIP_NODE ***/ /** * GskRoundedClipNode: * * A render node applying a rounded rectangle clip to its single child. */ struct _GskRoundedClipNode { GskRenderNode render_node; GskRenderNode *child; GskRoundedRect clip; }; static void gsk_rounded_clip_node_finalize (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_ROUNDED_CLIP_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_rounded_clip_node_draw (GskRenderNode *node, cairo_t *cr) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; cairo_save (cr); gsk_rounded_rect_path (&self->clip, cr); cairo_clip (cr); gsk_render_node_draw (self->child, cr); cairo_restore (cr); } static void gsk_rounded_clip_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskRoundedClipNode *self1 = (GskRoundedClipNode *) node1; GskRoundedClipNode *self2 = (GskRoundedClipNode *) node2; if (gsk_rounded_rect_equal (&self1->clip, &self2->clip)) { cairo_region_t *sub; cairo_rectangle_int_t clip_rect; sub = cairo_region_create(); gsk_render_node_diff (self1->child, self2->child, sub); rectangle_init_from_graphene (&clip_rect, &self1->clip.bounds); cairo_region_intersect_rectangle (sub, &clip_rect); cairo_region_union (region, sub); cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, region); } } /** * gsk_rounded_clip_node_new: * @child: The node to draw * @clip: The clip to apply * * Creates a #GskRenderNode that will clip the @child to the area * given by @clip. * * Returns: (transfer none) (type GskRoundedClipNode): A new #GskRenderNode */ GskRenderNode * gsk_rounded_clip_node_new (GskRenderNode *child, const GskRoundedRect *clip) { GskRoundedClipNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (clip != NULL, NULL); self = gsk_render_node_alloc (GSK_ROUNDED_CLIP_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); gsk_rounded_rect_init_copy (&self->clip, clip); graphene_rect_intersection (&self->clip.bounds, &child->bounds, &node->bounds); return node; } /** * gsk_rounded_clip_node_get_child: * @node: (type GskRoundedClipNode): a rounded clip #GskRenderNode * * Gets the child node that is getting clipped by the given @node. * * Returns: (transfer none): The child that is getting clipped **/ GskRenderNode * gsk_rounded_clip_node_get_child (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_ROUNDED_CLIP_NODE), NULL); return self->child; } /** * gsk_rounded_clip_node_get_clip: * @node: (type GskRoundedClipNode): a rounded clip #GskRenderNode * * Retrievs the rounded rectangle used to clip the contents of the @node. * * Returns: (transfer none): a rounded rectangle */ const GskRoundedRect * gsk_rounded_clip_node_get_clip (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_ROUNDED_CLIP_NODE), NULL); return &self->clip; } /*** GSK_SHADOW_NODE ***/ /** * GskShadowNode: * * A render node drawing one or more shadows behind its single child node. */ struct _GskShadowNode { GskRenderNode render_node; GskRenderNode *child; gsize n_shadows; GskShadow *shadows; }; static void gsk_shadow_node_finalize (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_SHADOW_NODE)); gsk_render_node_unref (self->child); g_free (self->shadows); parent_class->finalize (node); } static void gsk_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskShadowNode *self = (GskShadowNode *) node; cairo_pattern_t *pattern; gsize i; cairo_save (cr); /* clip so the push_group() creates a small surface */ gsk_cairo_rectangle (cr, &self->child->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); cairo_restore (cr); for (i = 0; i < self->n_shadows; i++) { GskShadow *shadow = &self->shadows[i]; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&shadow->color)) continue; cairo_save (cr); gdk_cairo_set_source_rgba (cr, &shadow->color); cr = gsk_cairo_blur_start_drawing (cr, shadow->radius, GSK_BLUR_X | GSK_BLUR_Y); cairo_translate (cr, shadow->dx, shadow->dy); cairo_mask (cr, pattern); cr = gsk_cairo_blur_finish_drawing (cr, shadow->radius, &shadow->color, GSK_BLUR_X | GSK_BLUR_Y); cairo_restore (cr); } cairo_set_source (cr, pattern); cairo_paint (cr); cairo_pattern_destroy (pattern); } static void gsk_shadow_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskShadowNode *self1 = (GskShadowNode *) node1; GskShadowNode *self2 = (GskShadowNode *) node2; int top = 0, right = 0, bottom = 0, left = 0; cairo_region_t *sub; cairo_rectangle_int_t rect; gsize i, n; if (self1->n_shadows != self2->n_shadows) { gsk_render_node_diff_impossible (node1, node2, region); return; } for (i = 0; i < self1->n_shadows; i++) { GskShadow *shadow1 = &self1->shadows[i]; GskShadow *shadow2 = &self2->shadows[i]; float clip_radius; if (!gdk_rgba_equal (&shadow1->color, &shadow2->color) || shadow1->dx != shadow2->dx || shadow1->dy != shadow2->dy || shadow1->radius != shadow2->radius) { gsk_render_node_diff_impossible (node1, node2, region); return; } clip_radius = gsk_cairo_blur_compute_pixels (shadow1->radius); top = MAX (top, ceil (clip_radius - shadow1->dy)); right = MAX (right, ceil (clip_radius + shadow1->dx)); bottom = MAX (bottom, ceil (clip_radius + shadow1->dy)); left = MAX (left, ceil (clip_radius - shadow1->dx)); } sub = cairo_region_create (); gsk_render_node_diff (self1->child, self2->child, sub); n = cairo_region_num_rectangles (sub); for (i = 0; i < n; i++) { cairo_region_get_rectangle (sub, i, &rect); rect.x -= left; rect.y -= top; rect.width += left + right; rect.height += top + bottom; cairo_region_union_rectangle (region, &rect); } cairo_region_destroy (sub); } static void gsk_shadow_node_get_bounds (GskShadowNode *self, graphene_rect_t *bounds) { float top = 0, right = 0, bottom = 0, left = 0; gsize i; graphene_rect_init_from_rect (bounds, &self->child->bounds); for (i = 0; i < self->n_shadows; i++) { float clip_radius = gsk_cairo_blur_compute_pixels (self->shadows[i].radius); top = MAX (top, clip_radius - self->shadows[i].dy); right = MAX (right, clip_radius + self->shadows[i].dx); bottom = MAX (bottom, clip_radius + self->shadows[i].dy); left = MAX (left, clip_radius - self->shadows[i].dx); } bounds->origin.x -= left; bounds->origin.y -= top; bounds->size.width += left + right; bounds->size.height += top + bottom; } /** * gsk_shadow_node_new: * @child: The node to draw * @shadows: (array length=n_shadows): The shadows to apply * @n_shadows: number of entries in the @shadows array * * Creates a #GskRenderNode that will draw a @child with the given * @shadows below it. * * Returns: (transfer full) (type GskShadowNode): A new #GskRenderNode */ GskRenderNode * gsk_shadow_node_new (GskRenderNode *child, const GskShadow *shadows, gsize n_shadows) { GskShadowNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (shadows != NULL, NULL); g_return_val_if_fail (n_shadows > 0, NULL); self = gsk_render_node_alloc (GSK_SHADOW_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->n_shadows = n_shadows; self->shadows = g_malloc_n (n_shadows, sizeof (GskShadow)); memcpy (self->shadows, shadows, n_shadows * sizeof (GskShadow)); gsk_shadow_node_get_bounds (self, &node->bounds); return node; } /** * gsk_shadow_node_get_child: * @node: (type GskShadowNode): a shadow #GskRenderNode * * Retrieves the child #GskRenderNode of the shadow @node. * * Returns: (transfer none): the child render node */ GskRenderNode * gsk_shadow_node_get_child (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_SHADOW_NODE), NULL); return self->child; } /** * gsk_shadow_node_get_shadow: * @node: (type GskShadowNode): a shadow #GskRenderNode * @i: the given index * * Retrieves the shadow data at the given index @i. * * Returns: (transfer none): the shadow data */ const GskShadow * gsk_shadow_node_get_shadow (GskRenderNode *node, gsize i) { GskShadowNode *self = (GskShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_SHADOW_NODE), NULL); g_return_val_if_fail (i < self->n_shadows, NULL); return &self->shadows[i]; } /** * gsk_shadow_node_get_n_shadows: * @node: (type GskShadowNode): a shadow #GskRenderNode * * Retrieves the number of shadows in the @node. * * Returns: the number of shadows. */ gsize gsk_shadow_node_get_n_shadows (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_SHADOW_NODE), 0); return self->n_shadows; } /*** GSK_BLEND_NODE ***/ /** * GskBlendNode: * * A render node applying a blending function between its two child nodes. */ struct _GskBlendNode { GskRenderNode render_node; GskRenderNode *bottom; GskRenderNode *top; GskBlendMode blend_mode; }; static cairo_operator_t gsk_blend_mode_to_cairo_operator (GskBlendMode blend_mode) { switch (blend_mode) { default: g_assert_not_reached (); case GSK_BLEND_MODE_DEFAULT: return CAIRO_OPERATOR_OVER; case GSK_BLEND_MODE_MULTIPLY: return CAIRO_OPERATOR_MULTIPLY; case GSK_BLEND_MODE_SCREEN: return CAIRO_OPERATOR_SCREEN; case GSK_BLEND_MODE_OVERLAY: return CAIRO_OPERATOR_OVERLAY; case GSK_BLEND_MODE_DARKEN: return CAIRO_OPERATOR_DARKEN; case GSK_BLEND_MODE_LIGHTEN: return CAIRO_OPERATOR_LIGHTEN; case GSK_BLEND_MODE_COLOR_DODGE: return CAIRO_OPERATOR_COLOR_DODGE; case GSK_BLEND_MODE_COLOR_BURN: return CAIRO_OPERATOR_COLOR_BURN; case GSK_BLEND_MODE_HARD_LIGHT: return CAIRO_OPERATOR_HARD_LIGHT; case GSK_BLEND_MODE_SOFT_LIGHT: return CAIRO_OPERATOR_SOFT_LIGHT; case GSK_BLEND_MODE_DIFFERENCE: return CAIRO_OPERATOR_DIFFERENCE; case GSK_BLEND_MODE_EXCLUSION: return CAIRO_OPERATOR_EXCLUSION; case GSK_BLEND_MODE_COLOR: return CAIRO_OPERATOR_HSL_COLOR; case GSK_BLEND_MODE_HUE: return CAIRO_OPERATOR_HSL_HUE; case GSK_BLEND_MODE_SATURATION: return CAIRO_OPERATOR_HSL_SATURATION; case GSK_BLEND_MODE_LUMINOSITY: return CAIRO_OPERATOR_HSL_LUMINOSITY; } } static void gsk_blend_node_finalize (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_BLEND_NODE)); gsk_render_node_unref (self->bottom); gsk_render_node_unref (self->top); parent_class->finalize (node); } static void gsk_blend_node_draw (GskRenderNode *node, cairo_t *cr) { GskBlendNode *self = (GskBlendNode *) node; cairo_push_group (cr); gsk_render_node_draw (self->bottom, cr); cairo_push_group (cr); gsk_render_node_draw (self->top, cr); cairo_pop_group_to_source (cr); cairo_set_operator (cr, gsk_blend_mode_to_cairo_operator (self->blend_mode)); cairo_paint (cr); cairo_pop_group_to_source (cr); /* resets operator */ cairo_paint (cr); } static void gsk_blend_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskBlendNode *self1 = (GskBlendNode *) node1; GskBlendNode *self2 = (GskBlendNode *) node2; if (self1->blend_mode == self2->blend_mode) { gsk_render_node_diff (self1->top, self2->top, region); gsk_render_node_diff (self1->bottom, self2->bottom, region); } else { gsk_render_node_diff_impossible (node1, node2, region); } } /** * gsk_blend_node_new: * @bottom: The bottom node to be drawn * @top: The node to be blended onto the @bottom node * @blend_mode: The blend mode to use * * Creates a #GskRenderNode that will use @blend_mode to blend the @top * node onto the @bottom node. * * Returns: (transfer full) (type GskBlendNode): A new #GskRenderNode */ GskRenderNode * gsk_blend_node_new (GskRenderNode *bottom, GskRenderNode *top, GskBlendMode blend_mode) { GskBlendNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (bottom), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (top), NULL); self = gsk_render_node_alloc (GSK_BLEND_NODE); node = (GskRenderNode *) self; self->bottom = gsk_render_node_ref (bottom); self->top = gsk_render_node_ref (top); self->blend_mode = blend_mode; graphene_rect_union (&bottom->bounds, &top->bounds, &node->bounds); return node; } /** * gsk_blend_node_get_bottom_child: * @node: (type GskBlendNode): a blending #GskRenderNode * * Retrieves the bottom #GskRenderNode child of the @node. * * Returns: (transfer none): the bottom child node */ GskRenderNode * gsk_blend_node_get_bottom_child (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLEND_NODE), NULL); return self->bottom; } /** * gsk_blend_node_get_top_child: * @node: (type GskBlendNode): a blending #GskRenderNode * * Retrieves the top #GskRenderNode child of the @node. * * Returns: (transfer none): the top child node */ GskRenderNode * gsk_blend_node_get_top_child (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLEND_NODE), NULL); return self->top; } /** * gsk_blend_node_get_blend_mode: * @node: (type GskBlendNode): a blending #GskRenderNode * * Retrieves the blend mode used by @node. * * Returns: the blend mode */ GskBlendMode gsk_blend_node_get_blend_mode (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLEND_NODE), GSK_BLEND_MODE_DEFAULT); return self->blend_mode; } /*** GSK_CROSS_FADE_NODE ***/ /** * GskCrossFadeNode: * * A render node cross fading between two child nodes. */ struct _GskCrossFadeNode { GskRenderNode render_node; GskRenderNode *start; GskRenderNode *end; float progress; }; static void gsk_cross_fade_node_finalize (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CROSS_FADE_NODE)); gsk_render_node_unref (self->start); gsk_render_node_unref (self->end); parent_class->finalize (node); } static void gsk_cross_fade_node_draw (GskRenderNode *node, cairo_t *cr) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA); gsk_render_node_draw (self->start, cr); cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA); gsk_render_node_draw (self->end, cr); cairo_pop_group_to_source (cr); cairo_set_operator (cr, CAIRO_OPERATOR_SOURCE); cairo_paint_with_alpha (cr, self->progress); cairo_pop_group_to_source (cr); /* resets operator */ cairo_paint (cr); } static void gsk_cross_fade_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskCrossFadeNode *self1 = (GskCrossFadeNode *) node1; GskCrossFadeNode *self2 = (GskCrossFadeNode *) node2; if (self1->progress == self2->progress) { gsk_render_node_diff (self1->start, self2->start, region); gsk_render_node_diff (self1->end, self2->end, region); return; } gsk_render_node_diff_impossible (node1, node2, region); } /** * gsk_cross_fade_node_new: * @start: The start node to be drawn * @end: The node to be cross_fadeed onto the @start node * @progress: How far the fade has progressed from start to end. The value will * be clamped to the range [0 ... 1] * * Creates a #GskRenderNode that will do a cross-fade between @start and @end. * * Returns: (transfer full) (type GskCrossFadeNode): A new #GskRenderNode */ GskRenderNode * gsk_cross_fade_node_new (GskRenderNode *start, GskRenderNode *end, float progress) { GskCrossFadeNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (start), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (end), NULL); self = gsk_render_node_alloc (GSK_CROSS_FADE_NODE); node = (GskRenderNode *) self; self->start = gsk_render_node_ref (start); self->end = gsk_render_node_ref (end); self->progress = CLAMP (progress, 0.0, 1.0); graphene_rect_union (&start->bounds, &end->bounds, &node->bounds); return node; } /** * gsk_cross_fade_node_get_start_child: * @node: (type GskCrossFadeNode): a cross-fading #GskRenderNode * * Retrieves the child #GskRenderNode at the beginning of the cross-fade. * * Returns: (transfer none): a #GskRenderNode */ GskRenderNode * gsk_cross_fade_node_get_start_child (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CROSS_FADE_NODE), NULL); return self->start; } /** * gsk_cross_fade_node_get_end_child: * @node: (type GskCrossFadeNode): a cross-fading #GskRenderNode * * Retrieves the child #GskRenderNode at the end of the cross-fade. * * Returns: (transfer none): a #GskRenderNode */ GskRenderNode * gsk_cross_fade_node_get_end_child (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CROSS_FADE_NODE), NULL); return self->end; } /** * gsk_cross_fade_node_get_progress: * @node: (type GskCrossFadeNode): a cross-fading #GskRenderNode * * Retrieves the progress value of the cross fade. * * Returns: the progress value, between 0 and 1 */ float gsk_cross_fade_node_get_progress (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CROSS_FADE_NODE), 0.0); return self->progress; } /*** GSK_TEXT_NODE ***/ /** * GskTextNode: * * A render node drawing a set of glyphs. */ struct _GskTextNode { GskRenderNode render_node; PangoFont *font; gboolean has_color_glyphs; GdkRGBA color; graphene_point_t offset; guint num_glyphs; PangoGlyphInfo *glyphs; }; static void gsk_text_node_finalize (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXT_NODE)); g_object_unref (self->font); g_free (self->glyphs); parent_class->finalize (node); } static void gsk_text_node_draw (GskRenderNode *node, cairo_t *cr) { GskTextNode *self = (GskTextNode *) node; PangoGlyphString glyphs; glyphs.num_glyphs = self->num_glyphs; glyphs.glyphs = self->glyphs; glyphs.log_clusters = NULL; cairo_save (cr); gdk_cairo_set_source_rgba (cr, &self->color); cairo_translate (cr, self->offset.x, self->offset.y); pango_cairo_show_glyph_string (cr, self->font, &glyphs); cairo_restore (cr); } static void gsk_text_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskTextNode *self1 = (GskTextNode *) node1; GskTextNode *self2 = (GskTextNode *) node2; if (self1->font == self2->font && gdk_rgba_equal (&self1->color, &self2->color) && graphene_point_equal (&self1->offset, &self2->offset) && self1->num_glyphs == self2->num_glyphs) { guint i; for (i = 0; i < self1->num_glyphs; i++) { PangoGlyphInfo *info1 = &self1->glyphs[i]; PangoGlyphInfo *info2 = &self2->glyphs[i]; if (info1->glyph == info2->glyph && info1->geometry.width == info2->geometry.width && info1->geometry.x_offset == info2->geometry.x_offset && info1->geometry.y_offset == info2->geometry.y_offset && info1->attr.is_cluster_start == info2->attr.is_cluster_start) continue; gsk_render_node_diff_impossible (node1, node2, region); return; } return; } gsk_render_node_diff_impossible (node1, node2, region); } static gboolean font_has_color_glyphs (const PangoFont *font) { cairo_scaled_font_t *scaled_font; gboolean has_color = FALSE; scaled_font = pango_cairo_font_get_scaled_font ((PangoCairoFont *)font); if (cairo_scaled_font_get_type (scaled_font) == CAIRO_FONT_TYPE_FT) { FT_Face ft_face = cairo_ft_scaled_font_lock_face (scaled_font); has_color = (FT_HAS_COLOR (ft_face) != 0); cairo_ft_scaled_font_unlock_face (scaled_font); } return has_color; } /** * gsk_text_node_new: * @font: the #PangoFont containing the glyphs * @glyphs: the #PangoGlyphString to render * @color: the foreground color to render with * @offset: offset of the baseline * * Creates a render node that renders the given glyphs, * Note that @color may not be used if the font contains * color glyphs. * * Returns: (nullable) (transfer full) (type GskTextNode): a new #GskRenderNode */ GskRenderNode * gsk_text_node_new (PangoFont *font, PangoGlyphString *glyphs, const GdkRGBA *color, const graphene_point_t *offset) { GskTextNode *self; GskRenderNode *node; PangoRectangle ink_rect; pango_glyph_string_extents (glyphs, font, &ink_rect, NULL); pango_extents_to_pixels (&ink_rect, NULL); /* Don't create nodes with empty bounds */ if (ink_rect.width == 0 || ink_rect.height == 0) return NULL; self = gsk_render_node_alloc (GSK_TEXT_NODE); node = (GskRenderNode *) self; self->font = g_object_ref (font); self->has_color_glyphs = font_has_color_glyphs (font); self->color = *color; self->offset = *offset; self->num_glyphs = glyphs->num_glyphs; self->glyphs = g_malloc_n (glyphs->num_glyphs, sizeof (PangoGlyphInfo)); memcpy (self->glyphs, glyphs->glyphs, glyphs->num_glyphs * sizeof (PangoGlyphInfo)); graphene_rect_init (&node->bounds, offset->x + ink_rect.x - 1, offset->y + ink_rect.y - 1, ink_rect.width + 2, ink_rect.height + 2); return node; } /** * gsk_text_node_get_color: * @node: (type GskTextNode): a text #GskRenderNode * * Retrieves the color used by the text @node. * * Returns: (transfer none): the text color */ const GdkRGBA * gsk_text_node_get_color (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXT_NODE), NULL); return &self->color; } /** * gsk_text_node_get_font: * @node: (type GskTextNode): The #GskRenderNode * * Returns the font used by the text @node. * * Returns: (transfer none): the font */ PangoFont * gsk_text_node_get_font (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXT_NODE), NULL); return self->font; } /** * gsk_text_node_has_color_glyphs: * @node: (type GskTextNode): a text #GskRenderNode * * Checks whether the text @node has color glyphs. * * Returns: %TRUE if the text node has color glyphs */ gboolean gsk_text_node_has_color_glyphs (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXT_NODE), FALSE); return self->has_color_glyphs; } /** * gsk_text_node_get_num_glyphs: * @node: (type GskTextNode): a text #GskRenderNode * * Retrieves the number of glyphs in the text node. * * Returns: the number of glyphs */ guint gsk_text_node_get_num_glyphs (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXT_NODE), 0); return self->num_glyphs; } /** * gsk_text_node_get_glyphs: * @node: (type GskTextNode): a text #GskRenderNode * @n_glyphs: (out) (optional): the number of glyphs returned * * Retrieves the glyph information in the @node. * * Returns: (transfer none) (array length=n_glyphs): the glyph information */ const PangoGlyphInfo * gsk_text_node_get_glyphs (GskRenderNode *node, guint *n_glyphs) { GskTextNode *self = (GskTextNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXT_NODE), NULL); if (n_glyphs != NULL) *n_glyphs = self->num_glyphs; return self->glyphs; } /** * gsk_text_node_get_offset: * @node: (type GskTextNode): a text #GskRenderNode * * Retrieves the offset applied to the text. * * Returns: (transfer none): a point with the horizontal and vertical offsets */ const graphene_point_t * gsk_text_node_get_offset (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_TEXT_NODE), NULL); return &self->offset; } /*** GSK_BLUR_NODE ***/ /** * GskBlurNode: * * A render node applying a blur effect to its single child. */ struct _GskBlurNode { GskRenderNode render_node; GskRenderNode *child; float radius; }; static void gsk_blur_node_finalize (GskRenderNode *node) { GskBlurNode *self = (GskBlurNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_BLUR_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void blur_once (cairo_surface_t *src, cairo_surface_t *dest, int radius, guchar *div_kernel_size) { int width, height, src_rowstride, dest_rowstride, n_channels; guchar *p_src, *p_dest, *c1, *c2; int x, y, i, i1, i2, width_minus_1, height_minus_1, radius_plus_1; int r, g, b, a; guchar *p_dest_row, *p_dest_col; width = cairo_image_surface_get_width (src); height = cairo_image_surface_get_height (src); n_channels = 4; radius_plus_1 = radius + 1; /* horizontal blur */ p_src = cairo_image_surface_get_data (src); p_dest = cairo_image_surface_get_data (dest); src_rowstride = cairo_image_surface_get_stride (src); dest_rowstride = cairo_image_surface_get_stride (dest); width_minus_1 = width - 1; for (y = 0; y < height; y++) { /* calc the initial sums of the kernel */ r = g = b = a = 0; for (i = -radius; i <= radius; i++) { c1 = p_src + (CLAMP (i, 0, width_minus_1) * n_channels); r += c1[0]; g += c1[1]; b += c1[2]; a += c1[3]; } p_dest_row = p_dest; for (x = 0; x < width; x++) { /* set as the mean of the kernel */ p_dest_row[0] = div_kernel_size[r]; p_dest_row[1] = div_kernel_size[g]; p_dest_row[2] = div_kernel_size[b]; p_dest_row[3] = div_kernel_size[a]; p_dest_row += n_channels; /* the pixel to add to the kernel */ i1 = x + radius_plus_1; if (i1 > width_minus_1) i1 = width_minus_1; c1 = p_src + (i1 * n_channels); /* the pixel to remove from the kernel */ i2 = x - radius; if (i2 < 0) i2 = 0; c2 = p_src + (i2 * n_channels); /* calc the new sums of the kernel */ r += c1[0] - c2[0]; g += c1[1] - c2[1]; b += c1[2] - c2[2]; a += c1[3] - c2[3]; } p_src += src_rowstride; p_dest += dest_rowstride; } /* vertical blur */ p_src = cairo_image_surface_get_data (dest); p_dest = cairo_image_surface_get_data (src); src_rowstride = cairo_image_surface_get_stride (dest); dest_rowstride = cairo_image_surface_get_stride (src); height_minus_1 = height - 1; for (x = 0; x < width; x++) { /* calc the initial sums of the kernel */ r = g = b = a = 0; for (i = -radius; i <= radius; i++) { c1 = p_src + (CLAMP (i, 0, height_minus_1) * src_rowstride); r += c1[0]; g += c1[1]; b += c1[2]; a += c1[3]; } p_dest_col = p_dest; for (y = 0; y < height; y++) { /* set as the mean of the kernel */ p_dest_col[0] = div_kernel_size[r]; p_dest_col[1] = div_kernel_size[g]; p_dest_col[2] = div_kernel_size[b]; p_dest_col[3] = div_kernel_size[a]; p_dest_col += dest_rowstride; /* the pixel to add to the kernel */ i1 = y + radius_plus_1; if (i1 > height_minus_1) i1 = height_minus_1; c1 = p_src + (i1 * src_rowstride); /* the pixel to remove from the kernel */ i2 = y - radius; if (i2 < 0) i2 = 0; c2 = p_src + (i2 * src_rowstride); /* calc the new sums of the kernel */ r += c1[0] - c2[0]; g += c1[1] - c2[1]; b += c1[2] - c2[2]; a += c1[3] - c2[3]; } p_src += n_channels; p_dest += n_channels; } } static void blur_image_surface (cairo_surface_t *surface, int radius, int iterations) { int kernel_size; int i; guchar *div_kernel_size; cairo_surface_t *tmp; int width, height; width = cairo_image_surface_get_width (surface); height = cairo_image_surface_get_height (surface); tmp = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height); kernel_size = 2 * radius + 1; div_kernel_size = g_new (guchar, 256 * kernel_size); for (i = 0; i < 256 * kernel_size; i++) div_kernel_size[i] = (guchar) (i / kernel_size); while (iterations-- > 0) blur_once (surface, tmp, radius, div_kernel_size); g_free (div_kernel_size); cairo_surface_destroy (tmp); } static void gsk_blur_node_draw (GskRenderNode *node, cairo_t *cr) { GskBlurNode *self = (GskBlurNode *) node; cairo_pattern_t *pattern; cairo_surface_t *surface; cairo_surface_t *image_surface; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); cairo_pattern_get_surface (pattern, &surface); image_surface = cairo_surface_map_to_image (surface, NULL); blur_image_surface (image_surface, (int)self->radius, 3); cairo_surface_mark_dirty (surface); cairo_surface_unmap_image (surface, image_surface); cairo_set_source (cr, pattern); cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_fill (cr); cairo_restore (cr); cairo_pattern_destroy (pattern); } static void gsk_blur_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskBlurNode *self1 = (GskBlurNode *) node1; GskBlurNode *self2 = (GskBlurNode *) node2; if (self1->radius == self2->radius) { cairo_rectangle_int_t rect; cairo_region_t *sub; int i, n, clip_radius; clip_radius = ceil (gsk_cairo_blur_compute_pixels (self1->radius)); sub = cairo_region_create (); gsk_render_node_diff (self1->child, self2->child, sub); n = cairo_region_num_rectangles (sub); for (i = 0; i < n; i++) { cairo_region_get_rectangle (sub, i, &rect); rect.x -= clip_radius; rect.y -= clip_radius; rect.width += 2 * clip_radius; rect.height += 2 * clip_radius; cairo_region_union_rectangle (region, &rect); } cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, region); } } /** * gsk_blur_node_new: * @child: the child node to blur * @radius: the blur radius * * Creates a render node that blurs the child. * * Returns: (transfer full) (type GskBlurNode): a new #GskRenderNode */ GskRenderNode * gsk_blur_node_new (GskRenderNode *child, float radius) { GskBlurNode *self; GskRenderNode *node; float clip_radius; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_BLUR_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->radius = radius; clip_radius = gsk_cairo_blur_compute_pixels (radius); graphene_rect_init_from_rect (&node->bounds, &child->bounds); graphene_rect_inset (&self->render_node.bounds, - clip_radius, - clip_radius); return node; } /** * gsk_blur_node_get_child: * @node: (type GskBlurNode): a blur #GskRenderNode * * Retrieves the child #GskRenderNode of the blur @node. * * Returns: (transfer none): the blurred child node */ GskRenderNode * gsk_blur_node_get_child (GskRenderNode *node) { GskBlurNode *self = (GskBlurNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLUR_NODE), NULL); return self->child; } /** * gsk_blur_node_get_radius: * @node: (type GskBlurNode): a blur #GskRenderNode * * Retrieves the blur radius of the @node. * * Returns: the blur radius */ float gsk_blur_node_get_radius (GskRenderNode *node) { GskBlurNode *self = (GskBlurNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_BLUR_NODE), 0.0); return self->radius; } /*** GSK_DEBUG_NODE ***/ /** * GskDebugNode: * * A render node that emits a debugging message when drawing its * child node. */ struct _GskDebugNode { GskRenderNode render_node; GskRenderNode *child; char *message; }; static void gsk_debug_node_finalize (GskRenderNode *node) { GskDebugNode *self = (GskDebugNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_DEBUG_NODE)); gsk_render_node_unref (self->child); g_free (self->message); parent_class->finalize (node); } static void gsk_debug_node_draw (GskRenderNode *node, cairo_t *cr) { GskDebugNode *self = (GskDebugNode *) node; gsk_render_node_draw (self->child, cr); } static gboolean gsk_debug_node_can_diff (const GskRenderNode *node1, const GskRenderNode *node2) { GskDebugNode *self1 = (GskDebugNode *) node1; GskDebugNode *self2 = (GskDebugNode *) node2; return gsk_render_node_can_diff (self1->child, self2->child); } static void gsk_debug_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskDebugNode *self1 = (GskDebugNode *) node1; GskDebugNode *self2 = (GskDebugNode *) node2; gsk_render_node_diff (self1->child, self2->child, region); } /** * gsk_debug_node_new: * @child: The child to add debug info for * @message: (transfer full): The debug message * * Creates a #GskRenderNode that will add debug information about * the given @child. * * Adding this node has no visual effect. * * Returns: (transfer full) (type GskDebugNode): A new #GskRenderNode */ GskRenderNode * gsk_debug_node_new (GskRenderNode *child, char *message) { GskDebugNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_DEBUG_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->message = message; graphene_rect_init_from_rect (&node->bounds, &child->bounds); return node; } /** * gsk_debug_node_get_child: * @node: (type GskDebugNode): a debug #GskRenderNode * * Gets the child node that is getting drawn by the given @node. * * Returns: (transfer none): the child #GskRenderNode **/ GskRenderNode * gsk_debug_node_get_child (GskRenderNode *node) { GskDebugNode *self = (GskDebugNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_DEBUG_NODE), NULL); return self->child; } /** * gsk_debug_node_get_message: * @node: (type GskDebugNode): a debug #GskRenderNode * * Gets the debug message that was set on this node * * Returns: (transfer none): The debug message **/ const char * gsk_debug_node_get_message (GskRenderNode *node) { GskDebugNode *self = (GskDebugNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_DEBUG_NODE), "You run broken code!"); return self->message; } /*** GSK_GL_SHADER_NODE ***/ /** * GskGLShaderNode: * * A render node using a GL shader when drawing its children nodes. */ struct _GskGLShaderNode { GskRenderNode render_node; GskGLShader *shader; GBytes *args; GskRenderNode **children; guint n_children; }; static void gsk_gl_shader_node_finalize (GskRenderNode *node) { GskGLShaderNode *self = (GskGLShaderNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_GL_SHADER_NODE)); for (guint i = 0; i < self->n_children; i++) gsk_render_node_unref (self->children[i]); g_free (self->children); g_bytes_unref (self->args); g_object_unref (self->shader); parent_class->finalize (node); } static void gsk_gl_shader_node_draw (GskRenderNode *node, cairo_t *cr) { cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_gl_shader_node_diff (GskRenderNode *node1, GskRenderNode *node2, cairo_region_t *region) { GskGLShaderNode *self1 = (GskGLShaderNode *) node1; GskGLShaderNode *self2 = (GskGLShaderNode *) node2; if (graphene_rect_equal (&node1->bounds, &node2->bounds) && self1->shader == self2->shader && g_bytes_compare (self1->args, self2->args) == 0 && self1->n_children == self2->n_children) { cairo_region_t *child_region = cairo_region_create(); for (guint i = 0; i < self1->n_children; i++) gsk_render_node_diff (self1->children[i], self2->children[i], child_region); if (!cairo_region_is_empty (child_region)) gsk_render_node_diff_impossible (node1, node2, region); cairo_region_destroy (child_region); } else { gsk_render_node_diff_impossible (node1, node2, region); } } /** * gsk_gl_shader_node_new: * @shader: the #GskGLShader * @bounds: the rectangle to render the shader into * @args: Arguments for the uniforms * @children: (array length=n_children): array of child nodes, these will * be rendered to textures and used as input. * @n_children: Length of @children (currenly the GL backend supports * up to 4 children) * * Creates a #GskRenderNode that will render the given @shader into the * area given by @bounds. The @args is a block of data to use for uniform * input, as per types and offsets defined by the @shader. Normally this * is generated by gsk_gl_shader_format_args() or #GskGLShaderArgBuilder. * * See #GskGLShader for details about how the shader should be written. * * All the children will be rendered into textures (if they aren't already * #GskTextureNodes, which will be used directly). These textures will be * sent as input to the shader. * * If the renderer doesn't support GL shaders, or if there is any problem * when compiling the shader, then the node will draw pink. You should use * gsk_gl_shader_compile() to ensure the @shader will work for the * renderer before using it. * * Returns: (transfer full) (type GskGLShaderNode): A new #GskRenderNode */ GskRenderNode * gsk_gl_shader_node_new (GskGLShader *shader, const graphene_rect_t *bounds, GBytes *args, GskRenderNode **children, guint n_children) { GskGLShaderNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_GL_SHADER (shader), NULL); g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail ((args == NULL && gsk_gl_shader_get_n_uniforms (shader) == 0) || (args != NULL && g_bytes_get_size (args) == gsk_gl_shader_get_args_size (shader)), NULL); g_return_val_if_fail ((children == NULL && n_children == 0) || (children != NULL && n_children == gsk_gl_shader_get_n_textures (shader)), NULL); self = gsk_render_node_alloc (GSK_GL_SHADER_NODE); node = (GskRenderNode *) self; graphene_rect_init_from_rect (&node->bounds, bounds); self->shader = g_object_ref (shader); self->args = g_bytes_ref (args); self->n_children = n_children; if (n_children > 0) { self->children = g_malloc_n (n_children, sizeof (GskRenderNode *)); for (guint i = 0; i < n_children; i++) self->children[i] = gsk_render_node_ref (children[i]); } return node; } /** * gsk_gl_shader_node_get_n_children: * @node: (type GskGLShaderNode): a #GskRenderNode for a gl shader * * Returns the number of children * * Returns: The number of children */ guint gsk_gl_shader_node_get_n_children (GskRenderNode *node) { GskGLShaderNode *self = (GskGLShaderNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_GL_SHADER_NODE), 0); return self->n_children; } /** * gsk_gl_shader_node_get_child: * @node: (type GskGLShaderNode): a #GskRenderNode for a gl shader * @idx: the position of the child to get * * Gets one of the children. * * Returns: (transfer none): the @idx'th child of @node */ GskRenderNode * gsk_gl_shader_node_get_child (GskRenderNode *node, guint idx) { GskGLShaderNode *self = (GskGLShaderNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_GL_SHADER_NODE), NULL); g_return_val_if_fail (idx < self->n_children, NULL); return self->children[idx]; } /** * gsk_gl_shader_node_get_shader: * @node: (type GskGLShaderNode): a #GskRenderNode for a gl shader * * Gets shader code for the node. * * Returns: (transfer none): the #GskGLShader shader */ GskGLShader * gsk_gl_shader_node_get_shader (GskRenderNode *node) { GskGLShaderNode *self = (GskGLShaderNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_GL_SHADER_NODE), 0); return self->shader; } /** * gsk_gl_shader_node_get_args: * @node: (type GskGLShaderNode): a #GskRenderNode for a gl shader * * Gets args for the node. * * Returns: (transfer none): A #GBytes with the uniform arguments */ GBytes * gsk_gl_shader_node_get_args (GskRenderNode *node) { GskGLShaderNode *self = (GskGLShaderNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_GL_SHADER_NODE), NULL); return self->args; } GType gsk_render_node_types[GSK_RENDER_NODE_TYPE_N_TYPES]; #ifndef I_ # define I_(str) g_intern_static_string ((str)) #endif #define GSK_DEFINE_RENDER_NODE_TYPE(type_name, TYPE_ENUM_VALUE) \ GType \ type_name ## _get_type (void) { \ gsk_render_node_init_types (); \ g_assert (gsk_render_node_types[TYPE_ENUM_VALUE] != G_TYPE_INVALID); \ return gsk_render_node_types[TYPE_ENUM_VALUE]; \ } GSK_DEFINE_RENDER_NODE_TYPE (gsk_container_node, GSK_CONTAINER_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_cairo_node, GSK_CAIRO_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_color_node, GSK_COLOR_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_linear_gradient_node, GSK_LINEAR_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeating_linear_gradient_node, GSK_REPEATING_LINEAR_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_radial_gradient_node, GSK_RADIAL_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeating_radial_gradient_node, GSK_REPEATING_RADIAL_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_conic_gradient_node, GSK_CONIC_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_border_node, GSK_BORDER_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_texture_node, GSK_TEXTURE_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_inset_shadow_node, GSK_INSET_SHADOW_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_outset_shadow_node, GSK_OUTSET_SHADOW_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_transform_node, GSK_TRANSFORM_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_opacity_node, GSK_OPACITY_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_color_matrix_node, GSK_COLOR_MATRIX_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeat_node, GSK_REPEAT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_clip_node, GSK_CLIP_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_rounded_clip_node, GSK_ROUNDED_CLIP_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_shadow_node, GSK_SHADOW_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_blend_node, GSK_BLEND_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_cross_fade_node, GSK_CROSS_FADE_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_text_node, GSK_TEXT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_blur_node, GSK_BLUR_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_gl_shader_node, GSK_GL_SHADER_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_debug_node, GSK_DEBUG_NODE) static void gsk_render_node_init_types_once (void) { { const GskRenderNodeTypeInfo node_info = { GSK_CONTAINER_NODE, sizeof (GskContainerNode), NULL, gsk_container_node_finalize, gsk_container_node_draw, NULL, gsk_container_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskContainerNode"), &node_info); gsk_render_node_types[GSK_CONTAINER_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_CAIRO_NODE, sizeof (GskCairoNode), NULL, gsk_cairo_node_finalize, gsk_cairo_node_draw, NULL, NULL, }; GType node_type = gsk_render_node_type_register_static (I_("GskCairoNode"), &node_info); gsk_render_node_types[GSK_CAIRO_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_COLOR_NODE, sizeof (GskColorNode), NULL, NULL, gsk_color_node_draw, NULL, gsk_color_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskColorNode"), &node_info); gsk_render_node_types[GSK_COLOR_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_LINEAR_GRADIENT_NODE, sizeof (GskLinearGradientNode), NULL, gsk_linear_gradient_node_finalize, gsk_linear_gradient_node_draw, NULL, gsk_linear_gradient_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskLinearGradientNode"), &node_info); gsk_render_node_types[GSK_LINEAR_GRADIENT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_REPEATING_LINEAR_GRADIENT_NODE, sizeof (GskLinearGradientNode), NULL, gsk_linear_gradient_node_finalize, gsk_linear_gradient_node_draw, NULL, gsk_linear_gradient_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskRepeatingLinearGradientNode"), &node_info); gsk_render_node_types[GSK_REPEATING_LINEAR_GRADIENT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_RADIAL_GRADIENT_NODE, sizeof (GskRadialGradientNode), NULL, gsk_radial_gradient_node_finalize, gsk_radial_gradient_node_draw, NULL, gsk_radial_gradient_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskRadialGradientNode"), &node_info); gsk_render_node_types[GSK_RADIAL_GRADIENT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_REPEATING_RADIAL_GRADIENT_NODE, sizeof (GskRadialGradientNode), NULL, gsk_radial_gradient_node_finalize, gsk_radial_gradient_node_draw, NULL, gsk_radial_gradient_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskRepeatingRadialGradientNode"), &node_info); gsk_render_node_types[GSK_REPEATING_RADIAL_GRADIENT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_CONIC_GRADIENT_NODE, sizeof (GskConicGradientNode), NULL, gsk_conic_gradient_node_finalize, gsk_conic_gradient_node_draw, NULL, gsk_conic_gradient_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskConicGradientNode"), &node_info); gsk_render_node_types[GSK_CONIC_GRADIENT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_BORDER_NODE, sizeof (GskBorderNode), NULL, NULL, gsk_border_node_draw, NULL, gsk_border_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskBorderNode"), &node_info); gsk_render_node_types[GSK_BORDER_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_TEXTURE_NODE, sizeof (GskTextureNode), NULL, gsk_texture_node_finalize, gsk_texture_node_draw, NULL, gsk_texture_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskTextureNode"), &node_info); gsk_render_node_types[GSK_TEXTURE_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_INSET_SHADOW_NODE, sizeof (GskInsetShadowNode), NULL, NULL, gsk_inset_shadow_node_draw, NULL, gsk_inset_shadow_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskInsetShadowNode"), &node_info); gsk_render_node_types[GSK_INSET_SHADOW_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_OUTSET_SHADOW_NODE, sizeof (GskOutsetShadowNode), NULL, NULL, gsk_outset_shadow_node_draw, NULL, gsk_outset_shadow_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskOutsetShadowNode"), &node_info); gsk_render_node_types[GSK_OUTSET_SHADOW_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_TRANSFORM_NODE, sizeof (GskTransformNode), NULL, gsk_transform_node_finalize, gsk_transform_node_draw, gsk_transform_node_can_diff, gsk_transform_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskTransformNode"), &node_info); gsk_render_node_types[GSK_TRANSFORM_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_OPACITY_NODE, sizeof (GskOpacityNode), NULL, gsk_opacity_node_finalize, gsk_opacity_node_draw, NULL, gsk_opacity_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskOpacityNode"), &node_info); gsk_render_node_types[GSK_OPACITY_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_COLOR_MATRIX_NODE, sizeof (GskColorMatrixNode), NULL, gsk_color_matrix_node_finalize, gsk_color_matrix_node_draw, NULL, gsk_color_matrix_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskColorMatrixNode"), &node_info); gsk_render_node_types[GSK_COLOR_MATRIX_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_REPEAT_NODE, sizeof (GskRepeatNode), NULL, gsk_repeat_node_finalize, gsk_repeat_node_draw, NULL, NULL, }; GType node_type = gsk_render_node_type_register_static (I_("GskRepeatNode"), &node_info); gsk_render_node_types[GSK_REPEAT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_CLIP_NODE, sizeof (GskClipNode), NULL, gsk_clip_node_finalize, gsk_clip_node_draw, NULL, gsk_clip_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskClipNode"), &node_info); gsk_render_node_types[GSK_CLIP_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_ROUNDED_CLIP_NODE, sizeof (GskRoundedClipNode), NULL, gsk_rounded_clip_node_finalize, gsk_rounded_clip_node_draw, NULL, gsk_rounded_clip_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskRoundedClipNode"), &node_info); gsk_render_node_types[GSK_ROUNDED_CLIP_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_SHADOW_NODE, sizeof (GskShadowNode), NULL, gsk_shadow_node_finalize, gsk_shadow_node_draw, NULL, gsk_shadow_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskShadowNode"), &node_info); gsk_render_node_types[GSK_SHADOW_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_BLEND_NODE, sizeof (GskBlendNode), NULL, gsk_blend_node_finalize, gsk_blend_node_draw, NULL, gsk_blend_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskBlendNode"), &node_info); gsk_render_node_types[GSK_BLEND_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_CROSS_FADE_NODE, sizeof (GskCrossFadeNode), NULL, gsk_cross_fade_node_finalize, gsk_cross_fade_node_draw, NULL, gsk_cross_fade_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskCrossFadeNode"), &node_info); gsk_render_node_types[GSK_CROSS_FADE_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_TEXT_NODE, sizeof (GskTextNode), NULL, gsk_text_node_finalize, gsk_text_node_draw, NULL, gsk_text_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskTextNode"), &node_info); gsk_render_node_types[GSK_TEXT_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_BLUR_NODE, sizeof (GskBlurNode), NULL, gsk_blur_node_finalize, gsk_blur_node_draw, NULL, gsk_blur_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskBlurNode"), &node_info); gsk_render_node_types[GSK_BLUR_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_GL_SHADER_NODE, sizeof (GskGLShaderNode), NULL, gsk_gl_shader_node_finalize, gsk_gl_shader_node_draw, NULL, gsk_gl_shader_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskGLShaderNode"), &node_info); gsk_render_node_types[GSK_GL_SHADER_NODE] = node_type; } { const GskRenderNodeTypeInfo node_info = { GSK_DEBUG_NODE, sizeof (GskDebugNode), NULL, gsk_debug_node_finalize, gsk_debug_node_draw, gsk_debug_node_can_diff, gsk_debug_node_diff, }; GType node_type = gsk_render_node_type_register_static (I_("GskDebugNode"), &node_info); gsk_render_node_types[GSK_DEBUG_NODE] = node_type; } } /*< private > * gsk_render_node_init_types: * * Initialize all the #GskRenderNode types provided by GSK. */ void gsk_render_node_init_types (void) { static volatile gsize register_types__volatile; if (g_once_init_enter (®ister_types__volatile)) { gboolean initialized = TRUE; gsk_render_node_init_types_once (); g_once_init_leave (®ister_types__volatile, initialized); } }