/* GSK - The GTK Scene Kit * * Copyright 2016 Endless * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see . */ #include "config.h" #include "gskrendernodeprivate.h" #include "gskcairoblurprivate.h" #include "gskcairorenderer.h" #include "gskdebugprivate.h" #include "gskdiffprivate.h" #include "gl/gskglrenderer.h" #include "gskpathprivate.h" #include "gskrectprivate.h" #include "gskrendererprivate.h" #include "gskroundedrectprivate.h" #include "gskstrokeprivate.h" #include "gsktransformprivate.h" #include "gskoffloadprivate.h" #include "gdk/gdktextureprivate.h" #include "gdk/gdkmemoryformatprivate.h" #include "gdk/gdkprivate.h" #include "gdk/gdkrectangleprivate.h" #include "gdk/gdksubsurfaceprivate.h" #include #ifdef CAIRO_HAS_SVG_SURFACE #include #endif #include /* maximal number of rectangles we keep in a diff region before we throw * the towel and just use the bounding box of the parent node. * Meant to avoid performance corner cases. */ #define MAX_RECTS_IN_DIFF 30 static inline void gsk_cairo_rectangle (cairo_t *cr, const graphene_rect_t *rect) { cairo_rectangle (cr, rect->origin.x, rect->origin.y, rect->size.width, rect->size.height); } static void rectangle_init_from_graphene (cairo_rectangle_int_t *cairo, const graphene_rect_t *graphene) { cairo->x = floorf (graphene->origin.x); cairo->y = floorf (graphene->origin.y); cairo->width = ceilf (graphene->origin.x + graphene->size.width) - cairo->x; cairo->height = ceilf (graphene->origin.y + graphene->size.height) - cairo->y; } static void _graphene_rect_init_from_clip_extents (graphene_rect_t *rect, cairo_t *cr) { double x1c, y1c, x2c, y2c; cairo_clip_extents (cr, &x1c, &y1c, &x2c, &y2c); graphene_rect_init (rect, x1c, y1c, x2c - x1c, y2c - y1c); } static void region_union_region_affine (cairo_region_t *region, const cairo_region_t *sub, float scale_x, float scale_y, float offset_x, float offset_y) { cairo_rectangle_int_t rect; int i; for (i = 0; i < cairo_region_num_rectangles (sub); i++) { cairo_region_get_rectangle (sub, i, &rect); gdk_rectangle_transform_affine (&rect, scale_x, scale_y, offset_x, offset_y, &rect); cairo_region_union_rectangle (region, &rect); } } /* {{{ GSK_COLOR_NODE */ /** * GskColorNode: * * A render node for a solid color. */ struct _GskColorNode { GskRenderNode render_node; GdkRGBA color; }; static void gsk_color_node_draw (GskRenderNode *node, cairo_t *cr) { GskColorNode *self = (GskColorNode *) node; gdk_cairo_set_source_rgba (cr, &self->color); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_color_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskColorNode *self1 = (GskColorNode *) node1; GskColorNode *self2 = (GskColorNode *) node2; if (gsk_rect_equal (&node1->bounds, &node2->bounds) && gdk_rgba_equal (&self1->color, &self2->color)) return; gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_color_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_COLOR_NODE; node_class->draw = gsk_color_node_draw; node_class->diff = gsk_color_node_diff; } /** * gsk_color_node_get_color: * @node: (type GskColorNode): a `GskRenderNode` * * Retrieves the color of the given @node. * * Returns: (transfer none): the color of the node */ const GdkRGBA * gsk_color_node_get_color (const GskRenderNode *node) { GskColorNode *self = (GskColorNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_COLOR_NODE), NULL); return &self->color; } /** * gsk_color_node_new: * @rgba: a `GdkRGBA` specifying a color * @bounds: the rectangle to render the color into * * Creates a `GskRenderNode` that will render the color specified by @rgba into * the area given by @bounds. * * Returns: (transfer full) (type GskColorNode): A new `GskRenderNode` */ GskRenderNode * gsk_color_node_new (const GdkRGBA *rgba, const graphene_rect_t *bounds) { GskColorNode *self; GskRenderNode *node; g_return_val_if_fail (rgba != NULL, NULL); g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_COLOR_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; self->color = *rgba; graphene_rect_init_from_rect (&node->bounds, bounds); return node; } /* }}} */ /* {{{ GSK_LINEAR_GRADIENT_NODE */ /** * GskRepeatingLinearGradientNode: * * A render node for a repeating linear gradient. */ /** * GskLinearGradientNode: * * A render node for a linear gradient. */ struct _GskLinearGradientNode { GskRenderNode render_node; graphene_point_t start; graphene_point_t end; gsize n_stops; GskColorStop *stops; }; static void gsk_linear_gradient_node_finalize (GskRenderNode *node) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_LINEAR_GRADIENT_NODE)); g_free (self->stops); parent_class->finalize (node); } static void gsk_linear_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskLinearGradientNode *self = (GskLinearGradientNode *) node; cairo_pattern_t *pattern; gsize i; pattern = cairo_pattern_create_linear (self->start.x, self->start.y, self->end.x, self->end.y); if (gsk_render_node_get_node_type (node) == GSK_REPEATING_LINEAR_GRADIENT_NODE) cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); if (self->stops[0].offset > 0.0) cairo_pattern_add_color_stop_rgba (pattern, 0.0, self->stops[0].color.red, self->stops[0].color.green, self->stops[0].color.blue, self->stops[0].color.alpha); for (i = 0; i < self->n_stops; i++) { cairo_pattern_add_color_stop_rgba (pattern, self->stops[i].offset, self->stops[i].color.red, self->stops[i].color.green, self->stops[i].color.blue, self->stops[i].color.alpha); } if (self->stops[self->n_stops-1].offset < 1.0) cairo_pattern_add_color_stop_rgba (pattern, 1.0, self->stops[self->n_stops-1].color.red, self->stops[self->n_stops-1].color.green, self->stops[self->n_stops-1].color.blue, self->stops[self->n_stops-1].color.alpha); cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_linear_gradient_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskLinearGradientNode *self1 = (GskLinearGradientNode *) node1; GskLinearGradientNode *self2 = (GskLinearGradientNode *) node2; if (graphene_point_equal (&self1->start, &self2->start) && graphene_point_equal (&self1->end, &self2->end) && self1->n_stops == self2->n_stops) { gsize i; for (i = 0; i < self1->n_stops; i++) { GskColorStop *stop1 = &self1->stops[i]; GskColorStop *stop2 = &self2->stops[i]; if (stop1->offset == stop2->offset && gdk_rgba_equal (&stop1->color, &stop2->color)) continue; gsk_render_node_diff_impossible (node1, node2, data); return; } return; } gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_linear_gradient_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_LINEAR_GRADIENT_NODE; node_class->finalize = gsk_linear_gradient_node_finalize; node_class->draw = gsk_linear_gradient_node_draw; node_class->diff = gsk_linear_gradient_node_diff; } static void gsk_repeating_linear_gradient_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_REPEATING_LINEAR_GRADIENT_NODE; node_class->finalize = gsk_linear_gradient_node_finalize; node_class->draw = gsk_linear_gradient_node_draw; node_class->diff = gsk_linear_gradient_node_diff; } /** * gsk_linear_gradient_node_new: * @bounds: the rectangle to render the linear gradient into * @start: the point at which the linear gradient will begin * @end: the point at which the linear gradient will finish * @color_stops: (array length=n_color_stops): a pointer to an array of * `GskColorStop` defining the gradient. The offsets of all color stops * must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a `GskRenderNode` that will create a linear gradient from the given * points and color stops, and render that into the area given by @bounds. * * Returns: (transfer full) (type GskLinearGradientNode): A new `GskRenderNode` */ GskRenderNode * gsk_linear_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *start, const graphene_point_t *end, const GskColorStop *color_stops, gsize n_color_stops) { GskLinearGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (start != NULL, NULL); g_return_val_if_fail (end != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_LINEAR_GRADIENT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->start, start); graphene_point_init_from_point (&self->end, end); self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_repeating_linear_gradient_node_new: * @bounds: the rectangle to render the linear gradient into * @start: the point at which the linear gradient will begin * @end: the point at which the linear gradient will finish * @color_stops: (array length=n_color_stops): a pointer to an array of * `GskColorStop` defining the gradient. The offsets of all color stops * must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a `GskRenderNode` that will create a repeating linear gradient * from the given points and color stops, and render that into the area * given by @bounds. * * Returns: (transfer full) (type GskRepeatingLinearGradientNode): A new `GskRenderNode` */ GskRenderNode * gsk_repeating_linear_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *start, const graphene_point_t *end, const GskColorStop *color_stops, gsize n_color_stops) { GskLinearGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (start != NULL, NULL); g_return_val_if_fail (end != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_REPEATING_LINEAR_GRADIENT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->start, start); graphene_point_init_from_point (&self->end, end); self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); self->n_stops = n_color_stops; return node; } /** * gsk_linear_gradient_node_get_start: * @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient * * Retrieves the initial point of the linear gradient. * * Returns: (transfer none): the initial point */ const graphene_point_t * gsk_linear_gradient_node_get_start (const GskRenderNode *node) { const GskLinearGradientNode *self = (const GskLinearGradientNode *) node; return &self->start; } /** * gsk_linear_gradient_node_get_end: * @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient * * Retrieves the final point of the linear gradient. * * Returns: (transfer none): the final point */ const graphene_point_t * gsk_linear_gradient_node_get_end (const GskRenderNode *node) { const GskLinearGradientNode *self = (const GskLinearGradientNode *) node; return &self->end; } /** * gsk_linear_gradient_node_get_n_color_stops: * @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient * * Retrieves the number of color stops in the gradient. * * Returns: the number of color stops */ gsize gsk_linear_gradient_node_get_n_color_stops (const GskRenderNode *node) { const GskLinearGradientNode *self = (const GskLinearGradientNode *) node; return self->n_stops; } /** * gsk_linear_gradient_node_get_color_stops: * @node: (type GskLinearGradientNode): a `GskRenderNode` for a linear gradient * @n_stops: (out) (optional): the number of color stops in the returned array * * Retrieves the color stops in the gradient. * * Returns: (array length=n_stops): the color stops in the gradient */ const GskColorStop * gsk_linear_gradient_node_get_color_stops (const GskRenderNode *node, gsize *n_stops) { const GskLinearGradientNode *self = (const GskLinearGradientNode *) node; if (n_stops != NULL) *n_stops = self->n_stops; return self->stops; } /* }}} */ /* {{{ GSK_RADIAL_GRADIENT_NODE */ /** * GskRepeatingRadialGradientNode: * * A render node for a repeating radial gradient. */ /** * GskRadialGradientNode: * * A render node for a radial gradient. */ struct _GskRadialGradientNode { GskRenderNode render_node; graphene_point_t center; float hradius; float vradius; float start; float end; gsize n_stops; GskColorStop *stops; }; static void gsk_radial_gradient_node_finalize (GskRenderNode *node) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_RADIAL_GRADIENT_NODE)); g_free (self->stops); parent_class->finalize (node); } static void gsk_radial_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskRadialGradientNode *self = (GskRadialGradientNode *) node; cairo_pattern_t *pattern; gsize i; pattern = cairo_pattern_create_radial (0, 0, self->hradius * self->start, 0, 0, self->hradius * self->end); if (self->hradius != self->vradius) { cairo_matrix_t matrix; cairo_matrix_init_scale (&matrix, 1.0, self->hradius / self->vradius); cairo_pattern_set_matrix (pattern, &matrix); } if (gsk_render_node_get_node_type (node) == GSK_REPEATING_RADIAL_GRADIENT_NODE) cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); else cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); if (self->stops[0].offset > 0.0) cairo_pattern_add_color_stop_rgba (pattern, 0.0, self->stops[0].color.red, self->stops[0].color.green, self->stops[0].color.blue, self->stops[0].color.alpha); for (i = 0; i < self->n_stops; i++) { cairo_pattern_add_color_stop_rgba (pattern, self->stops[i].offset, self->stops[i].color.red, self->stops[i].color.green, self->stops[i].color.blue, self->stops[i].color.alpha); } if (self->stops[self->n_stops-1].offset < 1.0) cairo_pattern_add_color_stop_rgba (pattern, 1.0, self->stops[self->n_stops-1].color.red, self->stops[self->n_stops-1].color.green, self->stops[self->n_stops-1].color.blue, self->stops[self->n_stops-1].color.alpha); gsk_cairo_rectangle (cr, &node->bounds); cairo_translate (cr, self->center.x, self->center.y); cairo_set_source (cr, pattern); cairo_fill (cr); cairo_pattern_destroy (pattern); } static void gsk_radial_gradient_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskRadialGradientNode *self1 = (GskRadialGradientNode *) node1; GskRadialGradientNode *self2 = (GskRadialGradientNode *) node2; if (graphene_point_equal (&self1->center, &self2->center) && self1->hradius == self2->hradius && self1->vradius == self2->vradius && self1->start == self2->start && self1->end == self2->end && self1->n_stops == self2->n_stops) { gsize i; for (i = 0; i < self1->n_stops; i++) { GskColorStop *stop1 = &self1->stops[i]; GskColorStop *stop2 = &self2->stops[i]; if (stop1->offset == stop2->offset && gdk_rgba_equal (&stop1->color, &stop2->color)) continue; gsk_render_node_diff_impossible (node1, node2, data); return; } return; } gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_radial_gradient_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_RADIAL_GRADIENT_NODE; node_class->finalize = gsk_radial_gradient_node_finalize; node_class->draw = gsk_radial_gradient_node_draw; node_class->diff = gsk_radial_gradient_node_diff; } static void gsk_repeating_radial_gradient_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_REPEATING_RADIAL_GRADIENT_NODE; node_class->finalize = gsk_radial_gradient_node_finalize; node_class->draw = gsk_radial_gradient_node_draw; node_class->diff = gsk_radial_gradient_node_diff; } /** * gsk_radial_gradient_node_new: * @bounds: the bounds of the node * @center: the center of the gradient * @hradius: the horizontal radius * @vradius: the vertical radius * @start: a percentage >= 0 that defines the start of the gradient around @center * @end: a percentage >= 0 that defines the end of the gradient around @center * @color_stops: (array length=n_color_stops): a pointer to an array of * `GskColorStop` defining the gradient. The offsets of all color stops * must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a `GskRenderNode` that draws a radial gradient. * * The radial gradient * starts around @center. The size of the gradient is dictated by @hradius * in horizontal orientation and by @vradius in vertical orientation. * * Returns: (transfer full) (type GskRadialGradientNode): A new `GskRenderNode` */ GskRenderNode * gsk_radial_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *center, float hradius, float vradius, float start, float end, const GskColorStop *color_stops, gsize n_color_stops) { GskRadialGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (center != NULL, NULL); g_return_val_if_fail (hradius > 0., NULL); g_return_val_if_fail (vradius > 0., NULL); g_return_val_if_fail (start >= 0., NULL); g_return_val_if_fail (end >= 0., NULL); g_return_val_if_fail (end > start, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_RADIAL_GRADIENT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->center, center); self->hradius = hradius; self->vradius = vradius; self->start = start; self->end = end; self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_repeating_radial_gradient_node_new: * @bounds: the bounds of the node * @center: the center of the gradient * @hradius: the horizontal radius * @vradius: the vertical radius * @start: a percentage >= 0 that defines the start of the gradient around @center * @end: a percentage >= 0 that defines the end of the gradient around @center * @color_stops: (array length=n_color_stops): a pointer to an array of * `GskColorStop` defining the gradient. The offsets of all color stops * must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a `GskRenderNode` that draws a repeating radial gradient. * * The radial gradient starts around @center. The size of the gradient * is dictated by @hradius in horizontal orientation and by @vradius * in vertical orientation. * * Returns: (transfer full) (type GskRepeatingRadialGradientNode): A new `GskRenderNode` */ GskRenderNode * gsk_repeating_radial_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *center, float hradius, float vradius, float start, float end, const GskColorStop *color_stops, gsize n_color_stops) { GskRadialGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (center != NULL, NULL); g_return_val_if_fail (hradius > 0., NULL); g_return_val_if_fail (vradius > 0., NULL); g_return_val_if_fail (start >= 0., NULL); g_return_val_if_fail (end >= 0., NULL); g_return_val_if_fail (end > start, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_REPEATING_RADIAL_GRADIENT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->center, center); self->hradius = hradius; self->vradius = vradius; self->start = start; self->end = end; self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); return node; } /** * gsk_radial_gradient_node_get_n_color_stops: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * * Retrieves the number of color stops in the gradient. * * Returns: the number of color stops */ gsize gsk_radial_gradient_node_get_n_color_stops (const GskRenderNode *node) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; return self->n_stops; } /** * gsk_radial_gradient_node_get_color_stops: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * @n_stops: (out) (optional): the number of color stops in the returned array * * Retrieves the color stops in the gradient. * * Returns: (array length=n_stops): the color stops in the gradient */ const GskColorStop * gsk_radial_gradient_node_get_color_stops (const GskRenderNode *node, gsize *n_stops) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; if (n_stops != NULL) *n_stops = self->n_stops; return self->stops; } /** * gsk_radial_gradient_node_get_center: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * * Retrieves the center pointer for the gradient. * * Returns: the center point for the gradient */ const graphene_point_t * gsk_radial_gradient_node_get_center (const GskRenderNode *node) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; return &self->center; } /** * gsk_radial_gradient_node_get_hradius: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * * Retrieves the horizontal radius for the gradient. * * Returns: the horizontal radius for the gradient */ float gsk_radial_gradient_node_get_hradius (const GskRenderNode *node) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; return self->hradius; } /** * gsk_radial_gradient_node_get_vradius: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * * Retrieves the vertical radius for the gradient. * * Returns: the vertical radius for the gradient */ float gsk_radial_gradient_node_get_vradius (const GskRenderNode *node) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; return self->vradius; } /** * gsk_radial_gradient_node_get_start: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * * Retrieves the start value for the gradient. * * Returns: the start value for the gradient */ float gsk_radial_gradient_node_get_start (const GskRenderNode *node) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; return self->start; } /** * gsk_radial_gradient_node_get_end: * @node: (type GskRadialGradientNode): a `GskRenderNode` for a radial gradient * * Retrieves the end value for the gradient. * * Returns: the end value for the gradient */ float gsk_radial_gradient_node_get_end (const GskRenderNode *node) { const GskRadialGradientNode *self = (const GskRadialGradientNode *) node; return self->end; } /* }}} */ /* {{{ GSK_CONIC_GRADIENT_NODE */ /** * GskConicGradientNode: * * A render node for a conic gradient. */ struct _GskConicGradientNode { GskRenderNode render_node; graphene_point_t center; float rotation; float angle; gsize n_stops; GskColorStop *stops; }; static void gsk_conic_gradient_node_finalize (GskRenderNode *node) { GskConicGradientNode *self = (GskConicGradientNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CONIC_GRADIENT_NODE)); g_free (self->stops); parent_class->finalize (node); } #define DEG_TO_RAD(x) ((x) * (G_PI / 180.f)) static void _cairo_mesh_pattern_set_corner_rgba (cairo_pattern_t *pattern, guint corner_num, const GdkRGBA *rgba) { cairo_mesh_pattern_set_corner_color_rgba (pattern, corner_num, rgba->red, rgba->green, rgba->blue, rgba->alpha); } static void project (double angle, double radius, double *x_out, double *y_out) { double x, y; #ifdef HAVE_SINCOS sincos (angle, &y, &x); #else x = cos (angle); y = sin (angle); #endif *x_out = radius * x; *y_out = radius * y; } static void gsk_conic_gradient_node_add_patch (cairo_pattern_t *pattern, float radius, float start_angle, const GdkRGBA *start_color, float end_angle, const GdkRGBA *end_color) { double x, y; cairo_mesh_pattern_begin_patch (pattern); cairo_mesh_pattern_move_to (pattern, 0, 0); project (start_angle, radius, &x, &y); cairo_mesh_pattern_line_to (pattern, x, y); project (end_angle, radius, &x, &y); cairo_mesh_pattern_line_to (pattern, x, y); cairo_mesh_pattern_line_to (pattern, 0, 0); _cairo_mesh_pattern_set_corner_rgba (pattern, 0, start_color); _cairo_mesh_pattern_set_corner_rgba (pattern, 1, start_color); _cairo_mesh_pattern_set_corner_rgba (pattern, 2, end_color); _cairo_mesh_pattern_set_corner_rgba (pattern, 3, end_color); cairo_mesh_pattern_end_patch (pattern); } static void gdk_rgba_color_interpolate (GdkRGBA *dest, const GdkRGBA *src1, const GdkRGBA *src2, double progress) { double alpha = src1->alpha * (1.0 - progress) + src2->alpha * progress; dest->alpha = alpha; if (alpha == 0) { dest->red = src1->red * (1.0 - progress) + src2->red * progress; dest->green = src1->green * (1.0 - progress) + src2->green * progress; dest->blue = src1->blue * (1.0 - progress) + src2->blue * progress; } else { dest->red = (src1->red * src1->alpha * (1.0 - progress) + src2->red * src2->alpha * progress) / alpha; dest->green = (src1->green * src1->alpha * (1.0 - progress) + src2->green * src2->alpha * progress) / alpha; dest->blue = (src1->blue * src1->alpha * (1.0 - progress) + src2->blue * src2->alpha * progress) / alpha; } } static void gsk_conic_gradient_node_draw (GskRenderNode *node, cairo_t *cr) { GskConicGradientNode *self = (GskConicGradientNode *) node; cairo_pattern_t *pattern; graphene_point_t corner; float radius; gsize i; pattern = cairo_pattern_create_mesh (); graphene_rect_get_top_right (&node->bounds, &corner); radius = graphene_point_distance (&self->center, &corner, NULL, NULL); graphene_rect_get_bottom_right (&node->bounds, &corner); radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL)); graphene_rect_get_bottom_left (&node->bounds, &corner); radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL)); graphene_rect_get_top_left (&node->bounds, &corner); radius = MAX (radius, graphene_point_distance (&self->center, &corner, NULL, NULL)); for (i = 0; i <= self->n_stops; i++) { GskColorStop *stop1 = &self->stops[MAX (i, 1) - 1]; GskColorStop *stop2 = &self->stops[MIN (i, self->n_stops - 1)]; double offset1 = i > 0 ? stop1->offset : 0; double offset2 = i < self->n_stops ? stop2->offset : 1; double start_angle, end_angle; offset1 = offset1 * 360 + self->rotation - 90; offset2 = offset2 * 360 + self->rotation - 90; for (start_angle = offset1; start_angle < offset2; start_angle = end_angle) { GdkRGBA start_color, end_color; end_angle = (floor (start_angle / 45) + 1) * 45; end_angle = MIN (end_angle, offset2); gdk_rgba_color_interpolate (&start_color, &stop1->color, &stop2->color, (start_angle - offset1) / (offset2 - offset1)); gdk_rgba_color_interpolate (&end_color, &stop1->color, &stop2->color, (end_angle - offset1) / (offset2 - offset1)); gsk_conic_gradient_node_add_patch (pattern, radius, DEG_TO_RAD (start_angle), &start_color, DEG_TO_RAD (end_angle), &end_color); } } cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); gsk_cairo_rectangle (cr, &node->bounds); cairo_translate (cr, self->center.x, self->center.y); cairo_set_source (cr, pattern); cairo_fill (cr); cairo_pattern_destroy (pattern); } static void gsk_conic_gradient_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskConicGradientNode *self1 = (GskConicGradientNode *) node1; GskConicGradientNode *self2 = (GskConicGradientNode *) node2; gsize i; if (!graphene_point_equal (&self1->center, &self2->center) || self1->rotation != self2->rotation || self1->n_stops != self2->n_stops) { gsk_render_node_diff_impossible (node1, node2, data); return; } for (i = 0; i < self1->n_stops; i++) { GskColorStop *stop1 = &self1->stops[i]; GskColorStop *stop2 = &self2->stops[i]; if (stop1->offset != stop2->offset || !gdk_rgba_equal (&stop1->color, &stop2->color)) { gsk_render_node_diff_impossible (node1, node2, data); return; } } } static void gsk_conic_gradient_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_CONIC_GRADIENT_NODE; node_class->finalize = gsk_conic_gradient_node_finalize; node_class->draw = gsk_conic_gradient_node_draw; node_class->diff = gsk_conic_gradient_node_diff; } /** * gsk_conic_gradient_node_new: * @bounds: the bounds of the node * @center: the center of the gradient * @rotation: the rotation of the gradient in degrees * @color_stops: (array length=n_color_stops): a pointer to an array of * `GskColorStop` defining the gradient. The offsets of all color stops * must be increasing. The first stop's offset must be >= 0 and the last * stop's offset must be <= 1. * @n_color_stops: the number of elements in @color_stops * * Creates a `GskRenderNode` that draws a conic gradient. * * The conic gradient * starts around @center in the direction of @rotation. A rotation of 0 means * that the gradient points up. Color stops are then added clockwise. * * Returns: (transfer full) (type GskConicGradientNode): A new `GskRenderNode` */ GskRenderNode * gsk_conic_gradient_node_new (const graphene_rect_t *bounds, const graphene_point_t *center, float rotation, const GskColorStop *color_stops, gsize n_color_stops) { GskConicGradientNode *self; GskRenderNode *node; gsize i; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (center != NULL, NULL); g_return_val_if_fail (color_stops != NULL, NULL); g_return_val_if_fail (n_color_stops >= 2, NULL); g_return_val_if_fail (color_stops[0].offset >= 0, NULL); for (i = 1; i < n_color_stops; i++) g_return_val_if_fail (color_stops[i].offset >= color_stops[i - 1].offset, NULL); g_return_val_if_fail (color_stops[n_color_stops - 1].offset <= 1, NULL); self = gsk_render_node_alloc (GSK_CONIC_GRADIENT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; graphene_rect_init_from_rect (&node->bounds, bounds); graphene_point_init_from_point (&self->center, center); self->rotation = rotation; self->n_stops = n_color_stops; self->stops = g_malloc_n (n_color_stops, sizeof (GskColorStop)); memcpy (self->stops, color_stops, n_color_stops * sizeof (GskColorStop)); self->angle = 90.f - self->rotation; self->angle = G_PI * self->angle / 180.f; self->angle = fmodf (self->angle, 2.f * G_PI); if (self->angle < 0.f) self->angle += 2.f * G_PI; return node; } /** * gsk_conic_gradient_node_get_n_color_stops: * @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient * * Retrieves the number of color stops in the gradient. * * Returns: the number of color stops */ gsize gsk_conic_gradient_node_get_n_color_stops (const GskRenderNode *node) { const GskConicGradientNode *self = (const GskConicGradientNode *) node; return self->n_stops; } /** * gsk_conic_gradient_node_get_color_stops: * @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient * @n_stops: (out) (optional): the number of color stops in the returned array * * Retrieves the color stops in the gradient. * * Returns: (array length=n_stops): the color stops in the gradient */ const GskColorStop * gsk_conic_gradient_node_get_color_stops (const GskRenderNode *node, gsize *n_stops) { const GskConicGradientNode *self = (const GskConicGradientNode *) node; if (n_stops != NULL) *n_stops = self->n_stops; return self->stops; } /** * gsk_conic_gradient_node_get_center: * @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient * * Retrieves the center pointer for the gradient. * * Returns: the center point for the gradient */ const graphene_point_t * gsk_conic_gradient_node_get_center (const GskRenderNode *node) { const GskConicGradientNode *self = (const GskConicGradientNode *) node; return &self->center; } /** * gsk_conic_gradient_node_get_rotation: * @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient * * Retrieves the rotation for the gradient in degrees. * * Returns: the rotation for the gradient */ float gsk_conic_gradient_node_get_rotation (const GskRenderNode *node) { const GskConicGradientNode *self = (const GskConicGradientNode *) node; return self->rotation; } /** * gsk_conic_gradient_node_get_angle: * @node: (type GskConicGradientNode): a `GskRenderNode` for a conic gradient * * Retrieves the angle for the gradient in radians, normalized in [0, 2 * PI]. * * The angle is starting at the top and going clockwise, as expressed * in the css specification: * * angle = 90 - gsk_conic_gradient_node_get_rotation() * * Returns: the angle for the gradient * * Since: 4.2 */ float gsk_conic_gradient_node_get_angle (const GskRenderNode *node) { const GskConicGradientNode *self = (const GskConicGradientNode *) node; return self->angle; } /* }}} */ /* {{{ GSK_BORDER_NODE */ /** * GskBorderNode: * * A render node for a border. */ struct _GskBorderNode { GskRenderNode render_node; bool uniform_width: 1; bool uniform_color: 1; GskRoundedRect outline; float border_width[4]; GdkRGBA border_color[4]; }; static void gsk_border_node_mesh_add_patch (cairo_pattern_t *pattern, const GdkRGBA *color, double x0, double y0, double x1, double y1, double x2, double y2, double x3, double y3) { cairo_mesh_pattern_begin_patch (pattern); cairo_mesh_pattern_move_to (pattern, x0, y0); cairo_mesh_pattern_line_to (pattern, x1, y1); cairo_mesh_pattern_line_to (pattern, x2, y2); cairo_mesh_pattern_line_to (pattern, x3, y3); cairo_mesh_pattern_set_corner_color_rgba (pattern, 0, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_set_corner_color_rgba (pattern, 1, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_set_corner_color_rgba (pattern, 2, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_set_corner_color_rgba (pattern, 3, color->red, color->green, color->blue, color->alpha); cairo_mesh_pattern_end_patch (pattern); } static void gsk_border_node_draw (GskRenderNode *node, cairo_t *cr) { GskBorderNode *self = (GskBorderNode *) node; GskRoundedRect inside; cairo_save (cr); gsk_rounded_rect_init_copy (&inside, &self->outline); gsk_rounded_rect_shrink (&inside, self->border_width[0], self->border_width[1], self->border_width[2], self->border_width[3]); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (&self->outline, cr); gsk_rounded_rect_path (&inside, cr); if (gdk_rgba_equal (&self->border_color[0], &self->border_color[1]) && gdk_rgba_equal (&self->border_color[0], &self->border_color[2]) && gdk_rgba_equal (&self->border_color[0], &self->border_color[3])) { gdk_cairo_set_source_rgba (cr, &self->border_color[0]); } else { const graphene_rect_t *bounds = &self->outline.bounds; /* distance to center "line": * +-------------------------+ * | | * | | * | ---this-line--- | * | | * | | * +-------------------------+ * That line is equidistant from all sides. It's either horizontal * or vertical, depending on if the rect is wider or taller. * We use the 4 sides spanned up by connecting the line to the corner * points to color the regions of the rectangle differently. * Note that the call to cairo_fill() will add the potential final * segment by closing the path, so we don't have to care. */ cairo_pattern_t *mesh; cairo_matrix_t mat; graphene_point_t tl, br; float scale; mesh = cairo_pattern_create_mesh (); cairo_matrix_init_translate (&mat, -bounds->origin.x, -bounds->origin.y); cairo_pattern_set_matrix (mesh, &mat); scale = MIN (bounds->size.width / (self->border_width[1] + self->border_width[3]), bounds->size.height / (self->border_width[0] + self->border_width[2])); graphene_point_init (&tl, self->border_width[3] * scale, self->border_width[0] * scale); graphene_point_init (&br, bounds->size.width - self->border_width[1] * scale, bounds->size.height - self->border_width[2] * scale); /* Top */ if (self->border_width[0] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[0], 0, 0, tl.x, tl.y, br.x, tl.y, bounds->size.width, 0); } /* Right */ if (self->border_width[1] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[1], bounds->size.width, 0, br.x, tl.y, br.x, br.y, bounds->size.width, bounds->size.height); } /* Bottom */ if (self->border_width[2] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[2], 0, bounds->size.height, tl.x, br.y, br.x, br.y, bounds->size.width, bounds->size.height); } /* Left */ if (self->border_width[3] > 0) { gsk_border_node_mesh_add_patch (mesh, &self->border_color[3], 0, 0, tl.x, tl.y, tl.x, br.y, 0, bounds->size.height); } cairo_set_source (cr, mesh); cairo_pattern_destroy (mesh); } cairo_fill (cr); cairo_restore (cr); } static void gsk_border_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskBorderNode *self1 = (GskBorderNode *) node1; GskBorderNode *self2 = (GskBorderNode *) node2; gboolean uniform1 = self1->uniform_width && self1->uniform_color; gboolean uniform2 = self2->uniform_width && self2->uniform_color; if (uniform1 && uniform2 && self1->border_width[0] == self2->border_width[0] && gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->border_color[0], &self2->border_color[0])) return; /* Different uniformity -> diff impossible */ if (uniform1 ^ uniform2) { gsk_render_node_diff_impossible (node1, node2, data); return; } if (self1->border_width[0] == self2->border_width[0] && self1->border_width[1] == self2->border_width[1] && self1->border_width[2] == self2->border_width[2] && self1->border_width[3] == self2->border_width[3] && gdk_rgba_equal (&self1->border_color[0], &self2->border_color[0]) && gdk_rgba_equal (&self1->border_color[1], &self2->border_color[1]) && gdk_rgba_equal (&self1->border_color[2], &self2->border_color[2]) && gdk_rgba_equal (&self1->border_color[3], &self2->border_color[3]) && gsk_rounded_rect_equal (&self1->outline, &self2->outline)) return; gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_border_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_BORDER_NODE; node_class->draw = gsk_border_node_draw; node_class->diff = gsk_border_node_diff; } /** * gsk_border_node_get_outline: * @node: (type GskBorderNode): a `GskRenderNode` for a border * * Retrieves the outline of the border. * * Returns: the outline of the border */ const GskRoundedRect * gsk_border_node_get_outline (const GskRenderNode *node) { const GskBorderNode *self = (const GskBorderNode *) node; return &self->outline; } /** * gsk_border_node_get_widths: * @node: (type GskBorderNode): a `GskRenderNode` for a border * * Retrieves the stroke widths of the border. * * Returns: (transfer none) (array fixed-size=4): an array of 4 floats * for the top, right, bottom and left stroke width of the border, * respectively */ const float * gsk_border_node_get_widths (const GskRenderNode *node) { const GskBorderNode *self = (const GskBorderNode *) node; return self->border_width; } /** * gsk_border_node_get_colors: * @node: (type GskBorderNode): a `GskRenderNode` for a border * * Retrieves the colors of the border. * * Returns: (transfer none): an array of 4 `GdkRGBA` structs * for the top, right, bottom and left color of the border */ const GdkRGBA * gsk_border_node_get_colors (const GskRenderNode *node) { const GskBorderNode *self = (const GskBorderNode *) node; return self->border_color; } /** * gsk_border_node_new: * @outline: a `GskRoundedRect` describing the outline of the border * @border_width: (array fixed-size=4): the stroke width of the border on * the top, right, bottom and left side respectively. * @border_color: (array fixed-size=4): the color used on the top, right, * bottom and left side. * * Creates a `GskRenderNode` that will stroke a border rectangle inside the * given @outline. * * The 4 sides of the border can have different widths and colors. * * Returns: (transfer full) (type GskBorderNode): A new `GskRenderNode` */ GskRenderNode * gsk_border_node_new (const GskRoundedRect *outline, const float border_width[4], const GdkRGBA border_color[4]) { GskBorderNode *self; GskRenderNode *node; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (border_width != NULL, NULL); g_return_val_if_fail (border_color != NULL, NULL); self = gsk_render_node_alloc (GSK_BORDER_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; gsk_rounded_rect_init_copy (&self->outline, outline); memcpy (self->border_width, border_width, sizeof (self->border_width)); memcpy (self->border_color, border_color, sizeof (self->border_color)); if (border_width[0] == border_width[1] && border_width[0] == border_width[2] && border_width[0] == border_width[3]) self->uniform_width = TRUE; else self->uniform_width = FALSE; if (gdk_rgba_equal (&border_color[0], &border_color[1]) && gdk_rgba_equal (&border_color[0], &border_color[2]) && gdk_rgba_equal (&border_color[0], &border_color[3])) self->uniform_color = TRUE; else self->uniform_color = FALSE; graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds); return node; } /* Private */ bool gsk_border_node_get_uniform (const GskRenderNode *self) { const GskBorderNode *node = (const GskBorderNode *)self; return node->uniform_width && node->uniform_color; } bool gsk_border_node_get_uniform_color (const GskRenderNode *self) { const GskBorderNode *node = (const GskBorderNode *)self; return node->uniform_color; } /* }}} */ /* {{{ GSK_TEXTURE_NODE */ /** * GskTextureNode: * * A render node for a `GdkTexture`. */ struct _GskTextureNode { GskRenderNode render_node; GdkTexture *texture; }; static void gsk_texture_node_finalize (GskRenderNode *node) { GskTextureNode *self = (GskTextureNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXTURE_NODE)); g_clear_object (&self->texture); parent_class->finalize (node); } static void gsk_texture_node_draw (GskRenderNode *node, cairo_t *cr) { GskTextureNode *self = (GskTextureNode *) node; cairo_surface_t *surface; cairo_pattern_t *pattern; cairo_matrix_t matrix; surface = gdk_texture_download_surface (self->texture); pattern = cairo_pattern_create_for_surface (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); cairo_matrix_init_scale (&matrix, gdk_texture_get_width (self->texture) / node->bounds.size.width, gdk_texture_get_height (self->texture) / node->bounds.size.height); cairo_matrix_translate (&matrix, -node->bounds.origin.x, -node->bounds.origin.y); cairo_pattern_set_matrix (pattern, &matrix); cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); cairo_surface_destroy (surface); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_texture_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskTextureNode *self1 = (GskTextureNode *) node1; GskTextureNode *self2 = (GskTextureNode *) node2; cairo_region_t *sub; if (!gsk_rect_equal (&node1->bounds, &node2->bounds) || gdk_texture_get_width (self1->texture) != gdk_texture_get_width (self2->texture) || gdk_texture_get_height (self1->texture) != gdk_texture_get_height (self2->texture)) { gsk_render_node_diff_impossible (node1, node2, data); return; } if (self1->texture == self2->texture) return; sub = cairo_region_create (); gdk_texture_diff (self1->texture, self2->texture, sub); region_union_region_affine (data->region, sub, node1->bounds.size.width / gdk_texture_get_width (self1->texture), node1->bounds.size.height / gdk_texture_get_height (self1->texture), node1->bounds.origin.x, node1->bounds.origin.y); cairo_region_destroy (sub); } static void gsk_texture_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_TEXTURE_NODE; node_class->finalize = gsk_texture_node_finalize; node_class->draw = gsk_texture_node_draw; node_class->diff = gsk_texture_node_diff; } /** * gsk_texture_node_get_texture: * @node: (type GskTextureNode): a `GskRenderNode` of type %GSK_TEXTURE_NODE * * Retrieves the `GdkTexture` used when creating this `GskRenderNode`. * * Returns: (transfer none): the `GdkTexture` */ GdkTexture * gsk_texture_node_get_texture (const GskRenderNode *node) { const GskTextureNode *self = (const GskTextureNode *) node; return self->texture; } /** * gsk_texture_node_new: * @texture: the `GdkTexture` * @bounds: the rectangle to render the texture into * * Creates a `GskRenderNode` that will render the given * @texture into the area given by @bounds. * * Note that GSK applies linear filtering when textures are * scaled and transformed. See [class@Gsk.TextureScaleNode] * for a way to influence filtering. * * Returns: (transfer full) (type GskTextureNode): A new `GskRenderNode` */ GskRenderNode * gsk_texture_node_new (GdkTexture *texture, const graphene_rect_t *bounds) { GskTextureNode *self; GskRenderNode *node; g_return_val_if_fail (GDK_IS_TEXTURE (texture), NULL); g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_TEXTURE_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; self->texture = g_object_ref (texture); graphene_rect_init_from_rect (&node->bounds, bounds); node->preferred_depth = gdk_memory_format_get_depth (gdk_texture_get_format (texture)); return node; } /* }}} */ /* {{{ GSK_TEXTURE_SCALE_NODE */ /** * GskTextureScaleNode: * * A render node for a `GdkTexture`. * * Since: 4.10 */ struct _GskTextureScaleNode { GskRenderNode render_node; GdkTexture *texture; GskScalingFilter filter; }; static void gsk_texture_scale_node_finalize (GskRenderNode *node) { GskTextureScaleNode *self = (GskTextureScaleNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXTURE_SCALE_NODE)); g_clear_object (&self->texture); parent_class->finalize (node); } static void gsk_texture_scale_node_draw (GskRenderNode *node, cairo_t *cr) { GskTextureScaleNode *self = (GskTextureScaleNode *) node; cairo_surface_t *surface; cairo_pattern_t *pattern; cairo_matrix_t matrix; cairo_filter_t filters[] = { CAIRO_FILTER_BILINEAR, CAIRO_FILTER_NEAREST, CAIRO_FILTER_GOOD, }; cairo_t *cr2; cairo_surface_t *surface2; graphene_rect_t clip_rect; /* Make sure we draw the minimum region by using the clip */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); _graphene_rect_init_from_clip_extents (&clip_rect, cr); if (clip_rect.size.width <= 0 || clip_rect.size.height <= 0) return; surface2 = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, (int) ceilf (clip_rect.size.width), (int) ceilf (clip_rect.size.height)); cairo_surface_set_device_offset (surface2, -clip_rect.origin.x, -clip_rect.origin.y); cr2 = cairo_create (surface2); surface = gdk_texture_download_surface (self->texture); pattern = cairo_pattern_create_for_surface (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_PAD); cairo_matrix_init_scale (&matrix, gdk_texture_get_width (self->texture) / node->bounds.size.width, gdk_texture_get_height (self->texture) / node->bounds.size.height); cairo_matrix_translate (&matrix, -node->bounds.origin.x, -node->bounds.origin.y); cairo_pattern_set_matrix (pattern, &matrix); cairo_pattern_set_filter (pattern, filters[self->filter]); cairo_set_source (cr2, pattern); cairo_pattern_destroy (pattern); cairo_surface_destroy (surface); gsk_cairo_rectangle (cr2, &node->bounds); cairo_fill (cr2); cairo_destroy (cr2); cairo_save (cr); cairo_set_source_surface (cr, surface2, 0, 0); cairo_pattern_set_extend (cairo_get_source (cr), CAIRO_EXTEND_PAD); cairo_surface_destroy (surface2); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); cairo_restore (cr); } static void gsk_texture_scale_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskTextureScaleNode *self1 = (GskTextureScaleNode *) node1; GskTextureScaleNode *self2 = (GskTextureScaleNode *) node2; cairo_region_t *sub; if (!gsk_rect_equal (&node1->bounds, &node2->bounds) || self1->filter != self2->filter || gdk_texture_get_width (self1->texture) != gdk_texture_get_width (self2->texture) || gdk_texture_get_height (self1->texture) != gdk_texture_get_height (self2->texture)) { gsk_render_node_diff_impossible (node1, node2, data); return; } if (self1->texture == self2->texture) return; sub = cairo_region_create (); gdk_texture_diff (self1->texture, self2->texture, sub); region_union_region_affine (data->region, sub, node1->bounds.size.width / gdk_texture_get_width (self1->texture), node1->bounds.size.height / gdk_texture_get_height (self1->texture), node1->bounds.origin.x, node1->bounds.origin.y); cairo_region_destroy (sub); } static void gsk_texture_scale_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_TEXTURE_SCALE_NODE; node_class->finalize = gsk_texture_scale_node_finalize; node_class->draw = gsk_texture_scale_node_draw; node_class->diff = gsk_texture_scale_node_diff; } /** * gsk_texture_scale_node_get_texture: * @node: (type GskTextureScaleNode): a `GskRenderNode` of type %GSK_TEXTURE_SCALE_NODE * * Retrieves the `GdkTexture` used when creating this `GskRenderNode`. * * Returns: (transfer none): the `GdkTexture` * * Since: 4.10 */ GdkTexture * gsk_texture_scale_node_get_texture (const GskRenderNode *node) { const GskTextureScaleNode *self = (const GskTextureScaleNode *) node; return self->texture; } /** * gsk_texture_scale_node_get_filter: * @node: (type GskTextureScaleNode): a `GskRenderNode` of type %GSK_TEXTURE_SCALE_NODE * * Retrieves the `GskScalingFilter` used when creating this `GskRenderNode`. * * Returns: (transfer none): the `GskScalingFilter` * * Since: 4.10 */ GskScalingFilter gsk_texture_scale_node_get_filter (const GskRenderNode *node) { const GskTextureScaleNode *self = (const GskTextureScaleNode *) node; return self->filter; } /** * gsk_texture_scale_node_new: * @texture: the texture to scale * @bounds: the size of the texture to scale to * @filter: how to scale the texture * * Creates a node that scales the texture to the size given by the * bounds using the filter and then places it at the bounds' position. * * Note that further scaling and other transformations which are * applied to the node will apply linear filtering to the resulting * texture, as usual. * * This node is intended for tight control over scaling applied * to a texture, such as in image editors and requires the * application to be aware of the whole render tree as further * transforms may be applied that conflict with the desired effect * of this node. * * Returns: (transfer full) (type GskTextureScaleNode): A new `GskRenderNode` * * Since: 4.10 */ GskRenderNode * gsk_texture_scale_node_new (GdkTexture *texture, const graphene_rect_t *bounds, GskScalingFilter filter) { GskTextureScaleNode *self; GskRenderNode *node; g_return_val_if_fail (GDK_IS_TEXTURE (texture), NULL); g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_TEXTURE_SCALE_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; self->texture = g_object_ref (texture); graphene_rect_init_from_rect (&node->bounds, bounds); self->filter = filter; node->preferred_depth = gdk_memory_format_get_depth (gdk_texture_get_format (texture)); return node; } /* }}} */ /* {{{ GSK_INSET_SHADOW_NODE */ /** * GskInsetShadowNode: * * A render node for an inset shadow. */ struct _GskInsetShadowNode { GskRenderNode render_node; GskRoundedRect outline; GdkRGBA color; float dx; float dy; float spread; float blur_radius; }; static gboolean has_empty_clip (cairo_t *cr) { double x1, y1, x2, y2; cairo_clip_extents (cr, &x1, &y1, &x2, &y2); return x1 == x2 && y1 == y2; } static void draw_shadow (cairo_t *cr, gboolean inset, const GskRoundedRect *box, const GskRoundedRect *clip_box, float radius, const GdkRGBA *color, GskBlurFlags blur_flags) { cairo_t *shadow_cr; if (has_empty_clip (cr)) return; gdk_cairo_set_source_rgba (cr, color); shadow_cr = gsk_cairo_blur_start_drawing (cr, radius, blur_flags); cairo_set_fill_rule (shadow_cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (box, shadow_cr); if (inset) gsk_cairo_rectangle (shadow_cr, &clip_box->bounds); cairo_fill (shadow_cr); gsk_cairo_blur_finish_drawing (shadow_cr, radius, color, blur_flags); } typedef struct { float radius; graphene_size_t corner; } CornerMask; typedef enum { TOP, RIGHT, BOTTOM, LEFT } Side; static guint corner_mask_hash (CornerMask *mask) { return ((guint)mask->radius << 24) ^ ((guint)(mask->corner.width*4)) << 12 ^ ((guint)(mask->corner.height*4)) << 0; } static gboolean corner_mask_equal (CornerMask *mask1, CornerMask *mask2) { return mask1->radius == mask2->radius && mask1->corner.width == mask2->corner.width && mask1->corner.height == mask2->corner.height; } static void draw_shadow_corner (cairo_t *cr, gboolean inset, const GskRoundedRect *box, const GskRoundedRect *clip_box, float radius, const GdkRGBA *color, GskCorner corner, cairo_rectangle_int_t *drawn_rect) { float clip_radius; int x1, x2, x3, y1, y2, y3, x, y; GskRoundedRect corner_box; cairo_t *mask_cr; cairo_surface_t *mask; cairo_pattern_t *pattern; cairo_matrix_t matrix; float sx, sy; static GHashTable *corner_mask_cache = NULL; float max_other; CornerMask key; gboolean overlapped; clip_radius = gsk_cairo_blur_compute_pixels (radius); overlapped = FALSE; if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_BOTTOM_LEFT) { x1 = floor (box->bounds.origin.x - clip_radius); x2 = ceil (box->bounds.origin.x + box->corner[corner].width + clip_radius); x = x1; sx = 1; max_other = MAX(box->corner[GSK_CORNER_TOP_RIGHT].width, box->corner[GSK_CORNER_BOTTOM_RIGHT].width); x3 = floor (box->bounds.origin.x + box->bounds.size.width - max_other - clip_radius); if (x2 > x3) overlapped = TRUE; } else { x1 = floor (box->bounds.origin.x + box->bounds.size.width - box->corner[corner].width - clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); x = x2; sx = -1; max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].width, box->corner[GSK_CORNER_BOTTOM_LEFT].width); x3 = ceil (box->bounds.origin.x + max_other + clip_radius); if (x3 > x1) overlapped = TRUE; } if (corner == GSK_CORNER_TOP_LEFT || corner == GSK_CORNER_TOP_RIGHT) { y1 = floor (box->bounds.origin.y - clip_radius); y2 = ceil (box->bounds.origin.y + box->corner[corner].height + clip_radius); y = y1; sy = 1; max_other = MAX(box->corner[GSK_CORNER_BOTTOM_LEFT].height, box->corner[GSK_CORNER_BOTTOM_RIGHT].height); y3 = floor (box->bounds.origin.y + box->bounds.size.height - max_other - clip_radius); if (y2 > y3) overlapped = TRUE; } else { y1 = floor (box->bounds.origin.y + box->bounds.size.height - box->corner[corner].height - clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); y = y2; sy = -1; max_other = MAX(box->corner[GSK_CORNER_TOP_LEFT].height, box->corner[GSK_CORNER_TOP_RIGHT].height); y3 = ceil (box->bounds.origin.y + max_other + clip_radius); if (y3 > y1) overlapped = TRUE; } drawn_rect->x = x1; drawn_rect->y = y1; drawn_rect->width = x2 - x1; drawn_rect->height = y2 - y1; cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1); cairo_clip (cr); if (inset || overlapped) { /* Fall back to generic path if inset or if the corner radius runs into each other */ draw_shadow (cr, inset, box, clip_box, radius, color, GSK_BLUR_X | GSK_BLUR_Y); return; } if (has_empty_clip (cr)) return; /* At this point we're drawing a blurred outset corner. The only * things that affect the output of the blurred mask in this case * is: * * What corner this is, which defines the orientation (sx,sy) * and position (x,y) * * The blur radius (which also defines the clip_radius) * * The horizontal and vertical corner radius * * We apply the first position and orientation when drawing the * mask, so we cache rendered masks based on the blur radius and the * corner radius. */ if (corner_mask_cache == NULL) corner_mask_cache = g_hash_table_new_full ((GHashFunc)corner_mask_hash, (GEqualFunc)corner_mask_equal, g_free, (GDestroyNotify)cairo_surface_destroy); key.radius = radius; key.corner = box->corner[corner]; mask = g_hash_table_lookup (corner_mask_cache, &key); if (mask == NULL) { mask = cairo_surface_create_similar_image (cairo_get_target (cr), CAIRO_FORMAT_A8, drawn_rect->width + clip_radius, drawn_rect->height + clip_radius); mask_cr = cairo_create (mask); gsk_rounded_rect_init_from_rect (&corner_box, &GRAPHENE_RECT_INIT (clip_radius, clip_radius, 2*drawn_rect->width, 2*drawn_rect->height), 0); corner_box.corner[0] = box->corner[corner]; gsk_rounded_rect_path (&corner_box, mask_cr); cairo_fill (mask_cr); gsk_cairo_blur_surface (mask, radius, GSK_BLUR_X | GSK_BLUR_Y); cairo_destroy (mask_cr); g_hash_table_insert (corner_mask_cache, g_memdup2 (&key, sizeof (key)), mask); } gdk_cairo_set_source_rgba (cr, color); pattern = cairo_pattern_create_for_surface (mask); cairo_matrix_init_identity (&matrix); cairo_matrix_scale (&matrix, sx, sy); cairo_matrix_translate (&matrix, -x, -y); cairo_pattern_set_matrix (pattern, &matrix); cairo_mask (cr, pattern); cairo_pattern_destroy (pattern); } static void draw_shadow_side (cairo_t *cr, gboolean inset, const GskRoundedRect *box, const GskRoundedRect *clip_box, float radius, const GdkRGBA *color, Side side, cairo_rectangle_int_t *drawn_rect) { GskBlurFlags blur_flags = GSK_BLUR_REPEAT; double clip_radius; int x1, x2, y1, y2; clip_radius = gsk_cairo_blur_compute_pixels (radius); if (side == TOP || side == BOTTOM) { blur_flags |= GSK_BLUR_Y; x1 = floor (box->bounds.origin.x - clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); } else if (side == LEFT) { x1 = floor (box->bounds.origin.x -clip_radius); x2 = ceil (box->bounds.origin.x + clip_radius); } else { x1 = floor (box->bounds.origin.x + box->bounds.size.width -clip_radius); x2 = ceil (box->bounds.origin.x + box->bounds.size.width + clip_radius); } if (side == LEFT || side == RIGHT) { blur_flags |= GSK_BLUR_X; y1 = floor (box->bounds.origin.y - clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); } else if (side == TOP) { y1 = floor (box->bounds.origin.y -clip_radius); y2 = ceil (box->bounds.origin.y + clip_radius); } else { y1 = floor (box->bounds.origin.y + box->bounds.size.height -clip_radius); y2 = ceil (box->bounds.origin.y + box->bounds.size.height + clip_radius); } drawn_rect->x = x1; drawn_rect->y = y1; drawn_rect->width = x2 - x1; drawn_rect->height = y2 - y1; cairo_rectangle (cr, x1, y1, x2 - x1, y2 - y1); cairo_clip (cr); draw_shadow (cr, inset, box, clip_box, radius, color, blur_flags); } static gboolean needs_blur (double radius) { /* The code doesn't actually do any blurring for radius 1, as it * ends up with box filter size 1 */ if (radius <= 1.0) return FALSE; return TRUE; } static void gsk_inset_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskInsetShadowNode *self = (GskInsetShadowNode *) node; GskRoundedRect box, clip_box; int clip_radius; graphene_rect_t clip_rect; double blur_radius; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&self->color)) return; _graphene_rect_init_from_clip_extents (&clip_rect, cr); if (!gsk_rounded_rect_intersects_rect (&self->outline, &clip_rect)) return; blur_radius = self->blur_radius / 2; clip_radius = gsk_cairo_blur_compute_pixels (blur_radius); cairo_save (cr); gsk_rounded_rect_path (&self->outline, cr); cairo_clip (cr); gsk_rounded_rect_init_copy (&box, &self->outline); gsk_rounded_rect_offset (&box, self->dx, self->dy); gsk_rounded_rect_shrink (&box, self->spread, self->spread, self->spread, self->spread); gsk_rounded_rect_init_copy (&clip_box, &self->outline); gsk_rounded_rect_shrink (&clip_box, -clip_radius, -clip_radius, -clip_radius, -clip_radius); if (!needs_blur (blur_radius)) draw_shadow (cr, TRUE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE); else { cairo_region_t *remaining; cairo_rectangle_int_t r; int i; /* For the blurred case we divide the rendering into 9 parts, * 4 of the corners, 4 for the horizonat/vertical lines and * one for the interior. We make the non-interior parts * large enough to fit the full radius of the blur, so that * the interior part can be drawn solidly. */ /* In the inset case we want to paint the whole clip-box. * We could remove the part of "box" where the blur doesn't * reach, but computing that is a bit tricky since the * rounded corners are on the "inside" of it. */ rectangle_init_from_graphene (&r, &clip_box.bounds); remaining = cairo_region_create_rectangle (&r); /* First do the corners of box */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_corner (cr, TRUE, &box, &clip_box, blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the sides */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_side (cr, TRUE, &box, &clip_box, blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the rest, which needs no blurring */ cairo_save (cr); gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow (cr, TRUE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE); cairo_restore (cr); cairo_region_destroy (remaining); } cairo_restore (cr); } static void gsk_inset_shadow_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskInsetShadowNode *self1 = (GskInsetShadowNode *) node1; GskInsetShadowNode *self2 = (GskInsetShadowNode *) node2; if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->color, &self2->color) && self1->dx == self2->dx && self1->dy == self2->dy && self1->spread == self2->spread && self1->blur_radius == self2->blur_radius) return; gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_inset_shadow_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_INSET_SHADOW_NODE; node_class->draw = gsk_inset_shadow_node_draw; node_class->diff = gsk_inset_shadow_node_diff; } /** * gsk_inset_shadow_node_new: * @outline: outline of the region containing the shadow * @color: color of the shadow * @dx: horizontal offset of shadow * @dy: vertical offset of shadow * @spread: how far the shadow spreads towards the inside * @blur_radius: how much blur to apply to the shadow * * Creates a `GskRenderNode` that will render an inset shadow * into the box given by @outline. * * Returns: (transfer full) (type GskInsetShadowNode): A new `GskRenderNode` */ GskRenderNode * gsk_inset_shadow_node_new (const GskRoundedRect *outline, const GdkRGBA *color, float dx, float dy, float spread, float blur_radius) { GskInsetShadowNode *self; GskRenderNode *node; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (color != NULL, NULL); g_return_val_if_fail (blur_radius >= 0, NULL); self = gsk_render_node_alloc (GSK_INSET_SHADOW_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; gsk_rounded_rect_init_copy (&self->outline, outline); self->color = *color; self->dx = dx; self->dy = dy; self->spread = spread; self->blur_radius = blur_radius; graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds); return node; } /** * gsk_inset_shadow_node_get_outline: * @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow * * Retrieves the outline rectangle of the inset shadow. * * Returns: (transfer none): a rounded rectangle */ const GskRoundedRect * gsk_inset_shadow_node_get_outline (const GskRenderNode *node) { const GskInsetShadowNode *self = (const GskInsetShadowNode *) node; return &self->outline; } /** * gsk_inset_shadow_node_get_color: * @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow * * Retrieves the color of the inset shadow. * * Returns: (transfer none): the color of the shadow */ const GdkRGBA * gsk_inset_shadow_node_get_color (const GskRenderNode *node) { const GskInsetShadowNode *self = (const GskInsetShadowNode *) node; return &self->color; } /** * gsk_inset_shadow_node_get_dx: * @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow * * Retrieves the horizontal offset of the inset shadow. * * Returns: an offset, in pixels */ float gsk_inset_shadow_node_get_dx (const GskRenderNode *node) { const GskInsetShadowNode *self = (const GskInsetShadowNode *) node; return self->dx; } /** * gsk_inset_shadow_node_get_dy: * @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow * * Retrieves the vertical offset of the inset shadow. * * Returns: an offset, in pixels */ float gsk_inset_shadow_node_get_dy (const GskRenderNode *node) { const GskInsetShadowNode *self = (const GskInsetShadowNode *) node; return self->dy; } /** * gsk_inset_shadow_node_get_spread: * @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow * * Retrieves how much the shadow spreads inwards. * * Returns: the size of the shadow, in pixels */ float gsk_inset_shadow_node_get_spread (const GskRenderNode *node) { const GskInsetShadowNode *self = (const GskInsetShadowNode *) node; return self->spread; } /** * gsk_inset_shadow_node_get_blur_radius: * @node: (type GskInsetShadowNode): a `GskRenderNode` for an inset shadow * * Retrieves the blur radius to apply to the shadow. * * Returns: the blur radius, in pixels */ float gsk_inset_shadow_node_get_blur_radius (const GskRenderNode *node) { const GskInsetShadowNode *self = (const GskInsetShadowNode *) node; return self->blur_radius; } /* }}} */ /* {{{ GSK_OUTSET_SHADOW_NODE */ /** * GskOutsetShadowNode: * * A render node for an outset shadow. */ struct _GskOutsetShadowNode { GskRenderNode render_node; GskRoundedRect outline; GdkRGBA color; float dx; float dy; float spread; float blur_radius; }; static void gsk_outset_shadow_get_extents (GskOutsetShadowNode *self, float *top, float *right, float *bottom, float *left) { float clip_radius; clip_radius = gsk_cairo_blur_compute_pixels (ceil (self->blur_radius / 2.0)); *top = MAX (0, ceil (clip_radius + self->spread - self->dy)); *right = MAX (0, ceil (clip_radius + self->spread + self->dx)); *bottom = MAX (0, ceil (clip_radius + self->spread + self->dy)); *left = MAX (0, ceil (clip_radius + self->spread - self->dx)); } static void gsk_outset_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskOutsetShadowNode *self = (GskOutsetShadowNode *) node; GskRoundedRect box, clip_box; int clip_radius; graphene_rect_t clip_rect; float top, right, bottom, left; double blur_radius; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&self->color)) return; _graphene_rect_init_from_clip_extents (&clip_rect, cr); if (!gsk_rounded_rect_intersects_rect (&self->outline, &clip_rect)) return; blur_radius = self->blur_radius / 2; clip_radius = gsk_cairo_blur_compute_pixels (blur_radius); cairo_save (cr); gsk_rounded_rect_init_copy (&clip_box, &self->outline); gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left); gsk_rounded_rect_shrink (&clip_box, -top, -right, -bottom, -left); cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); gsk_rounded_rect_path (&self->outline, cr); gsk_cairo_rectangle (cr, &clip_box.bounds); cairo_clip (cr); gsk_rounded_rect_init_copy (&box, &self->outline); gsk_rounded_rect_offset (&box, self->dx, self->dy); gsk_rounded_rect_shrink (&box, -self->spread, -self->spread, -self->spread, -self->spread); if (!needs_blur (blur_radius)) draw_shadow (cr, FALSE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE); else { int i; cairo_region_t *remaining; cairo_rectangle_int_t r; /* For the blurred case we divide the rendering into 9 parts, * 4 of the corners, 4 for the horizonat/vertical lines and * one for the interior. We make the non-interior parts * large enough to fit the full radius of the blur, so that * the interior part can be drawn solidly. */ /* In the outset case we want to paint the entire box, plus as far * as the radius reaches from it */ r.x = floor (box.bounds.origin.x - clip_radius); r.y = floor (box.bounds.origin.y - clip_radius); r.width = ceil (box.bounds.origin.x + box.bounds.size.width + clip_radius) - r.x; r.height = ceil (box.bounds.origin.y + box.bounds.size.height + clip_radius) - r.y; remaining = cairo_region_create_rectangle (&r); /* First do the corners of box */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_corner (cr, FALSE, &box, &clip_box, blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the sides */ for (i = 0; i < 4; i++) { cairo_save (cr); /* Always clip with remaining to ensure we never draw any area twice */ gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow_side (cr, FALSE, &box, &clip_box, blur_radius, &self->color, i, &r); cairo_restore (cr); /* We drew the region, remove it from remaining */ cairo_region_subtract_rectangle (remaining, &r); } /* Then the rest, which needs no blurring */ cairo_save (cr); gdk_cairo_region (cr, remaining); cairo_clip (cr); draw_shadow (cr, FALSE, &box, &clip_box, blur_radius, &self->color, GSK_BLUR_NONE); cairo_restore (cr); cairo_region_destroy (remaining); } cairo_restore (cr); } static void gsk_outset_shadow_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskOutsetShadowNode *self1 = (GskOutsetShadowNode *) node1; GskOutsetShadowNode *self2 = (GskOutsetShadowNode *) node2; if (gsk_rounded_rect_equal (&self1->outline, &self2->outline) && gdk_rgba_equal (&self1->color, &self2->color) && self1->dx == self2->dx && self1->dy == self2->dy && self1->spread == self2->spread && self1->blur_radius == self2->blur_radius) return; gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_outset_shadow_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_OUTSET_SHADOW_NODE; node_class->draw = gsk_outset_shadow_node_draw; node_class->diff = gsk_outset_shadow_node_diff; } /** * gsk_outset_shadow_node_new: * @outline: outline of the region surrounded by shadow * @color: color of the shadow * @dx: horizontal offset of shadow * @dy: vertical offset of shadow * @spread: how far the shadow spreads towards the inside * @blur_radius: how much blur to apply to the shadow * * Creates a `GskRenderNode` that will render an outset shadow * around the box given by @outline. * * Returns: (transfer full) (type GskOutsetShadowNode): A new `GskRenderNode` */ GskRenderNode * gsk_outset_shadow_node_new (const GskRoundedRect *outline, const GdkRGBA *color, float dx, float dy, float spread, float blur_radius) { GskOutsetShadowNode *self; GskRenderNode *node; float top, right, bottom, left; g_return_val_if_fail (outline != NULL, NULL); g_return_val_if_fail (color != NULL, NULL); g_return_val_if_fail (blur_radius >= 0, NULL); self = gsk_render_node_alloc (GSK_OUTSET_SHADOW_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; gsk_rounded_rect_init_copy (&self->outline, outline); self->color = *color; self->dx = dx; self->dy = dy; self->spread = spread; self->blur_radius = blur_radius; gsk_outset_shadow_get_extents (self, &top, &right, &bottom, &left); graphene_rect_init_from_rect (&node->bounds, &self->outline.bounds); node->bounds.origin.x -= left; node->bounds.origin.y -= top; node->bounds.size.width += left + right; node->bounds.size.height += top + bottom; return node; } /** * gsk_outset_shadow_node_get_outline: * @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow * * Retrieves the outline rectangle of the outset shadow. * * Returns: (transfer none): a rounded rectangle */ const GskRoundedRect * gsk_outset_shadow_node_get_outline (const GskRenderNode *node) { const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node; return &self->outline; } /** * gsk_outset_shadow_node_get_color: * @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow * * Retrieves the color of the outset shadow. * * Returns: (transfer none): a color */ const GdkRGBA * gsk_outset_shadow_node_get_color (const GskRenderNode *node) { const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node; return &self->color; } /** * gsk_outset_shadow_node_get_dx: * @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow * * Retrieves the horizontal offset of the outset shadow. * * Returns: an offset, in pixels */ float gsk_outset_shadow_node_get_dx (const GskRenderNode *node) { const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node; return self->dx; } /** * gsk_outset_shadow_node_get_dy: * @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow * * Retrieves the vertical offset of the outset shadow. * * Returns: an offset, in pixels */ float gsk_outset_shadow_node_get_dy (const GskRenderNode *node) { const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node; return self->dy; } /** * gsk_outset_shadow_node_get_spread: * @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow * * Retrieves how much the shadow spreads outwards. * * Returns: the size of the shadow, in pixels */ float gsk_outset_shadow_node_get_spread (const GskRenderNode *node) { const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node; return self->spread; } /** * gsk_outset_shadow_node_get_blur_radius: * @node: (type GskOutsetShadowNode): a `GskRenderNode` for an outset shadow * * Retrieves the blur radius of the shadow. * * Returns: the blur radius, in pixels */ float gsk_outset_shadow_node_get_blur_radius (const GskRenderNode *node) { const GskOutsetShadowNode *self = (const GskOutsetShadowNode *) node; return self->blur_radius; } /* }}} */ /* {{{ GSK_CAIRO_NODE */ /** * GskCairoNode: * * A render node for a Cairo surface. */ struct _GskCairoNode { GskRenderNode render_node; cairo_surface_t *surface; }; static void gsk_cairo_node_finalize (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CAIRO_NODE)); if (self->surface) cairo_surface_destroy (self->surface); parent_class->finalize (node); } static void gsk_cairo_node_draw (GskRenderNode *node, cairo_t *cr) { GskCairoNode *self = (GskCairoNode *) node; if (self->surface == NULL) return; cairo_set_source_surface (cr, self->surface, 0, 0); cairo_paint (cr); } static void gsk_cairo_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_CAIRO_NODE; node_class->finalize = gsk_cairo_node_finalize; node_class->draw = gsk_cairo_node_draw; } /** * gsk_cairo_node_get_surface: * @node: (type GskCairoNode): a `GskRenderNode` for a Cairo surface * * Retrieves the Cairo surface used by the render node. * * Returns: (transfer none): a Cairo surface */ cairo_surface_t * gsk_cairo_node_get_surface (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL); return self->surface; } /** * gsk_cairo_node_new: * @bounds: the rectangle to render to * * Creates a `GskRenderNode` that will render a cairo surface * into the area given by @bounds. * * You can draw to the cairo surface using [method@Gsk.CairoNode.get_draw_context]. * * Returns: (transfer full) (type GskCairoNode): A new `GskRenderNode` */ GskRenderNode * gsk_cairo_node_new (const graphene_rect_t *bounds) { GskCairoNode *self; GskRenderNode *node; g_return_val_if_fail (bounds != NULL, NULL); self = gsk_render_node_alloc (GSK_CAIRO_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; graphene_rect_init_from_rect (&node->bounds, bounds); return node; } /** * gsk_cairo_node_get_draw_context: * @node: (type GskCairoNode): a `GskRenderNode` for a Cairo surface * * Creates a Cairo context for drawing using the surface associated * to the render node. * * If no surface exists yet, a surface will be created optimized for * rendering to @renderer. * * Returns: (transfer full): a Cairo context used for drawing; use * cairo_destroy() when done drawing */ cairo_t * gsk_cairo_node_get_draw_context (GskRenderNode *node) { GskCairoNode *self = (GskCairoNode *) node; int width, height; cairo_t *res; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CAIRO_NODE), NULL); width = ceilf (node->bounds.size.width); height = ceilf (node->bounds.size.height); if (width <= 0 || height <= 0) { cairo_surface_t *surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, 0, 0); res = cairo_create (surface); cairo_surface_destroy (surface); } else if (self->surface == NULL) { self->surface = cairo_recording_surface_create (CAIRO_CONTENT_COLOR_ALPHA, &(cairo_rectangle_t) { node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height }); res = cairo_create (self->surface); } else { res = cairo_create (self->surface); } gsk_cairo_rectangle (res, &node->bounds); cairo_clip (res); return res; } /* }}} */ /* {{{ GSK_CONTAINER_NODE */ /** * GskContainerNode: * * A render node that can contain other render nodes. */ struct _GskContainerNode { GskRenderNode render_node; gboolean disjoint; guint n_children; GskRenderNode **children; }; static void gsk_container_node_finalize (GskRenderNode *node) { GskContainerNode *container = (GskContainerNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CONTAINER_NODE)); for (guint i = 0; i < container->n_children; i++) gsk_render_node_unref (container->children[i]); g_free (container->children); parent_class->finalize (node); } static void gsk_container_node_draw (GskRenderNode *node, cairo_t *cr) { GskContainerNode *container = (GskContainerNode *) node; guint i; for (i = 0; i < container->n_children; i++) { gsk_render_node_draw (container->children[i], cr); } } static int gsk_container_node_compare_func (gconstpointer elem1, gconstpointer elem2, gpointer data) { return gsk_render_node_can_diff ((const GskRenderNode *) elem1, (const GskRenderNode *) elem2) ? 0 : 1; } static GskDiffResult gsk_container_node_keep_func (gconstpointer elem1, gconstpointer elem2, gpointer data) { GskDiffData *gd = data; gsk_render_node_data_diff ((GskRenderNode *) elem1, (GskRenderNode *) elem2, gd); if (cairo_region_num_rectangles (gd->region) > MAX_RECTS_IN_DIFF) return GSK_DIFF_ABORTED; return GSK_DIFF_OK; } static GskDiffResult gsk_container_node_change_func (gconstpointer elem, gsize idx, gpointer data) { const GskRenderNode *node = elem; GskDiffData *gd = data; cairo_rectangle_int_t rect; rectangle_init_from_graphene (&rect, &node->bounds); cairo_region_union_rectangle (gd->region, &rect); if (cairo_region_num_rectangles (gd->region) > MAX_RECTS_IN_DIFF) return GSK_DIFF_ABORTED; return GSK_DIFF_OK; } static GskDiffSettings * gsk_container_node_get_diff_settings (void) { static GskDiffSettings *settings = NULL; if (G_LIKELY (settings)) return settings; settings = gsk_diff_settings_new (gsk_container_node_compare_func, gsk_container_node_keep_func, gsk_container_node_change_func, gsk_container_node_change_func); gsk_diff_settings_set_allow_abort (settings, TRUE); return settings; } static gboolean gsk_render_node_diff_multiple (GskRenderNode **nodes1, gsize n_nodes1, GskRenderNode **nodes2, gsize n_nodes2, GskDiffData *data) { return gsk_diff ((gconstpointer *) nodes1, n_nodes1, (gconstpointer *) nodes2, n_nodes2, gsk_container_node_get_diff_settings (), data) == GSK_DIFF_OK; } void gsk_container_node_diff_with (GskRenderNode *container, GskRenderNode *other, GskDiffData *data) { GskContainerNode *self = (GskContainerNode *) container; if (gsk_render_node_diff_multiple (self->children, self->n_children, &other, 1, data)) return; gsk_render_node_diff_impossible (container, other, data); } static void gsk_container_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskContainerNode *self1 = (GskContainerNode *) node1; GskContainerNode *self2 = (GskContainerNode *) node2; if (gsk_render_node_diff_multiple (self1->children, self1->n_children, self2->children, self2->n_children, data)) return; gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_container_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_CONTAINER_NODE; node_class->finalize = gsk_container_node_finalize; node_class->draw = gsk_container_node_draw; node_class->diff = gsk_container_node_diff; } /** * gsk_container_node_new: * @children: (array length=n_children) (transfer none): The children of the node * @n_children: Number of children in the @children array * * Creates a new `GskRenderNode` instance for holding the given @children. * * The new node will acquire a reference to each of the children. * * Returns: (transfer full) (type GskContainerNode): the new `GskRenderNode` */ GskRenderNode * gsk_container_node_new (GskRenderNode **children, guint n_children) { GskContainerNode *self; GskRenderNode *node; self = gsk_render_node_alloc (GSK_CONTAINER_NODE); node = (GskRenderNode *) self; self->disjoint = TRUE; self->n_children = n_children; if (n_children == 0) { graphene_rect_init_from_rect (&node->bounds, graphene_rect_zero ()); } else { graphene_rect_t bounds; self->children = g_malloc_n (n_children, sizeof (GskRenderNode *)); self->children[0] = gsk_render_node_ref (children[0]); graphene_rect_init_from_rect (&bounds, &(children[0]->bounds)); node->preferred_depth = gdk_memory_depth_merge (node->preferred_depth, gsk_render_node_get_preferred_depth (children[0])); for (guint i = 1; i < n_children; i++) { self->children[i] = gsk_render_node_ref (children[i]); self->disjoint = self->disjoint && !graphene_rect_intersection (&bounds, &(children[i]->bounds), NULL); graphene_rect_union (&bounds, &(children[i]->bounds), &bounds); node->preferred_depth = gdk_memory_depth_merge (node->preferred_depth, gsk_render_node_get_preferred_depth (children[i])); node->offscreen_for_opacity = node->offscreen_for_opacity || children[i]->offscreen_for_opacity; } graphene_rect_init_from_rect (&node->bounds, &bounds); node->offscreen_for_opacity = node->offscreen_for_opacity || !self->disjoint; } return node; } /** * gsk_container_node_get_n_children: * @node: (type GskContainerNode): a container `GskRenderNode` * * Retrieves the number of direct children of @node. * * Returns: the number of children of the `GskRenderNode` */ guint gsk_container_node_get_n_children (const GskRenderNode *node) { const GskContainerNode *self = (const GskContainerNode *) node; return self->n_children; } /** * gsk_container_node_get_child: * @node: (type GskContainerNode): a container `GskRenderNode` * @idx: the position of the child to get * * Gets one of the children of @container. * * Returns: (transfer none): the @idx'th child of @container */ GskRenderNode * gsk_container_node_get_child (const GskRenderNode *node, guint idx) { const GskContainerNode *self = (const GskContainerNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_CONTAINER_NODE), NULL); g_return_val_if_fail (idx < self->n_children, NULL); return self->children[idx]; } GskRenderNode ** gsk_container_node_get_children (const GskRenderNode *node, guint *n_children) { const GskContainerNode *self = (const GskContainerNode *) node; *n_children = self->n_children; return self->children; } /*< private> * gsk_container_node_is_disjoint: * @node: a container `GskRenderNode` * * Returns `TRUE` if it is known that the child nodes are not * overlapping. There is no guarantee that they do overlap * if this function return FALSE. * * Returns: `TRUE` if children don't overlap */ gboolean gsk_container_node_is_disjoint (const GskRenderNode *node) { const GskContainerNode *self = (const GskContainerNode *) node; return self->disjoint; } /* }}} */ /* {{{ GSK_TRANSFORM_NODE */ /** * GskTransformNode: * * A render node applying a `GskTransform` to its single child node. */ struct _GskTransformNode { GskRenderNode render_node; GskRenderNode *child; GskTransform *transform; float dx, dy; }; static void gsk_transform_node_finalize (GskRenderNode *node) { GskTransformNode *self = (GskTransformNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TRANSFORM_NODE)); gsk_render_node_unref (self->child); gsk_transform_unref (self->transform); parent_class->finalize (node); } static void gsk_transform_node_draw (GskRenderNode *node, cairo_t *cr) { GskTransformNode *self = (GskTransformNode *) node; float xx, yx, xy, yy, dx, dy; cairo_matrix_t ctm; if (gsk_transform_get_category (self->transform) < GSK_TRANSFORM_CATEGORY_2D) { cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); return; } gsk_transform_to_2d (self->transform, &xx, &yx, &xy, &yy, &dx, &dy); cairo_matrix_init (&ctm, xx, yx, xy, yy, dx, dy); GSK_DEBUG (CAIRO, "CTM = { .xx = %g, .yx = %g, .xy = %g, .yy = %g, .x0 = %g, .y0 = %g }", ctm.xx, ctm.yx, ctm.xy, ctm.yy, ctm.x0, ctm.y0); if (xx * yy == xy * yx) { /* broken matrix here. This can happen during transitions * (like when flipping an axis at the point where scale == 0) * and just means that nothing should be drawn. * But Cairo throws lots of ugly errors instead of silently * going on. So We silently go on. */ return; } cairo_transform (cr, &ctm); gsk_render_node_draw (self->child, cr); } static gboolean gsk_transform_node_can_diff (const GskRenderNode *node1, const GskRenderNode *node2) { GskTransformNode *self1 = (GskTransformNode *) node1; GskTransformNode *self2 = (GskTransformNode *) node2; if (!gsk_transform_equal (self1->transform, self2->transform)) return FALSE; return gsk_render_node_can_diff (self1->child, self2->child); } static void gsk_transform_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskTransformNode *self1 = (GskTransformNode *) node1; GskTransformNode *self2 = (GskTransformNode *) node2; if (!gsk_transform_equal (self1->transform, self2->transform)) { gsk_render_node_diff_impossible (node1, node2, data); return; } if (self1->child == self2->child) return; switch (gsk_transform_get_category (self1->transform)) { case GSK_TRANSFORM_CATEGORY_IDENTITY: gsk_render_node_data_diff (self1->child, self2->child, data); break; case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE: { cairo_region_t *sub; float dx, dy; gsk_transform_to_translate (self1->transform, &dx, &dy); sub = cairo_region_create (); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) {sub, data->offload }); cairo_region_translate (sub, floorf (dx), floorf (dy)); if (floorf (dx) != dx) { cairo_region_t *tmp = cairo_region_copy (sub); cairo_region_translate (tmp, 1, 0); cairo_region_union (sub, tmp); cairo_region_destroy (tmp); } if (floorf (dy) != dy) { cairo_region_t *tmp = cairo_region_copy (sub); cairo_region_translate (tmp, 0, 1); cairo_region_union (sub, tmp); cairo_region_destroy (tmp); } cairo_region_union (data->region, sub); cairo_region_destroy (sub); } break; case GSK_TRANSFORM_CATEGORY_2D_AFFINE: { cairo_region_t *sub; float scale_x, scale_y, dx, dy; gsk_transform_to_affine (self1->transform, &scale_x, &scale_y, &dx, &dy); sub = cairo_region_create (); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) { sub, data->offload }); region_union_region_affine (data->region, sub, scale_x, scale_y, dx, dy); cairo_region_destroy (sub); } break; case GSK_TRANSFORM_CATEGORY_UNKNOWN: case GSK_TRANSFORM_CATEGORY_ANY: case GSK_TRANSFORM_CATEGORY_3D: case GSK_TRANSFORM_CATEGORY_2D: default: gsk_render_node_diff_impossible (node1, node2, data); break; } } static void gsk_transform_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_TRANSFORM_NODE; node_class->finalize = gsk_transform_node_finalize; node_class->draw = gsk_transform_node_draw; node_class->can_diff = gsk_transform_node_can_diff; node_class->diff = gsk_transform_node_diff; } /** * gsk_transform_node_new: * @child: The node to transform * @transform: (transfer none): The transform to apply * * Creates a `GskRenderNode` that will transform the given @child * with the given @transform. * * Returns: (transfer full) (type GskTransformNode): A new `GskRenderNode` */ GskRenderNode * gsk_transform_node_new (GskRenderNode *child, GskTransform *transform) { GskTransformNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (transform != NULL, NULL); self = gsk_render_node_alloc (GSK_TRANSFORM_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); self->transform = gsk_transform_ref (transform); if (gsk_transform_get_category (transform) >= GSK_TRANSFORM_CATEGORY_2D_TRANSLATE) gsk_transform_to_translate (transform, &self->dx, &self->dy); else self->dx = self->dy = 0; gsk_transform_transform_bounds (self->transform, &child->bounds, &node->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_transform_node_get_child: * @node: (type GskTransformNode): a `GskRenderNode` for a transform * * Gets the child node that is getting transformed by the given @node. * * Returns: (transfer none): The child that is getting transformed */ GskRenderNode * gsk_transform_node_get_child (const GskRenderNode *node) { const GskTransformNode *self = (const GskTransformNode *) node; return self->child; } /** * gsk_transform_node_get_transform: * @node: (type GskTransformNode): a `GskRenderNode` for a transform * * Retrieves the `GskTransform` used by the @node. * * Returns: (transfer none): a `GskTransform` */ GskTransform * gsk_transform_node_get_transform (const GskRenderNode *node) { const GskTransformNode *self = (const GskTransformNode *) node; return self->transform; } void gsk_transform_node_get_translate (const GskRenderNode *node, float *dx, float *dy) { const GskTransformNode *self = (const GskTransformNode *) node; *dx = self->dx; *dy = self->dy; } /* }}} */ /* {{{ GSK_OPACITY_NODE */ /** * GskOpacityNode: * * A render node controlling the opacity of its single child node. */ struct _GskOpacityNode { GskRenderNode render_node; GskRenderNode *child; float opacity; }; static void gsk_opacity_node_finalize (GskRenderNode *node) { GskOpacityNode *self = (GskOpacityNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_OPACITY_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_opacity_node_draw (GskRenderNode *node, cairo_t *cr) { GskOpacityNode *self = (GskOpacityNode *) node; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); cairo_pop_group_to_source (cr); cairo_paint_with_alpha (cr, self->opacity); cairo_restore (cr); } static void gsk_opacity_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskOpacityNode *self1 = (GskOpacityNode *) node1; GskOpacityNode *self2 = (GskOpacityNode *) node2; if (self1->opacity == self2->opacity) gsk_render_node_data_diff (self1->child, self2->child, data); else gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_opacity_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_OPACITY_NODE; node_class->finalize = gsk_opacity_node_finalize; node_class->draw = gsk_opacity_node_draw; node_class->diff = gsk_opacity_node_diff; } /** * gsk_opacity_node_new: * @child: The node to draw * @opacity: The opacity to apply * * Creates a `GskRenderNode` that will drawn the @child with reduced * @opacity. * * Returns: (transfer full) (type GskOpacityNode): A new `GskRenderNode` */ GskRenderNode * gsk_opacity_node_new (GskRenderNode *child, float opacity) { GskOpacityNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_OPACITY_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); self->opacity = CLAMP (opacity, 0.0, 1.0); graphene_rect_init_from_rect (&node->bounds, &child->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_opacity_node_get_child: * @node: (type GskOpacityNode): a `GskRenderNode` for an opacity * * Gets the child node that is getting opacityed by the given @node. * * Returns: (transfer none): The child that is getting opacityed */ GskRenderNode * gsk_opacity_node_get_child (const GskRenderNode *node) { const GskOpacityNode *self = (const GskOpacityNode *) node; return self->child; } /** * gsk_opacity_node_get_opacity: * @node: (type GskOpacityNode): a `GskRenderNode` for an opacity * * Gets the transparency factor for an opacity node. * * Returns: the opacity factor */ float gsk_opacity_node_get_opacity (const GskRenderNode *node) { const GskOpacityNode *self = (const GskOpacityNode *) node; return self->opacity; } /* }}} */ /* {{{ GSK_COLOR_MATRIX_NODE */ /** * GskColorMatrixNode: * * A render node controlling the color matrix of its single child node. */ struct _GskColorMatrixNode { GskRenderNode render_node; GskRenderNode *child; graphene_matrix_t color_matrix; graphene_vec4_t color_offset; }; static void gsk_color_matrix_node_finalize (GskRenderNode *node) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_COLOR_MATRIX_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void apply_color_matrix_to_pattern (cairo_pattern_t *pattern, const graphene_matrix_t *color_matrix, const graphene_vec4_t *color_offset) { cairo_surface_t *surface, *image_surface; guchar *data; gsize x, y, width, height, stride; float alpha; graphene_vec4_t pixel; guint32* pixel_data; cairo_pattern_get_surface (pattern, &surface); image_surface = cairo_surface_map_to_image (surface, NULL); data = cairo_image_surface_get_data (image_surface); width = cairo_image_surface_get_width (image_surface); height = cairo_image_surface_get_height (image_surface); stride = cairo_image_surface_get_stride (image_surface); for (y = 0; y < height; y++) { pixel_data = (guint32 *) data; for (x = 0; x < width; x++) { alpha = ((pixel_data[x] >> 24) & 0xFF) / 255.0; if (alpha == 0) { graphene_vec4_init (&pixel, 0.0, 0.0, 0.0, 0.0); } else { graphene_vec4_init (&pixel, ((pixel_data[x] >> 16) & 0xFF) / (255.0 * alpha), ((pixel_data[x] >> 8) & 0xFF) / (255.0 * alpha), ( pixel_data[x] & 0xFF) / (255.0 * alpha), alpha); graphene_matrix_transform_vec4 (color_matrix, &pixel, &pixel); } graphene_vec4_add (&pixel, color_offset, &pixel); alpha = graphene_vec4_get_w (&pixel); if (alpha > 0.0) { alpha = MIN (alpha, 1.0); pixel_data[x] = (((guint32) roundf (alpha * 255)) << 24) | (((guint32) roundf (CLAMP (graphene_vec4_get_x (&pixel), 0, 1) * alpha * 255)) << 16) | (((guint32) roundf (CLAMP (graphene_vec4_get_y (&pixel), 0, 1) * alpha * 255)) << 8) | ((guint32) roundf (CLAMP (graphene_vec4_get_z (&pixel), 0, 1) * alpha * 255)); } else { pixel_data[x] = 0; } } data += stride; } cairo_surface_mark_dirty (image_surface); cairo_surface_unmap_image (surface, image_surface); /* https://gitlab.freedesktop.org/cairo/cairo/-/merge_requests/487 */ cairo_surface_mark_dirty (surface); } static void gsk_color_matrix_node_draw (GskRenderNode *node, cairo_t *cr) { GskColorMatrixNode *self = (GskColorMatrixNode *) node; cairo_pattern_t *pattern; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); apply_color_matrix_to_pattern (pattern, &self->color_matrix, &self->color_offset); cairo_set_source (cr, pattern); cairo_paint (cr); cairo_restore (cr); cairo_pattern_destroy (pattern); } static void gsk_color_matrix_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskColorMatrixNode *self1 = (GskColorMatrixNode *) node1; GskColorMatrixNode *self2 = (GskColorMatrixNode *) node2; if (!graphene_vec4_equal (&self1->color_offset, &self2->color_offset)) goto nope; if (!graphene_matrix_equal_fast (&self1->color_matrix, &self2->color_matrix)) goto nope; gsk_render_node_data_diff (self1->child, self2->child, data); return; nope: gsk_render_node_diff_impossible (node1, node2, data); return; } static void gsk_color_matrix_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_COLOR_MATRIX_NODE; node_class->finalize = gsk_color_matrix_node_finalize; node_class->draw = gsk_color_matrix_node_draw; node_class->diff = gsk_color_matrix_node_diff; } /** * gsk_color_matrix_node_new: * @child: The node to draw * @color_matrix: The matrix to apply * @color_offset: Values to add to the color * * Creates a `GskRenderNode` that will drawn the @child with * @color_matrix. * * In particular, the node will transform colors by applying * * pixel = transpose(color_matrix) * pixel + color_offset * * for every pixel. The transformation operates on unpremultiplied * colors, with color components ordered R, G, B, A. * * Returns: (transfer full) (type GskColorMatrixNode): A new `GskRenderNode` */ GskRenderNode * gsk_color_matrix_node_new (GskRenderNode *child, const graphene_matrix_t *color_matrix, const graphene_vec4_t *color_offset) { GskColorMatrixNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_COLOR_MATRIX_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); graphene_matrix_init_from_matrix (&self->color_matrix, color_matrix); graphene_vec4_init_from_vec4 (&self->color_offset, color_offset); graphene_rect_init_from_rect (&node->bounds, &child->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_color_matrix_node_get_child: * @node: (type GskColorMatrixNode): a color matrix `GskRenderNode` * * Gets the child node that is getting its colors modified by the given @node. * * Returns: (transfer none): The child that is getting its colors modified **/ GskRenderNode * gsk_color_matrix_node_get_child (const GskRenderNode *node) { const GskColorMatrixNode *self = (const GskColorMatrixNode *) node; return self->child; } /** * gsk_color_matrix_node_get_color_matrix: * @node: (type GskColorMatrixNode): a color matrix `GskRenderNode` * * Retrieves the color matrix used by the @node. * * Returns: a 4x4 color matrix */ const graphene_matrix_t * gsk_color_matrix_node_get_color_matrix (const GskRenderNode *node) { const GskColorMatrixNode *self = (const GskColorMatrixNode *) node; return &self->color_matrix; } /** * gsk_color_matrix_node_get_color_offset: * @node: (type GskColorMatrixNode): a color matrix `GskRenderNode` * * Retrieves the color offset used by the @node. * * Returns: a color vector */ const graphene_vec4_t * gsk_color_matrix_node_get_color_offset (const GskRenderNode *node) { const GskColorMatrixNode *self = (const GskColorMatrixNode *) node; return &self->color_offset; } /* }}} */ /* {{{ GSK_REPEAT_NODE */ /** * GskRepeatNode: * * A render node repeating its single child node. */ struct _GskRepeatNode { GskRenderNode render_node; GskRenderNode *child; graphene_rect_t child_bounds; }; static void gsk_repeat_node_finalize (GskRenderNode *node) { GskRepeatNode *self = (GskRepeatNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_REPEAT_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_repeat_node_draw (GskRenderNode *node, cairo_t *cr) { GskRepeatNode *self = (GskRepeatNode *) node; cairo_pattern_t *pattern; cairo_surface_t *surface; cairo_t *surface_cr; double scale_x, scale_y, width, height; cairo_matrix_t matrix; cairo_get_matrix (cr, &matrix); width = ceil (self->child_bounds.size.width * (ABS (matrix.xx) + ABS (matrix.yx))); height = ceil (self->child_bounds.size.height * (ABS (matrix.xy) + ABS (matrix.yy))); surface = cairo_surface_create_similar (cairo_get_target (cr), CAIRO_CONTENT_COLOR_ALPHA, width, height); cairo_surface_get_device_scale (surface, &scale_x, &scale_y); scale_x *= width / self->child_bounds.size.width; scale_y *= height / self->child_bounds.size.height; cairo_surface_set_device_scale (surface, scale_x, scale_y); cairo_surface_set_device_offset (surface, - self->child_bounds.origin.x * scale_x, - self->child_bounds.origin.y * scale_y); surface_cr = cairo_create (surface); gsk_render_node_draw (self->child, surface_cr); cairo_destroy (surface_cr); pattern = cairo_pattern_create_for_surface (surface); cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT); cairo_set_source (cr, pattern); cairo_pattern_destroy (pattern); cairo_surface_destroy (surface); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_repeat_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_REPEAT_NODE; node_class->finalize = gsk_repeat_node_finalize; node_class->draw = gsk_repeat_node_draw; } /** * gsk_repeat_node_new: * @bounds: The bounds of the area to be painted * @child: The child to repeat * @child_bounds: (nullable): The area of the child to repeat or %NULL to * use the child's bounds * * Creates a `GskRenderNode` that will repeat the drawing of @child across * the given @bounds. * * Returns: (transfer full) (type GskRepeatNode): A new `GskRenderNode` */ GskRenderNode * gsk_repeat_node_new (const graphene_rect_t *bounds, GskRenderNode *child, const graphene_rect_t *child_bounds) { GskRepeatNode *self; GskRenderNode *node; g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_REPEAT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = TRUE; graphene_rect_init_from_rect (&node->bounds, bounds); self->child = gsk_render_node_ref (child); if (child_bounds) graphene_rect_init_from_rect (&self->child_bounds, child_bounds); else graphene_rect_init_from_rect (&self->child_bounds, &child->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_repeat_node_get_child: * @node: (type GskRepeatNode): a repeat `GskRenderNode` * * Retrieves the child of @node. * * Returns: (transfer none): a `GskRenderNode` */ GskRenderNode * gsk_repeat_node_get_child (const GskRenderNode *node) { const GskRepeatNode *self = (const GskRepeatNode *) node; return self->child; } /** * gsk_repeat_node_get_child_bounds: * @node: (type GskRepeatNode): a repeat `GskRenderNode` * * Retrieves the bounding rectangle of the child of @node. * * Returns: (transfer none): a bounding rectangle */ const graphene_rect_t * gsk_repeat_node_get_child_bounds (const GskRenderNode *node) { const GskRepeatNode *self = (const GskRepeatNode *) node; return &self->child_bounds; } /* }}} */ /* {{{ GSK_CLIP_NODE */ /** * GskClipNode: * * A render node applying a rectangular clip to its single child node. */ struct _GskClipNode { GskRenderNode render_node; GskRenderNode *child; graphene_rect_t clip; }; static void gsk_clip_node_finalize (GskRenderNode *node) { GskClipNode *self = (GskClipNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CLIP_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_clip_node_draw (GskRenderNode *node, cairo_t *cr) { GskClipNode *self = (GskClipNode *) node; cairo_save (cr); gsk_cairo_rectangle (cr, &self->clip); cairo_clip (cr); gsk_render_node_draw (self->child, cr); cairo_restore (cr); } static void gsk_clip_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskClipNode *self1 = (GskClipNode *) node1; GskClipNode *self2 = (GskClipNode *) node2; if (gsk_rect_equal (&self1->clip, &self2->clip)) { cairo_region_t *sub; cairo_rectangle_int_t clip_rect; sub = cairo_region_create(); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) {sub, data->offload }); rectangle_init_from_graphene (&clip_rect, &self1->clip); cairo_region_intersect_rectangle (sub, &clip_rect); cairo_region_union (data->region, sub); cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_clip_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_CLIP_NODE; node_class->finalize = gsk_clip_node_finalize; node_class->draw = gsk_clip_node_draw; node_class->diff = gsk_clip_node_diff; } /** * gsk_clip_node_new: * @child: The node to draw * @clip: The clip to apply * * Creates a `GskRenderNode` that will clip the @child to the area * given by @clip. * * Returns: (transfer full) (type GskClipNode): A new `GskRenderNode` */ GskRenderNode * gsk_clip_node_new (GskRenderNode *child, const graphene_rect_t *clip) { GskClipNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (clip != NULL, NULL); self = gsk_render_node_alloc (GSK_CLIP_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); graphene_rect_normalize_r (clip, &self->clip); graphene_rect_intersection (&self->clip, &child->bounds, &node->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_clip_node_get_child: * @node: (type GskClipNode): a clip @GskRenderNode * * Gets the child node that is getting clipped by the given @node. * * Returns: (transfer none): The child that is getting clipped **/ GskRenderNode * gsk_clip_node_get_child (const GskRenderNode *node) { const GskClipNode *self = (const GskClipNode *) node; return self->child; } /** * gsk_clip_node_get_clip: * @node: (type GskClipNode): a `GskClipNode` * * Retrieves the clip rectangle for @node. * * Returns: a clip rectangle */ const graphene_rect_t * gsk_clip_node_get_clip (const GskRenderNode *node) { const GskClipNode *self = (const GskClipNode *) node; return &self->clip; } /* }}} */ /* {{{ GSK_ROUNDED_CLIP_NODE */ /** * GskRoundedClipNode: * * A render node applying a rounded rectangle clip to its single child. */ struct _GskRoundedClipNode { GskRenderNode render_node; GskRenderNode *child; GskRoundedRect clip; }; static void gsk_rounded_clip_node_finalize (GskRenderNode *node) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_ROUNDED_CLIP_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void gsk_rounded_clip_node_draw (GskRenderNode *node, cairo_t *cr) { GskRoundedClipNode *self = (GskRoundedClipNode *) node; cairo_save (cr); gsk_rounded_rect_path (&self->clip, cr); cairo_clip (cr); gsk_render_node_draw (self->child, cr); cairo_restore (cr); } static void gsk_rounded_clip_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskRoundedClipNode *self1 = (GskRoundedClipNode *) node1; GskRoundedClipNode *self2 = (GskRoundedClipNode *) node2; if (gsk_rounded_rect_equal (&self1->clip, &self2->clip)) { cairo_region_t *sub; cairo_rectangle_int_t clip_rect; sub = cairo_region_create(); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) { sub, data->offload }); rectangle_init_from_graphene (&clip_rect, &self1->clip.bounds); cairo_region_intersect_rectangle (sub, &clip_rect); cairo_region_union (data->region, sub); cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_rounded_clip_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_ROUNDED_CLIP_NODE; node_class->finalize = gsk_rounded_clip_node_finalize; node_class->draw = gsk_rounded_clip_node_draw; node_class->diff = gsk_rounded_clip_node_diff; } /** * gsk_rounded_clip_node_new: * @child: The node to draw * @clip: The clip to apply * * Creates a `GskRenderNode` that will clip the @child to the area * given by @clip. * * Returns: (transfer full) (type GskRoundedClipNode): A new `GskRenderNode` */ GskRenderNode * gsk_rounded_clip_node_new (GskRenderNode *child, const GskRoundedRect *clip) { GskRoundedClipNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (clip != NULL, NULL); self = gsk_render_node_alloc (GSK_ROUNDED_CLIP_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); gsk_rounded_rect_init_copy (&self->clip, clip); graphene_rect_intersection (&self->clip.bounds, &child->bounds, &node->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_rounded_clip_node_get_child: * @node: (type GskRoundedClipNode): a rounded clip `GskRenderNode` * * Gets the child node that is getting clipped by the given @node. * * Returns: (transfer none): The child that is getting clipped **/ GskRenderNode * gsk_rounded_clip_node_get_child (const GskRenderNode *node) { const GskRoundedClipNode *self = (const GskRoundedClipNode *) node; return self->child; } /** * gsk_rounded_clip_node_get_clip: * @node: (type GskRoundedClipNode): a rounded clip `GskRenderNode` * * Retrieves the rounded rectangle used to clip the contents of the @node. * * Returns: (transfer none): a rounded rectangle */ const GskRoundedRect * gsk_rounded_clip_node_get_clip (const GskRenderNode *node) { const GskRoundedClipNode *self = (const GskRoundedClipNode *) node; return &self->clip; } /* }}} */ /* {{{ GSK_FILL_NODE */ /** * GskFillNode: * * A render node filling the area given by [struct@Gsk.Path] * and [enum@Gsk.FillRule] with the child node. * * Since: 4.14 */ struct _GskFillNode { GskRenderNode render_node; GskRenderNode *child; GskPath *path; GskFillRule fill_rule; }; static void gsk_fill_node_finalize (GskRenderNode *node) { GskFillNode *self = (GskFillNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_FILL_NODE)); gsk_render_node_unref (self->child); gsk_path_unref (self->path); parent_class->finalize (node); } static void gsk_fill_node_draw (GskRenderNode *node, cairo_t *cr) { GskFillNode *self = (GskFillNode *) node; cairo_save (cr); switch (self->fill_rule) { case GSK_FILL_RULE_WINDING: cairo_set_fill_rule (cr, CAIRO_FILL_RULE_WINDING); break; case GSK_FILL_RULE_EVEN_ODD: cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD); break; default: g_assert_not_reached (); break; } gsk_path_to_cairo (self->path, cr); if (gsk_render_node_get_node_type (self->child) == GSK_COLOR_NODE && gsk_rect_contains_rect (&self->child->bounds, &node->bounds)) { gdk_cairo_set_source_rgba (cr, gsk_color_node_get_color (self->child)); cairo_fill (cr); } else { cairo_clip (cr); gsk_render_node_draw (self->child, cr); } cairo_restore (cr); } static void gsk_fill_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskFillNode *self1 = (GskFillNode *) node1; GskFillNode *self2 = (GskFillNode *) node2; if (self1->path == self2->path) { cairo_region_t *sub; cairo_rectangle_int_t clip_rect; sub = cairo_region_create(); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) { sub, data->offload }); rectangle_init_from_graphene (&clip_rect, &node1->bounds); cairo_region_intersect_rectangle (sub, &clip_rect); cairo_region_union (data->region, sub); cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_fill_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_FILL_NODE; node_class->finalize = gsk_fill_node_finalize; node_class->draw = gsk_fill_node_draw; node_class->diff = gsk_fill_node_diff; } /** * gsk_fill_node_new: * @child: The node to fill the area with * @path: The path describing the area to fill * @fill_rule: The fill rule to use * * Creates a `GskRenderNode` that will fill the @child in the area * given by @path and @fill_rule. * * Returns: (transfer none) (type GskFillNode): A new `GskRenderNode` * * Since: 4.14 */ GskRenderNode * gsk_fill_node_new (GskRenderNode *child, GskPath *path, GskFillRule fill_rule) { GskFillNode *self; GskRenderNode *node; graphene_rect_t path_bounds; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (path != NULL, NULL); self = gsk_render_node_alloc (GSK_FILL_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->path = gsk_path_ref (path); self->fill_rule = fill_rule; if (gsk_path_get_bounds (path, &path_bounds)) graphene_rect_intersection (&path_bounds, &child->bounds, &node->bounds); else graphene_rect_init_from_rect (&node->bounds, graphene_rect_zero ()); return node; } /** * gsk_fill_node_get_child: * @node: (type GskFillNode): a fill `GskRenderNode` * * Gets the child node that is getting drawn by the given @node. * * Returns: (transfer none): The child that is getting drawn * * Since: 4.14 */ GskRenderNode * gsk_fill_node_get_child (const GskRenderNode *node) { const GskFillNode *self = (const GskFillNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_FILL_NODE), NULL); return self->child; } /** * gsk_fill_node_get_path: * @node: (type GskFillNode): a fill `GskRenderNode` * * Retrieves the path used to describe the area filled with the contents of * the @node. * * Returns: (transfer none): a `GskPath` * * Since: 4.14 */ GskPath * gsk_fill_node_get_path (const GskRenderNode *node) { const GskFillNode *self = (const GskFillNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_FILL_NODE), NULL); return self->path; } /** * gsk_fill_node_get_fill_rule: * @node: (type GskFillNode): a fill `GskRenderNode` * * Retrieves the fill rule used to determine how the path is filled. * * Returns: a `GskFillRule` * * Since: 4.14 */ GskFillRule gsk_fill_node_get_fill_rule (const GskRenderNode *node) { const GskFillNode *self = (const GskFillNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_FILL_NODE), GSK_FILL_RULE_WINDING); return self->fill_rule; } /* }}} */ /* {{{ GSK_STROKE_NODE */ /** * GskStrokeNode: * * A render node that will fill the area determined by stroking the the given * [struct@Gsk.Path] using the [struct@Gsk.Stroke] attributes. * * Since: 4.14 */ struct _GskStrokeNode { GskRenderNode render_node; GskRenderNode *child; GskPath *path; GskStroke stroke; }; static void gsk_stroke_node_finalize (GskRenderNode *node) { GskStrokeNode *self = (GskStrokeNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_STROKE_NODE)); gsk_render_node_unref (self->child); gsk_path_unref (self->path); gsk_stroke_clear (&self->stroke); parent_class->finalize (node); } static void gsk_stroke_node_draw (GskRenderNode *node, cairo_t *cr) { GskStrokeNode *self = (GskStrokeNode *) node; cairo_save (cr); if (gsk_render_node_get_node_type (self->child) == GSK_COLOR_NODE && gsk_rect_contains_rect (&self->child->bounds, &node->bounds)) { gdk_cairo_set_source_rgba (cr, gsk_color_node_get_color (self->child)); } else { gsk_cairo_rectangle (cr, &self->child->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); cairo_pop_group_to_source (cr); } gsk_stroke_to_cairo (&self->stroke, cr); gsk_path_to_cairo (self->path, cr); cairo_stroke (cr); cairo_restore (cr); } static void gsk_stroke_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskStrokeNode *self1 = (GskStrokeNode *) node1; GskStrokeNode *self2 = (GskStrokeNode *) node2; if (self1->path == self2->path && gsk_stroke_equal (&self1->stroke, &self2->stroke)) { cairo_region_t *sub; cairo_rectangle_int_t clip_rect; sub = cairo_region_create(); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) { sub, data->offload }); rectangle_init_from_graphene (&clip_rect, &node1->bounds); cairo_region_intersect_rectangle (sub, &clip_rect); cairo_region_union (data->region, sub); cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_stroke_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_STROKE_NODE; node_class->finalize = gsk_stroke_node_finalize; node_class->draw = gsk_stroke_node_draw; node_class->diff = gsk_stroke_node_diff; } /** * gsk_stroke_node_new: * @child: The node to stroke the area with * @path: (transfer none): The path describing the area to stroke * @stroke: (transfer none): The stroke attributes to use * * Creates a #GskRenderNode that will fill the outline generated by stroking * the given @path using the attributes defined in @stroke. * * The area is filled with @child. * * Returns: (transfer none) (type GskStrokeNode): A new #GskRenderNode * * Since: 4.14 */ GskRenderNode * gsk_stroke_node_new (GskRenderNode *child, GskPath *path, const GskStroke *stroke) { GskStrokeNode *self; GskRenderNode *node; graphene_rect_t stroke_bounds; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (path != NULL, NULL); g_return_val_if_fail (stroke != NULL, NULL); self = gsk_render_node_alloc (GSK_STROKE_NODE); node = (GskRenderNode *) self; self->child = gsk_render_node_ref (child); self->path = gsk_path_ref (path); gsk_stroke_init_copy (&self->stroke, stroke); if (gsk_path_get_stroke_bounds (self->path, &self->stroke, &stroke_bounds)) graphene_rect_intersection (&stroke_bounds, &child->bounds, &node->bounds); else graphene_rect_init_from_rect (&node->bounds, graphene_rect_zero ()); return node; } /** * gsk_stroke_node_get_child: * @node: (type GskStrokeNode): a stroke #GskRenderNode * * Gets the child node that is getting drawn by the given @node. * * Returns: (transfer none): The child that is getting drawn * * Since: 4.14 */ GskRenderNode * gsk_stroke_node_get_child (const GskRenderNode *node) { const GskStrokeNode *self = (const GskStrokeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_STROKE_NODE), NULL); return self->child; } /** * gsk_stroke_node_get_path: * @node: (type GskStrokeNode): a stroke #GskRenderNode * * Retrieves the path that will be stroked with the contents of * the @node. * * Returns: (transfer none): a #GskPath * * Since: 4.14 */ GskPath * gsk_stroke_node_get_path (const GskRenderNode *node) { const GskStrokeNode *self = (const GskStrokeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_STROKE_NODE), NULL); return self->path; } /** * gsk_stroke_node_get_stroke: * @node: (type GskStrokeNode): a stroke #GskRenderNode * * Retrieves the stroke attributes used in this @node. * * Returns: a #GskStroke * * Since: 4.14 */ const GskStroke * gsk_stroke_node_get_stroke (const GskRenderNode *node) { const GskStrokeNode *self = (const GskStrokeNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_STROKE_NODE), NULL); return &self->stroke; } /* }}} */ /* {{{ GSK_SHADOW_NODE */ /** * GskShadowNode: * * A render node drawing one or more shadows behind its single child node. */ struct _GskShadowNode { GskRenderNode render_node; GskRenderNode *child; gsize n_shadows; GskShadow *shadows; }; static void gsk_shadow_node_finalize (GskRenderNode *node) { GskShadowNode *self = (GskShadowNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_SHADOW_NODE)); gsk_render_node_unref (self->child); g_free (self->shadows); parent_class->finalize (node); } static void gsk_shadow_node_draw (GskRenderNode *node, cairo_t *cr) { GskShadowNode *self = (GskShadowNode *) node; gsize i; cairo_save (cr); /* clip so the blur area stays small */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); for (i = 0; i < self->n_shadows; i++) { GskShadow *shadow = &self->shadows[i]; cairo_pattern_t *pattern; /* We don't need to draw invisible shadows */ if (gdk_rgba_is_clear (&shadow->color)) continue; cairo_save (cr); cr = gsk_cairo_blur_start_drawing (cr, shadow->radius, GSK_BLUR_X | GSK_BLUR_Y); cairo_save (cr); cairo_translate (cr, shadow->dx, shadow->dy); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); gdk_cairo_set_source_rgba (cr, &shadow->color); cairo_mask (cr, pattern); cairo_restore (cr); cr = gsk_cairo_blur_finish_drawing (cr, shadow->radius, &shadow->color, GSK_BLUR_X | GSK_BLUR_Y); cairo_restore (cr); } gsk_render_node_draw (self->child, cr); cairo_restore (cr); } static void gsk_shadow_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskShadowNode *self1 = (GskShadowNode *) node1; GskShadowNode *self2 = (GskShadowNode *) node2; int top = 0, right = 0, bottom = 0, left = 0; cairo_region_t *sub; cairo_rectangle_int_t rect; gsize i, n; if (self1->n_shadows != self2->n_shadows) { gsk_render_node_diff_impossible (node1, node2, data); return; } for (i = 0; i < self1->n_shadows; i++) { GskShadow *shadow1 = &self1->shadows[i]; GskShadow *shadow2 = &self2->shadows[i]; float clip_radius; if (!gdk_rgba_equal (&shadow1->color, &shadow2->color) || shadow1->dx != shadow2->dx || shadow1->dy != shadow2->dy || shadow1->radius != shadow2->radius) { gsk_render_node_diff_impossible (node1, node2, data); return; } clip_radius = gsk_cairo_blur_compute_pixels (shadow1->radius / 2.0); top = MAX (top, ceil (clip_radius - shadow1->dy)); right = MAX (right, ceil (clip_radius + shadow1->dx)); bottom = MAX (bottom, ceil (clip_radius + shadow1->dy)); left = MAX (left, ceil (clip_radius - shadow1->dx)); } sub = cairo_region_create (); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) { sub, data->offload }); n = cairo_region_num_rectangles (sub); for (i = 0; i < n; i++) { cairo_region_get_rectangle (sub, i, &rect); rect.x -= left; rect.y -= top; rect.width += left + right; rect.height += top + bottom; cairo_region_union_rectangle (data->region, &rect); } cairo_region_destroy (sub); } static void gsk_shadow_node_get_bounds (GskShadowNode *self, graphene_rect_t *bounds) { float top = 0, right = 0, bottom = 0, left = 0; gsize i; graphene_rect_init_from_rect (bounds, &self->child->bounds); for (i = 0; i < self->n_shadows; i++) { float clip_radius = gsk_cairo_blur_compute_pixels (self->shadows[i].radius / 2.0); top = MAX (top, clip_radius - self->shadows[i].dy); right = MAX (right, clip_radius + self->shadows[i].dx); bottom = MAX (bottom, clip_radius + self->shadows[i].dy); left = MAX (left, clip_radius - self->shadows[i].dx); } bounds->origin.x -= left; bounds->origin.y -= top; bounds->size.width += left + right; bounds->size.height += top + bottom; } static void gsk_shadow_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_SHADOW_NODE; node_class->finalize = gsk_shadow_node_finalize; node_class->draw = gsk_shadow_node_draw; node_class->diff = gsk_shadow_node_diff; } /** * gsk_shadow_node_new: * @child: The node to draw * @shadows: (array length=n_shadows): The shadows to apply * @n_shadows: number of entries in the @shadows array * * Creates a `GskRenderNode` that will draw a @child with the given * @shadows below it. * * Returns: (transfer full) (type GskShadowNode): A new `GskRenderNode` */ GskRenderNode * gsk_shadow_node_new (GskRenderNode *child, const GskShadow *shadows, gsize n_shadows) { GskShadowNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (shadows != NULL, NULL); g_return_val_if_fail (n_shadows > 0, NULL); self = gsk_render_node_alloc (GSK_SHADOW_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = TRUE; self->child = gsk_render_node_ref (child); self->n_shadows = n_shadows; self->shadows = g_malloc_n (n_shadows, sizeof (GskShadow)); memcpy (self->shadows, shadows, n_shadows * sizeof (GskShadow)); gsk_shadow_node_get_bounds (self, &node->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_shadow_node_get_child: * @node: (type GskShadowNode): a shadow `GskRenderNode` * * Retrieves the child `GskRenderNode` of the shadow @node. * * Returns: (transfer none): the child render node */ GskRenderNode * gsk_shadow_node_get_child (const GskRenderNode *node) { const GskShadowNode *self = (const GskShadowNode *) node; return self->child; } /** * gsk_shadow_node_get_shadow: * @node: (type GskShadowNode): a shadow `GskRenderNode` * @i: the given index * * Retrieves the shadow data at the given index @i. * * Returns: (transfer none): the shadow data */ const GskShadow * gsk_shadow_node_get_shadow (const GskRenderNode *node, gsize i) { const GskShadowNode *self = (const GskShadowNode *) node; return &self->shadows[i]; } /** * gsk_shadow_node_get_n_shadows: * @node: (type GskShadowNode): a shadow `GskRenderNode` * * Retrieves the number of shadows in the @node. * * Returns: the number of shadows. */ gsize gsk_shadow_node_get_n_shadows (const GskRenderNode *node) { const GskShadowNode *self = (const GskShadowNode *) node; return self->n_shadows; } /* }}} */ /* {{{ GSK_BLEND_NODE */ /** * GskBlendNode: * * A render node applying a blending function between its two child nodes. */ struct _GskBlendNode { GskRenderNode render_node; GskRenderNode *bottom; GskRenderNode *top; GskBlendMode blend_mode; }; static cairo_operator_t gsk_blend_mode_to_cairo_operator (GskBlendMode blend_mode) { switch (blend_mode) { default: g_assert_not_reached (); case GSK_BLEND_MODE_DEFAULT: return CAIRO_OPERATOR_OVER; case GSK_BLEND_MODE_MULTIPLY: return CAIRO_OPERATOR_MULTIPLY; case GSK_BLEND_MODE_SCREEN: return CAIRO_OPERATOR_SCREEN; case GSK_BLEND_MODE_OVERLAY: return CAIRO_OPERATOR_OVERLAY; case GSK_BLEND_MODE_DARKEN: return CAIRO_OPERATOR_DARKEN; case GSK_BLEND_MODE_LIGHTEN: return CAIRO_OPERATOR_LIGHTEN; case GSK_BLEND_MODE_COLOR_DODGE: return CAIRO_OPERATOR_COLOR_DODGE; case GSK_BLEND_MODE_COLOR_BURN: return CAIRO_OPERATOR_COLOR_BURN; case GSK_BLEND_MODE_HARD_LIGHT: return CAIRO_OPERATOR_HARD_LIGHT; case GSK_BLEND_MODE_SOFT_LIGHT: return CAIRO_OPERATOR_SOFT_LIGHT; case GSK_BLEND_MODE_DIFFERENCE: return CAIRO_OPERATOR_DIFFERENCE; case GSK_BLEND_MODE_EXCLUSION: return CAIRO_OPERATOR_EXCLUSION; case GSK_BLEND_MODE_COLOR: return CAIRO_OPERATOR_HSL_COLOR; case GSK_BLEND_MODE_HUE: return CAIRO_OPERATOR_HSL_HUE; case GSK_BLEND_MODE_SATURATION: return CAIRO_OPERATOR_HSL_SATURATION; case GSK_BLEND_MODE_LUMINOSITY: return CAIRO_OPERATOR_HSL_LUMINOSITY; } } static void gsk_blend_node_finalize (GskRenderNode *node) { GskBlendNode *self = (GskBlendNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_BLEND_NODE)); gsk_render_node_unref (self->bottom); gsk_render_node_unref (self->top); parent_class->finalize (node); } static void gsk_blend_node_draw (GskRenderNode *node, cairo_t *cr) { GskBlendNode *self = (GskBlendNode *) node; cairo_push_group (cr); gsk_render_node_draw (self->bottom, cr); cairo_push_group (cr); gsk_render_node_draw (self->top, cr); cairo_pop_group_to_source (cr); cairo_set_operator (cr, gsk_blend_mode_to_cairo_operator (self->blend_mode)); cairo_paint (cr); cairo_pop_group_to_source (cr); /* resets operator */ cairo_paint (cr); } static void gsk_blend_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskBlendNode *self1 = (GskBlendNode *) node1; GskBlendNode *self2 = (GskBlendNode *) node2; if (self1->blend_mode == self2->blend_mode) { gsk_render_node_data_diff (self1->top, self2->top, data); gsk_render_node_data_diff (self1->bottom, self2->bottom, data); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_blend_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_BLEND_NODE; node_class->finalize = gsk_blend_node_finalize; node_class->draw = gsk_blend_node_draw; node_class->diff = gsk_blend_node_diff; } /** * gsk_blend_node_new: * @bottom: The bottom node to be drawn * @top: The node to be blended onto the @bottom node * @blend_mode: The blend mode to use * * Creates a `GskRenderNode` that will use @blend_mode to blend the @top * node onto the @bottom node. * * Returns: (transfer full) (type GskBlendNode): A new `GskRenderNode` */ GskRenderNode * gsk_blend_node_new (GskRenderNode *bottom, GskRenderNode *top, GskBlendMode blend_mode) { GskBlendNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (bottom), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (top), NULL); self = gsk_render_node_alloc (GSK_BLEND_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = TRUE; self->bottom = gsk_render_node_ref (bottom); self->top = gsk_render_node_ref (top); self->blend_mode = blend_mode; graphene_rect_union (&bottom->bounds, &top->bounds, &node->bounds); node->preferred_depth = gdk_memory_depth_merge (gsk_render_node_get_preferred_depth (bottom), gsk_render_node_get_preferred_depth (top)); return node; } /** * gsk_blend_node_get_bottom_child: * @node: (type GskBlendNode): a blending `GskRenderNode` * * Retrieves the bottom `GskRenderNode` child of the @node. * * Returns: (transfer none): the bottom child node */ GskRenderNode * gsk_blend_node_get_bottom_child (const GskRenderNode *node) { const GskBlendNode *self = (const GskBlendNode *) node; return self->bottom; } /** * gsk_blend_node_get_top_child: * @node: (type GskBlendNode): a blending `GskRenderNode` * * Retrieves the top `GskRenderNode` child of the @node. * * Returns: (transfer none): the top child node */ GskRenderNode * gsk_blend_node_get_top_child (const GskRenderNode *node) { const GskBlendNode *self = (const GskBlendNode *) node; return self->top; } /** * gsk_blend_node_get_blend_mode: * @node: (type GskBlendNode): a blending `GskRenderNode` * * Retrieves the blend mode used by @node. * * Returns: the blend mode */ GskBlendMode gsk_blend_node_get_blend_mode (const GskRenderNode *node) { const GskBlendNode *self = (const GskBlendNode *) node; return self->blend_mode; } /* }}} */ /* {{{ GSK_CROSS_FADE_NODE */ /** * GskCrossFadeNode: * * A render node cross fading between two child nodes. */ struct _GskCrossFadeNode { GskRenderNode render_node; GskRenderNode *start; GskRenderNode *end; float progress; }; static void gsk_cross_fade_node_finalize (GskRenderNode *node) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_CROSS_FADE_NODE)); gsk_render_node_unref (self->start); gsk_render_node_unref (self->end); parent_class->finalize (node); } static void gsk_cross_fade_node_draw (GskRenderNode *node, cairo_t *cr) { GskCrossFadeNode *self = (GskCrossFadeNode *) node; cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA); gsk_render_node_draw (self->start, cr); cairo_push_group_with_content (cr, CAIRO_CONTENT_COLOR_ALPHA); gsk_render_node_draw (self->end, cr); cairo_pop_group_to_source (cr); cairo_set_operator (cr, CAIRO_OPERATOR_SOURCE); cairo_paint_with_alpha (cr, self->progress); cairo_pop_group_to_source (cr); /* resets operator */ cairo_paint (cr); } static void gsk_cross_fade_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskCrossFadeNode *self1 = (GskCrossFadeNode *) node1; GskCrossFadeNode *self2 = (GskCrossFadeNode *) node2; if (self1->progress == self2->progress) { gsk_render_node_data_diff (self1->start, self2->start, data); gsk_render_node_data_diff (self1->end, self2->end, data); return; } gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_cross_fade_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_CROSS_FADE_NODE; node_class->finalize = gsk_cross_fade_node_finalize; node_class->draw = gsk_cross_fade_node_draw; node_class->diff = gsk_cross_fade_node_diff; } /** * gsk_cross_fade_node_new: * @start: The start node to be drawn * @end: The node to be cross_fadeed onto the @start node * @progress: How far the fade has progressed from start to end. The value will * be clamped to the range [0 ... 1] * * Creates a `GskRenderNode` that will do a cross-fade between @start and @end. * * Returns: (transfer full) (type GskCrossFadeNode): A new `GskRenderNode` */ GskRenderNode * gsk_cross_fade_node_new (GskRenderNode *start, GskRenderNode *end, float progress) { GskCrossFadeNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (start), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (end), NULL); self = gsk_render_node_alloc (GSK_CROSS_FADE_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = TRUE; self->start = gsk_render_node_ref (start); self->end = gsk_render_node_ref (end); self->progress = CLAMP (progress, 0.0, 1.0); graphene_rect_union (&start->bounds, &end->bounds, &node->bounds); node->preferred_depth = gdk_memory_depth_merge (gsk_render_node_get_preferred_depth (start), gsk_render_node_get_preferred_depth (end)); return node; } /** * gsk_cross_fade_node_get_start_child: * @node: (type GskCrossFadeNode): a cross-fading `GskRenderNode` * * Retrieves the child `GskRenderNode` at the beginning of the cross-fade. * * Returns: (transfer none): a `GskRenderNode` */ GskRenderNode * gsk_cross_fade_node_get_start_child (const GskRenderNode *node) { const GskCrossFadeNode *self = (const GskCrossFadeNode *) node; return self->start; } /** * gsk_cross_fade_node_get_end_child: * @node: (type GskCrossFadeNode): a cross-fading `GskRenderNode` * * Retrieves the child `GskRenderNode` at the end of the cross-fade. * * Returns: (transfer none): a `GskRenderNode` */ GskRenderNode * gsk_cross_fade_node_get_end_child (const GskRenderNode *node) { const GskCrossFadeNode *self = (const GskCrossFadeNode *) node; return self->end; } /** * gsk_cross_fade_node_get_progress: * @node: (type GskCrossFadeNode): a cross-fading `GskRenderNode` * * Retrieves the progress value of the cross fade. * * Returns: the progress value, between 0 and 1 */ float gsk_cross_fade_node_get_progress (const GskRenderNode *node) { const GskCrossFadeNode *self = (const GskCrossFadeNode *) node; return self->progress; } /* }}} */ /* {{{ GSK_TEXT_NODE */ /** * GskTextNode: * * A render node drawing a set of glyphs. */ struct _GskTextNode { GskRenderNode render_node; PangoFont *font; gboolean has_color_glyphs; GdkRGBA color; graphene_point_t offset; guint num_glyphs; PangoGlyphInfo *glyphs; }; static void gsk_text_node_finalize (GskRenderNode *node) { GskTextNode *self = (GskTextNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_TEXT_NODE)); g_object_unref (self->font); g_free (self->glyphs); parent_class->finalize (node); } static void gsk_text_node_draw (GskRenderNode *node, cairo_t *cr) { GskTextNode *self = (GskTextNode *) node; PangoGlyphString glyphs; glyphs.num_glyphs = self->num_glyphs; glyphs.glyphs = self->glyphs; glyphs.log_clusters = NULL; cairo_save (cr); gdk_cairo_set_source_rgba (cr, &self->color); cairo_translate (cr, self->offset.x, self->offset.y); pango_cairo_show_glyph_string (cr, self->font, &glyphs); cairo_restore (cr); } static void gsk_text_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskTextNode *self1 = (GskTextNode *) node1; GskTextNode *self2 = (GskTextNode *) node2; if (self1->font == self2->font && gdk_rgba_equal (&self1->color, &self2->color) && graphene_point_equal (&self1->offset, &self2->offset) && self1->num_glyphs == self2->num_glyphs) { guint i; for (i = 0; i < self1->num_glyphs; i++) { PangoGlyphInfo *info1 = &self1->glyphs[i]; PangoGlyphInfo *info2 = &self2->glyphs[i]; if (info1->glyph == info2->glyph && info1->geometry.width == info2->geometry.width && info1->geometry.x_offset == info2->geometry.x_offset && info1->geometry.y_offset == info2->geometry.y_offset && info1->attr.is_cluster_start == info2->attr.is_cluster_start && info1->attr.is_color == info2->attr.is_color) continue; gsk_render_node_diff_impossible (node1, node2, data); return; } return; } gsk_render_node_diff_impossible (node1, node2, data); } static void gsk_text_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_TEXT_NODE; node_class->finalize = gsk_text_node_finalize; node_class->draw = gsk_text_node_draw; node_class->diff = gsk_text_node_diff; } /** * gsk_text_node_new: * @font: the `PangoFont` containing the glyphs * @glyphs: the `PangoGlyphString` to render * @color: the foreground color to render with * @offset: offset of the baseline * * Creates a render node that renders the given glyphs. * * Note that @color may not be used if the font contains * color glyphs. * * Returns: (nullable) (transfer full) (type GskTextNode): a new `GskRenderNode` */ GskRenderNode * gsk_text_node_new (PangoFont *font, PangoGlyphString *glyphs, const GdkRGBA *color, const graphene_point_t *offset) { GskTextNode *self; GskRenderNode *node; PangoRectangle ink_rect; PangoGlyphInfo *glyph_infos; int n; pango_glyph_string_extents (glyphs, font, &ink_rect, NULL); pango_extents_to_pixels (&ink_rect, NULL); /* Don't create nodes with empty bounds */ if (ink_rect.width == 0 || ink_rect.height == 0) return NULL; self = gsk_render_node_alloc (GSK_TEXT_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = FALSE; self->font = g_object_ref (font); self->color = *color; self->offset = *offset; self->has_color_glyphs = FALSE; glyph_infos = g_malloc_n (glyphs->num_glyphs, sizeof (PangoGlyphInfo)); n = 0; for (int i = 0; i < glyphs->num_glyphs; i++) { /* skip empty glyphs */ if (glyphs->glyphs[i].glyph == PANGO_GLYPH_EMPTY) continue; glyph_infos[n] = glyphs->glyphs[i]; if (glyphs->glyphs[i].attr.is_color) self->has_color_glyphs = TRUE; n++; } self->glyphs = glyph_infos; self->num_glyphs = n; graphene_rect_init (&node->bounds, offset->x + ink_rect.x - 1, offset->y + ink_rect.y - 1, ink_rect.width + 2, ink_rect.height + 2); return node; } /** * gsk_text_node_get_color: * @node: (type GskTextNode): a text `GskRenderNode` * * Retrieves the color used by the text @node. * * Returns: (transfer none): the text color */ const GdkRGBA * gsk_text_node_get_color (const GskRenderNode *node) { const GskTextNode *self = (const GskTextNode *) node; return &self->color; } /** * gsk_text_node_get_font: * @node: (type GskTextNode): The `GskRenderNode` * * Returns the font used by the text @node. * * Returns: (transfer none): the font */ PangoFont * gsk_text_node_get_font (const GskRenderNode *node) { const GskTextNode *self = (const GskTextNode *) node; return self->font; } /** * gsk_text_node_has_color_glyphs: * @node: (type GskTextNode): a text `GskRenderNode` * * Checks whether the text @node has color glyphs. * * Returns: %TRUE if the text node has color glyphs * * Since: 4.2 */ gboolean gsk_text_node_has_color_glyphs (const GskRenderNode *node) { const GskTextNode *self = (const GskTextNode *) node; return self->has_color_glyphs; } /** * gsk_text_node_get_num_glyphs: * @node: (type GskTextNode): a text `GskRenderNode` * * Retrieves the number of glyphs in the text node. * * Returns: the number of glyphs */ guint gsk_text_node_get_num_glyphs (const GskRenderNode *node) { const GskTextNode *self = (const GskTextNode *) node; return self->num_glyphs; } /** * gsk_text_node_get_glyphs: * @node: (type GskTextNode): a text `GskRenderNode` * @n_glyphs: (out) (optional): the number of glyphs returned * * Retrieves the glyph information in the @node. * * Returns: (transfer none) (array length=n_glyphs): the glyph information */ const PangoGlyphInfo * gsk_text_node_get_glyphs (const GskRenderNode *node, guint *n_glyphs) { const GskTextNode *self = (const GskTextNode *) node; if (n_glyphs != NULL) *n_glyphs = self->num_glyphs; return self->glyphs; } /** * gsk_text_node_get_offset: * @node: (type GskTextNode): a text `GskRenderNode` * * Retrieves the offset applied to the text. * * Returns: (transfer none): a point with the horizontal and vertical offsets */ const graphene_point_t * gsk_text_node_get_offset (const GskRenderNode *node) { const GskTextNode *self = (const GskTextNode *) node; return &self->offset; } /* }}} */ /* {{{ GSK_BLUR_NODE */ /** * GskBlurNode: * * A render node applying a blur effect to its single child. */ struct _GskBlurNode { GskRenderNode render_node; GskRenderNode *child; float radius; }; static void gsk_blur_node_finalize (GskRenderNode *node) { GskBlurNode *self = (GskBlurNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_BLUR_NODE)); gsk_render_node_unref (self->child); parent_class->finalize (node); } static void blur_once (cairo_surface_t *src, cairo_surface_t *dest, int radius, guchar *div_kernel_size) { int width, height, src_rowstride, dest_rowstride, n_channels; guchar *p_src, *p_dest, *c1, *c2; int x, y, i, i1, i2, width_minus_1, height_minus_1, radius_plus_1; int r, g, b, a; guchar *p_dest_row, *p_dest_col; width = cairo_image_surface_get_width (src); height = cairo_image_surface_get_height (src); n_channels = 4; radius_plus_1 = radius + 1; /* horizontal blur */ p_src = cairo_image_surface_get_data (src); p_dest = cairo_image_surface_get_data (dest); src_rowstride = cairo_image_surface_get_stride (src); dest_rowstride = cairo_image_surface_get_stride (dest); width_minus_1 = width - 1; for (y = 0; y < height; y++) { /* calc the initial sums of the kernel */ r = g = b = a = 0; for (i = -radius; i <= radius; i++) { c1 = p_src + (CLAMP (i, 0, width_minus_1) * n_channels); r += c1[0]; g += c1[1]; b += c1[2]; a += c1[3]; } p_dest_row = p_dest; for (x = 0; x < width; x++) { /* set as the mean of the kernel */ p_dest_row[0] = div_kernel_size[r]; p_dest_row[1] = div_kernel_size[g]; p_dest_row[2] = div_kernel_size[b]; p_dest_row[3] = div_kernel_size[a]; p_dest_row += n_channels; /* the pixel to add to the kernel */ i1 = x + radius_plus_1; if (i1 > width_minus_1) i1 = width_minus_1; c1 = p_src + (i1 * n_channels); /* the pixel to remove from the kernel */ i2 = x - radius; if (i2 < 0) i2 = 0; c2 = p_src + (i2 * n_channels); /* calc the new sums of the kernel */ r += c1[0] - c2[0]; g += c1[1] - c2[1]; b += c1[2] - c2[2]; a += c1[3] - c2[3]; } p_src += src_rowstride; p_dest += dest_rowstride; } /* vertical blur */ p_src = cairo_image_surface_get_data (dest); p_dest = cairo_image_surface_get_data (src); src_rowstride = cairo_image_surface_get_stride (dest); dest_rowstride = cairo_image_surface_get_stride (src); height_minus_1 = height - 1; for (x = 0; x < width; x++) { /* calc the initial sums of the kernel */ r = g = b = a = 0; for (i = -radius; i <= radius; i++) { c1 = p_src + (CLAMP (i, 0, height_minus_1) * src_rowstride); r += c1[0]; g += c1[1]; b += c1[2]; a += c1[3]; } p_dest_col = p_dest; for (y = 0; y < height; y++) { /* set as the mean of the kernel */ p_dest_col[0] = div_kernel_size[r]; p_dest_col[1] = div_kernel_size[g]; p_dest_col[2] = div_kernel_size[b]; p_dest_col[3] = div_kernel_size[a]; p_dest_col += dest_rowstride; /* the pixel to add to the kernel */ i1 = y + radius_plus_1; if (i1 > height_minus_1) i1 = height_minus_1; c1 = p_src + (i1 * src_rowstride); /* the pixel to remove from the kernel */ i2 = y - radius; if (i2 < 0) i2 = 0; c2 = p_src + (i2 * src_rowstride); /* calc the new sums of the kernel */ r += c1[0] - c2[0]; g += c1[1] - c2[1]; b += c1[2] - c2[2]; a += c1[3] - c2[3]; } p_src += n_channels; p_dest += n_channels; } } static void blur_image_surface (cairo_surface_t *surface, int radius, int iterations) { int kernel_size; int i; guchar *div_kernel_size; cairo_surface_t *tmp; int width, height; g_assert (radius >= 0); width = cairo_image_surface_get_width (surface); height = cairo_image_surface_get_height (surface); tmp = cairo_image_surface_create (CAIRO_FORMAT_ARGB32, width, height); kernel_size = 2 * radius + 1; div_kernel_size = g_new (guchar, 256 * kernel_size); for (i = 0; i < 256 * kernel_size; i++) div_kernel_size[i] = (guchar) (i / kernel_size); while (iterations-- > 0) blur_once (surface, tmp, radius, div_kernel_size); g_free (div_kernel_size); cairo_surface_destroy (tmp); } static void gsk_blur_node_draw (GskRenderNode *node, cairo_t *cr) { GskBlurNode *self = (GskBlurNode *) node; cairo_pattern_t *pattern; cairo_surface_t *surface; cairo_surface_t *image_surface; cairo_save (cr); /* clip so the push_group() creates a smaller surface */ gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_push_group (cr); gsk_render_node_draw (self->child, cr); pattern = cairo_pop_group (cr); cairo_pattern_get_surface (pattern, &surface); image_surface = cairo_surface_map_to_image (surface, NULL); blur_image_surface (image_surface, (int)self->radius, 3); cairo_surface_mark_dirty (surface); cairo_surface_unmap_image (surface, image_surface); cairo_set_source (cr, pattern); cairo_rectangle (cr, node->bounds.origin.x, node->bounds.origin.y, node->bounds.size.width, node->bounds.size.height); cairo_fill (cr); cairo_restore (cr); cairo_pattern_destroy (pattern); } static void gsk_blur_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskBlurNode *self1 = (GskBlurNode *) node1; GskBlurNode *self2 = (GskBlurNode *) node2; if (self1->radius == self2->radius) { cairo_rectangle_int_t rect; cairo_region_t *sub; int i, n, clip_radius; clip_radius = ceil (gsk_cairo_blur_compute_pixels (self1->radius / 2.0)); sub = cairo_region_create (); gsk_render_node_data_diff (self1->child, self2->child, &(GskDiffData) {sub, data->offload }); n = cairo_region_num_rectangles (sub); for (i = 0; i < n; i++) { cairo_region_get_rectangle (sub, i, &rect); rect.x -= clip_radius; rect.y -= clip_radius; rect.width += 2 * clip_radius; rect.height += 2 * clip_radius; cairo_region_union_rectangle (data->region, &rect); } cairo_region_destroy (sub); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_blur_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_BLUR_NODE; node_class->finalize = gsk_blur_node_finalize; node_class->draw = gsk_blur_node_draw; node_class->diff = gsk_blur_node_diff; } /** * gsk_blur_node_new: * @child: the child node to blur * @radius: the blur radius. Must be positive * * Creates a render node that blurs the child. * * Returns: (transfer full) (type GskBlurNode): a new `GskRenderNode` */ GskRenderNode * gsk_blur_node_new (GskRenderNode *child, float radius) { GskBlurNode *self; GskRenderNode *node; float clip_radius; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); g_return_val_if_fail (radius >= 0, NULL); self = gsk_render_node_alloc (GSK_BLUR_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); self->radius = radius; clip_radius = gsk_cairo_blur_compute_pixels (radius / 2.0); graphene_rect_init_from_rect (&node->bounds, &child->bounds); graphene_rect_inset (&self->render_node.bounds, - clip_radius, - clip_radius); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_blur_node_get_child: * @node: (type GskBlurNode): a blur `GskRenderNode` * * Retrieves the child `GskRenderNode` of the blur @node. * * Returns: (transfer none): the blurred child node */ GskRenderNode * gsk_blur_node_get_child (const GskRenderNode *node) { const GskBlurNode *self = (const GskBlurNode *) node; return self->child; } /** * gsk_blur_node_get_radius: * @node: (type GskBlurNode): a blur `GskRenderNode` * * Retrieves the blur radius of the @node. * * Returns: the blur radius */ float gsk_blur_node_get_radius (const GskRenderNode *node) { const GskBlurNode *self = (const GskBlurNode *) node; return self->radius; } /* }}} */ /* {{{ GSK_MASK_NODE */ /** * GskMaskNode: * * A render node masking one child node with another. * * Since: 4.10 */ typedef struct _GskMaskNode GskMaskNode; struct _GskMaskNode { GskRenderNode render_node; GskRenderNode *mask; GskRenderNode *source; GskMaskMode mask_mode; }; static void gsk_mask_node_finalize (GskRenderNode *node) { GskMaskNode *self = (GskMaskNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_MASK_NODE)); gsk_render_node_unref (self->source); gsk_render_node_unref (self->mask); parent_class->finalize (node); } static void apply_luminance_to_pattern (cairo_pattern_t *pattern, gboolean invert_luminance) { cairo_surface_t *surface, *image_surface; guchar *data; gsize x, y, width, height, stride; int red, green, blue, alpha, luminance; guint32* pixel_data; cairo_pattern_get_surface (pattern, &surface); image_surface = cairo_surface_map_to_image (surface, NULL); data = cairo_image_surface_get_data (image_surface); width = cairo_image_surface_get_width (image_surface); height = cairo_image_surface_get_height (image_surface); stride = cairo_image_surface_get_stride (image_surface); for (y = 0; y < height; y++) { pixel_data = (guint32 *) data; for (x = 0; x < width; x++) { alpha = (pixel_data[x] >> 24) & 0xFF; red = (pixel_data[x] >> 16) & 0xFF; green = (pixel_data[x] >> 8) & 0xFF; blue = (pixel_data[x] >> 0) & 0xFF; luminance = 2126 * red + 7152 * green + 722 * blue; if (invert_luminance) luminance = 10000 * alpha - luminance; luminance = (luminance + 5000) / 10000; pixel_data[x] = luminance * 0x1010101; } data += stride; } cairo_surface_mark_dirty (image_surface); cairo_surface_unmap_image (surface, image_surface); /* https://gitlab.freedesktop.org/cairo/cairo/-/merge_requests/487 */ cairo_surface_mark_dirty (surface); } static void gsk_mask_node_draw (GskRenderNode *node, cairo_t *cr) { GskMaskNode *self = (GskMaskNode *) node; cairo_pattern_t *mask_pattern; graphene_matrix_t color_matrix; graphene_vec4_t color_offset; cairo_push_group (cr); gsk_render_node_draw (self->source, cr); cairo_pop_group_to_source (cr); cairo_push_group (cr); gsk_render_node_draw (self->mask, cr); mask_pattern = cairo_pop_group (cr); switch (self->mask_mode) { case GSK_MASK_MODE_ALPHA: break; case GSK_MASK_MODE_INVERTED_ALPHA: graphene_matrix_init_from_float (&color_matrix, (float[]){ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1 }); graphene_vec4_init (&color_offset, 1, 1, 1, 1); apply_color_matrix_to_pattern (mask_pattern, &color_matrix, &color_offset); break; case GSK_MASK_MODE_LUMINANCE: apply_luminance_to_pattern (mask_pattern, FALSE); break; case GSK_MASK_MODE_INVERTED_LUMINANCE: apply_luminance_to_pattern (mask_pattern, TRUE); break; default: g_assert_not_reached (); } gsk_cairo_rectangle (cr, &node->bounds); cairo_clip (cr); cairo_mask (cr, mask_pattern); cairo_pattern_destroy (mask_pattern); } static void gsk_mask_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskMaskNode *self1 = (GskMaskNode *) node1; GskMaskNode *self2 = (GskMaskNode *) node2; if (self1->mask_mode != self2->mask_mode) { gsk_render_node_diff_impossible (node1, node2, data); return; } gsk_render_node_data_diff (self1->source, self2->source, data); gsk_render_node_data_diff (self1->mask, self2->mask, data); } static void gsk_mask_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_MASK_NODE; node_class->finalize = gsk_mask_node_finalize; node_class->draw = gsk_mask_node_draw; node_class->diff = gsk_mask_node_diff; } /** * gsk_mask_node_new: * @source: The source node to be drawn * @mask: The node to be used as mask * @mask_mode: The mask mode to use * * Creates a `GskRenderNode` that will mask a given node by another. * * The @mask_mode determines how the 'mask values' are derived from * the colors of the @mask. Applying the mask consists of multiplying * the 'mask value' with the alpha of the source. * * Returns: (transfer full) (type GskMaskNode): A new `GskRenderNode` * * Since: 4.10 */ GskRenderNode * gsk_mask_node_new (GskRenderNode *source, GskRenderNode *mask, GskMaskMode mask_mode) { GskMaskNode *self; g_return_val_if_fail (GSK_IS_RENDER_NODE (source), NULL); g_return_val_if_fail (GSK_IS_RENDER_NODE (mask), NULL); self = gsk_render_node_alloc (GSK_MASK_NODE); self->source = gsk_render_node_ref (source); self->mask = gsk_render_node_ref (mask); self->mask_mode = mask_mode; self->render_node.bounds = source->bounds; self->render_node.preferred_depth = gsk_render_node_get_preferred_depth (source); return &self->render_node; } /** * gsk_mask_node_get_source: * @node: (type GskMaskNode): a mask `GskRenderNode` * * Retrieves the source `GskRenderNode` child of the @node. * * Returns: (transfer none): the source child node * * Since: 4.10 */ GskRenderNode * gsk_mask_node_get_source (const GskRenderNode *node) { const GskMaskNode *self = (const GskMaskNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_MASK_NODE), NULL); return self->source; } /** * gsk_mask_node_get_mask: * @node: (type GskMaskNode): a mask `GskRenderNode` * * Retrieves the mask `GskRenderNode` child of the @node. * * Returns: (transfer none): the mask child node * * Since: 4.10 */ GskRenderNode * gsk_mask_node_get_mask (const GskRenderNode *node) { const GskMaskNode *self = (const GskMaskNode *) node; g_return_val_if_fail (GSK_IS_RENDER_NODE_TYPE (node, GSK_MASK_NODE), NULL); return self->mask; } /** * gsk_mask_node_get_mask_mode: * @node: (type GskMaskNode): a blending `GskRenderNode` * * Retrieves the mask mode used by @node. * * Returns: the mask mode * * Since: 4.10 */ GskMaskMode gsk_mask_node_get_mask_mode (const GskRenderNode *node) { const GskMaskNode *self = (const GskMaskNode *) node; return self->mask_mode; } /* }}} */ /* {{{ GSK_DEBUG_NODE */ /** * GskDebugNode: * * A render node that emits a debugging message when drawing its * child node. */ struct _GskDebugNode { GskRenderNode render_node; GskRenderNode *child; char *message; }; static void gsk_debug_node_finalize (GskRenderNode *node) { GskDebugNode *self = (GskDebugNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_DEBUG_NODE)); gsk_render_node_unref (self->child); g_free (self->message); parent_class->finalize (node); } static void gsk_debug_node_draw (GskRenderNode *node, cairo_t *cr) { GskDebugNode *self = (GskDebugNode *) node; gsk_render_node_draw (self->child, cr); } static gboolean gsk_debug_node_can_diff (const GskRenderNode *node1, const GskRenderNode *node2) { GskDebugNode *self1 = (GskDebugNode *) node1; GskDebugNode *self2 = (GskDebugNode *) node2; return gsk_render_node_can_diff (self1->child, self2->child); } static void gsk_debug_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskDebugNode *self1 = (GskDebugNode *) node1; GskDebugNode *self2 = (GskDebugNode *) node2; gsk_render_node_data_diff (self1->child, self2->child, data); } static void gsk_debug_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_DEBUG_NODE; node_class->finalize = gsk_debug_node_finalize; node_class->draw = gsk_debug_node_draw; node_class->can_diff = gsk_debug_node_can_diff; node_class->diff = gsk_debug_node_diff; } /** * gsk_debug_node_new: * @child: The child to add debug info for * @message: (transfer full): The debug message * * Creates a `GskRenderNode` that will add debug information about * the given @child. * * Adding this node has no visual effect. * * Returns: (transfer full) (type GskDebugNode): A new `GskRenderNode` */ GskRenderNode * gsk_debug_node_new (GskRenderNode *child, char *message) { GskDebugNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_DEBUG_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); self->message = message; graphene_rect_init_from_rect (&node->bounds, &child->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_debug_node_get_child: * @node: (type GskDebugNode): a debug `GskRenderNode` * * Gets the child node that is getting drawn by the given @node. * * Returns: (transfer none): the child `GskRenderNode` **/ GskRenderNode * gsk_debug_node_get_child (const GskRenderNode *node) { const GskDebugNode *self = (const GskDebugNode *) node; return self->child; } /** * gsk_debug_node_get_message: * @node: (type GskDebugNode): a debug `GskRenderNode` * * Gets the debug message that was set on this node * * Returns: (transfer none): The debug message **/ const char * gsk_debug_node_get_message (const GskRenderNode *node) { const GskDebugNode *self = (const GskDebugNode *) node; return self->message; } /* }}} */ /* {{{ GSK_GL_SHADER_NODE */ /** * GskGLShaderNode: * * A render node using a GL shader when drawing its children nodes. */ struct _GskGLShaderNode { GskRenderNode render_node; GskGLShader *shader; GBytes *args; GskRenderNode **children; guint n_children; }; static void gsk_gl_shader_node_finalize (GskRenderNode *node) { GskGLShaderNode *self = (GskGLShaderNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_GL_SHADER_NODE)); for (guint i = 0; i < self->n_children; i++) gsk_render_node_unref (self->children[i]); g_free (self->children); g_bytes_unref (self->args); g_object_unref (self->shader); parent_class->finalize (node); } static void gsk_gl_shader_node_draw (GskRenderNode *node, cairo_t *cr) { cairo_set_source_rgb (cr, 255 / 255., 105 / 255., 180 / 255.); gsk_cairo_rectangle (cr, &node->bounds); cairo_fill (cr); } static void gsk_gl_shader_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskGLShaderNode *self1 = (GskGLShaderNode *) node1; GskGLShaderNode *self2 = (GskGLShaderNode *) node2; if (gsk_rect_equal (&node1->bounds, &node2->bounds) && self1->shader == self2->shader && g_bytes_compare (self1->args, self2->args) == 0 && self1->n_children == self2->n_children) { cairo_region_t *child_region = cairo_region_create(); for (guint i = 0; i < self1->n_children; i++) gsk_render_node_data_diff (self1->children[i], self2->children[i], &(GskDiffData) {child_region, data->offload }); if (!cairo_region_is_empty (child_region)) gsk_render_node_diff_impossible (node1, node2, data); cairo_region_destroy (child_region); } else { gsk_render_node_diff_impossible (node1, node2, data); } } static void gsk_gl_shader_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_GL_SHADER_NODE; node_class->finalize = gsk_gl_shader_node_finalize; node_class->draw = gsk_gl_shader_node_draw; node_class->diff = gsk_gl_shader_node_diff; } /** * gsk_gl_shader_node_new: * @shader: the `GskGLShader` * @bounds: the rectangle to render the shader into * @args: Arguments for the uniforms * @children: (nullable) (array length=n_children): array of child nodes, * these will be rendered to textures and used as input. * @n_children: Length of @children (currently the GL backend supports * up to 4 children) * * Creates a `GskRenderNode` that will render the given @shader into the * area given by @bounds. * * The @args is a block of data to use for uniform input, as per types and * offsets defined by the @shader. Normally this is generated by * [method@Gsk.GLShader.format_args] or [struct@Gsk.ShaderArgsBuilder]. * * See [class@Gsk.GLShader] for details about how the shader should be written. * * All the children will be rendered into textures (if they aren't already * `GskTextureNodes`, which will be used directly). These textures will be * sent as input to the shader. * * If the renderer doesn't support GL shaders, or if there is any problem * when compiling the shader, then the node will draw pink. You should use * [method@Gsk.GLShader.compile] to ensure the @shader will work for the * renderer before using it. * * Returns: (transfer full) (type GskGLShaderNode): A new `GskRenderNode` */ GskRenderNode * gsk_gl_shader_node_new (GskGLShader *shader, const graphene_rect_t *bounds, GBytes *args, GskRenderNode **children, guint n_children) { GskGLShaderNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_GL_SHADER (shader), NULL); g_return_val_if_fail (bounds != NULL, NULL); g_return_val_if_fail (args != NULL, NULL); g_return_val_if_fail (g_bytes_get_size (args) == gsk_gl_shader_get_args_size (shader), NULL); g_return_val_if_fail ((children == NULL && n_children == 0) || (n_children == gsk_gl_shader_get_n_textures (shader)), NULL); self = gsk_render_node_alloc (GSK_GL_SHADER_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = TRUE; graphene_rect_init_from_rect (&node->bounds, bounds); self->shader = g_object_ref (shader); self->args = g_bytes_ref (args); self->n_children = n_children; if (n_children > 0) { self->children = g_malloc_n (n_children, sizeof (GskRenderNode *)); for (guint i = 0; i < n_children; i++) { self->children[i] = gsk_render_node_ref (children[i]); node->preferred_depth = gdk_memory_depth_merge (node->preferred_depth, gsk_render_node_get_preferred_depth (children[i])); } } return node; } /** * gsk_gl_shader_node_get_n_children: * @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader * * Returns the number of children * * Returns: The number of children */ guint gsk_gl_shader_node_get_n_children (const GskRenderNode *node) { const GskGLShaderNode *self = (const GskGLShaderNode *) node; return self->n_children; } /** * gsk_gl_shader_node_get_child: * @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader * @idx: the position of the child to get * * Gets one of the children. * * Returns: (transfer none): the @idx'th child of @node */ GskRenderNode * gsk_gl_shader_node_get_child (const GskRenderNode *node, guint idx) { const GskGLShaderNode *self = (const GskGLShaderNode *) node; return self->children[idx]; } /** * gsk_gl_shader_node_get_shader: * @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader * * Gets shader code for the node. * * Returns: (transfer none): the `GskGLShader` shader */ GskGLShader * gsk_gl_shader_node_get_shader (const GskRenderNode *node) { const GskGLShaderNode *self = (const GskGLShaderNode *) node; return self->shader; } /** * gsk_gl_shader_node_get_args: * @node: (type GskGLShaderNode): a `GskRenderNode` for a gl shader * * Gets args for the node. * * Returns: (transfer none): A `GBytes` with the uniform arguments */ GBytes * gsk_gl_shader_node_get_args (const GskRenderNode *node) { const GskGLShaderNode *self = (const GskGLShaderNode *) node; return self->args; } /* }}} */ /* {{{ GSK_SUBSURFACE_NODE */ /** * GskSubsurfaceNode: * * A render node that potentially diverts a part of the scene graph to a subsurface. */ struct _GskSubsurfaceNode { GskRenderNode render_node; GskRenderNode *child; GdkSubsurface *subsurface; }; static void gsk_subsurface_node_finalize (GskRenderNode *node) { GskSubsurfaceNode *self = (GskSubsurfaceNode *) node; GskRenderNodeClass *parent_class = g_type_class_peek (g_type_parent (GSK_TYPE_SUBSURFACE_NODE)); gsk_render_node_unref (self->child); g_clear_object (&self->subsurface); parent_class->finalize (node); } static void gsk_subsurface_node_draw (GskRenderNode *node, cairo_t *cr) { GskSubsurfaceNode *self = (GskSubsurfaceNode *) node; gsk_render_node_draw (self->child, cr); } static gboolean gsk_subsurface_node_can_diff (const GskRenderNode *node1, const GskRenderNode *node2) { GskSubsurfaceNode *self1 = (GskSubsurfaceNode *) node1; GskSubsurfaceNode *self2 = (GskSubsurfaceNode *) node2; return self1->subsurface == self2->subsurface; } static void gsk_subsurface_node_diff (GskRenderNode *node1, GskRenderNode *node2, GskDiffData *data) { GskSubsurfaceNode *self1 = (GskSubsurfaceNode *) node1; GskSubsurfaceNode *self2 = (GskSubsurfaceNode *) node2; if (data->offload) { /* Include the full area if the offload status changed. */ if (gsk_offload_subsurface_was_offloaded (data->offload, self1->subsurface) != gsk_offload_subsurface_is_offloaded (data->offload, self1->subsurface)) { gsk_render_node_diff_impossible (node1, node2, data); } else if (gsk_offload_subsurface_is_offloaded (data->offload, self1->subsurface)) { if (!gsk_rect_equal (&node1->bounds, &node2->bounds)) gsk_render_node_diff_impossible (node1, node2, data); } else { gsk_render_node_data_diff (self1->child, self2->child, data); } } else gsk_render_node_data_diff (self1->child, self2->child, data); } static void gsk_subsurface_node_class_init (gpointer g_class, gpointer class_data) { GskRenderNodeClass *node_class = g_class; node_class->node_type = GSK_SUBSURFACE_NODE; node_class->finalize = gsk_subsurface_node_finalize; node_class->draw = gsk_subsurface_node_draw; node_class->can_diff = gsk_subsurface_node_can_diff; node_class->diff = gsk_subsurface_node_diff; } /** * gsk_subsurface_node_new: * @child: The child to divert to a subsurface * @subsurface: (nullable): the subsurface to use * * Creates a `GskRenderNode` that will possibly divert the child * node to a subsurface. * * Returns: (transfer full) (type GskSubsurfaceNode): A new `GskRenderNode` * * Since: 4.14 */ GskRenderNode * gsk_subsurface_node_new (GskRenderNode *child, gpointer subsurface) { GskSubsurfaceNode *self; GskRenderNode *node; g_return_val_if_fail (GSK_IS_RENDER_NODE (child), NULL); self = gsk_render_node_alloc (GSK_SUBSURFACE_NODE); node = (GskRenderNode *) self; node->offscreen_for_opacity = child->offscreen_for_opacity; self->child = gsk_render_node_ref (child); if (subsurface) self->subsurface = g_object_ref (subsurface); else self->subsurface = NULL; graphene_rect_init_from_rect (&node->bounds, &child->bounds); node->preferred_depth = gsk_render_node_get_preferred_depth (child); return node; } /** * gsk_subsurface_node_get_child: * @node: (type GskSubsurfaceNode): a debug `GskRenderNode` * * Gets the child node that is getting drawn by the given @node. * * Returns: (transfer none): the child `GskRenderNode` * * Since: 4.14 */ GskRenderNode * gsk_subsurface_node_get_child (const GskRenderNode *node) { const GskSubsurfaceNode *self = (const GskSubsurfaceNode *) node; return self->child; } /** * gsk_subsurface_node_get_subsurface: * @node: (type GskDebugNode): a debug `GskRenderNode` * * Gets the subsurface that was set on this node * * Returns: (transfer none) (nullable): the subsurface * * Since: 4.14 */ gpointer gsk_subsurface_node_get_subsurface (const GskRenderNode *node) { const GskSubsurfaceNode *self = (const GskSubsurfaceNode *) node; return self->subsurface; } /* }}} */ GType gsk_render_node_types[GSK_RENDER_NODE_TYPE_N_TYPES]; #ifndef I_ # define I_(str) g_intern_static_string ((str)) #endif #define GSK_DEFINE_RENDER_NODE_TYPE(type_name, TYPE_ENUM_VALUE) \ GType \ type_name ## _get_type (void) { \ gsk_render_node_init_types (); \ g_assert (gsk_render_node_types[TYPE_ENUM_VALUE] != G_TYPE_INVALID); \ return gsk_render_node_types[TYPE_ENUM_VALUE]; \ } GSK_DEFINE_RENDER_NODE_TYPE (gsk_container_node, GSK_CONTAINER_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_cairo_node, GSK_CAIRO_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_color_node, GSK_COLOR_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_linear_gradient_node, GSK_LINEAR_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeating_linear_gradient_node, GSK_REPEATING_LINEAR_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_radial_gradient_node, GSK_RADIAL_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeating_radial_gradient_node, GSK_REPEATING_RADIAL_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_conic_gradient_node, GSK_CONIC_GRADIENT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_border_node, GSK_BORDER_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_texture_node, GSK_TEXTURE_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_texture_scale_node, GSK_TEXTURE_SCALE_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_inset_shadow_node, GSK_INSET_SHADOW_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_outset_shadow_node, GSK_OUTSET_SHADOW_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_transform_node, GSK_TRANSFORM_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_opacity_node, GSK_OPACITY_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_color_matrix_node, GSK_COLOR_MATRIX_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_repeat_node, GSK_REPEAT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_clip_node, GSK_CLIP_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_rounded_clip_node, GSK_ROUNDED_CLIP_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_fill_node, GSK_FILL_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_stroke_node, GSK_STROKE_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_shadow_node, GSK_SHADOW_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_blend_node, GSK_BLEND_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_cross_fade_node, GSK_CROSS_FADE_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_text_node, GSK_TEXT_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_blur_node, GSK_BLUR_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_mask_node, GSK_MASK_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_gl_shader_node, GSK_GL_SHADER_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_debug_node, GSK_DEBUG_NODE) GSK_DEFINE_RENDER_NODE_TYPE (gsk_subsurface_node, GSK_SUBSURFACE_NODE) static void gsk_render_node_init_types_once (void) { GType node_type; node_type = gsk_render_node_type_register_static (I_("GskContainerNode"), sizeof (GskContainerNode), gsk_container_node_class_init); gsk_render_node_types[GSK_CONTAINER_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskCairoNode"), sizeof (GskCairoNode), gsk_cairo_node_class_init); gsk_render_node_types[GSK_CAIRO_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskColorNode"), sizeof (GskColorNode), gsk_color_node_class_init); gsk_render_node_types[GSK_COLOR_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskLinearGradientNode"), sizeof (GskLinearGradientNode), gsk_linear_gradient_node_class_init); gsk_render_node_types[GSK_LINEAR_GRADIENT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskRepeatingLinearGradientNode"), sizeof (GskLinearGradientNode), gsk_repeating_linear_gradient_node_class_init); gsk_render_node_types[GSK_REPEATING_LINEAR_GRADIENT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskRadialGradientNode"), sizeof (GskRadialGradientNode), gsk_radial_gradient_node_class_init); gsk_render_node_types[GSK_RADIAL_GRADIENT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskRepeatingRadialGradientNode"), sizeof (GskRadialGradientNode), gsk_repeating_radial_gradient_node_class_init); gsk_render_node_types[GSK_REPEATING_RADIAL_GRADIENT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskConicGradientNode"), sizeof (GskConicGradientNode), gsk_conic_gradient_node_class_init); gsk_render_node_types[GSK_CONIC_GRADIENT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskBorderNode"), sizeof (GskBorderNode), gsk_border_node_class_init); gsk_render_node_types[GSK_BORDER_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskTextureNode"), sizeof (GskTextureNode), gsk_texture_node_class_init); gsk_render_node_types[GSK_TEXTURE_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskTextureScaleNode"), sizeof (GskTextureScaleNode), gsk_texture_scale_node_class_init); gsk_render_node_types[GSK_TEXTURE_SCALE_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskInsetShadowNode"), sizeof (GskInsetShadowNode), gsk_inset_shadow_node_class_init); gsk_render_node_types[GSK_INSET_SHADOW_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskOutsetShadowNode"), sizeof (GskOutsetShadowNode), gsk_outset_shadow_node_class_init); gsk_render_node_types[GSK_OUTSET_SHADOW_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskTransformNode"), sizeof (GskTransformNode), gsk_transform_node_class_init); gsk_render_node_types[GSK_TRANSFORM_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskOpacityNode"), sizeof (GskOpacityNode), gsk_opacity_node_class_init); gsk_render_node_types[GSK_OPACITY_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskColorMatrixNode"), sizeof (GskColorMatrixNode), gsk_color_matrix_node_class_init); gsk_render_node_types[GSK_COLOR_MATRIX_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskRepeatNode"), sizeof (GskRepeatNode), gsk_repeat_node_class_init); gsk_render_node_types[GSK_REPEAT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskClipNode"), sizeof (GskClipNode), gsk_clip_node_class_init); gsk_render_node_types[GSK_CLIP_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskRoundedClipNode"), sizeof (GskRoundedClipNode), gsk_rounded_clip_node_class_init); gsk_render_node_types[GSK_ROUNDED_CLIP_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskShadowNode"), sizeof (GskShadowNode), gsk_shadow_node_class_init); gsk_render_node_types[GSK_SHADOW_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskBlendNode"), sizeof (GskBlendNode), gsk_blend_node_class_init); gsk_render_node_types[GSK_BLEND_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskCrossFadeNode"), sizeof (GskCrossFadeNode), gsk_cross_fade_node_class_init); gsk_render_node_types[GSK_CROSS_FADE_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskTextNode"), sizeof (GskTextNode), gsk_text_node_class_init); gsk_render_node_types[GSK_TEXT_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskBlurNode"), sizeof (GskBlurNode), gsk_blur_node_class_init); gsk_render_node_types[GSK_BLUR_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskMaskNode"), sizeof (GskMaskNode), gsk_mask_node_class_init); gsk_render_node_types[GSK_MASK_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskGLShaderNode"), sizeof (GskGLShaderNode), gsk_gl_shader_node_class_init); gsk_render_node_types[GSK_GL_SHADER_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskDebugNode"), sizeof (GskDebugNode), gsk_debug_node_class_init); gsk_render_node_types[GSK_DEBUG_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskFillNode"), sizeof (GskFillNode), gsk_fill_node_class_init); gsk_render_node_types[GSK_FILL_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskStrokeNode"), sizeof (GskStrokeNode), gsk_stroke_node_class_init); gsk_render_node_types[GSK_STROKE_NODE] = node_type; node_type = gsk_render_node_type_register_static (I_("GskSubsurfaceNode"), sizeof (GskSubsurfaceNode), gsk_subsurface_node_class_init); gsk_render_node_types[GSK_SUBSURFACE_NODE] = node_type; } static void gsk_render_node_serialize_bytes_finish (GObject *source, GAsyncResult *result, gpointer serializer) { GOutputStream *stream = G_OUTPUT_STREAM (source); GError *error = NULL; if (g_output_stream_splice_finish (stream, result, &error) < 0) gdk_content_serializer_return_error (serializer, error); else gdk_content_serializer_return_success (serializer); } static void gsk_render_node_serialize_bytes (GdkContentSerializer *serializer, GBytes *bytes) { GInputStream *input; input = g_memory_input_stream_new_from_bytes (bytes); g_output_stream_splice_async (gdk_content_serializer_get_output_stream (serializer), input, G_OUTPUT_STREAM_SPLICE_CLOSE_SOURCE, gdk_content_serializer_get_priority (serializer), gdk_content_serializer_get_cancellable (serializer), gsk_render_node_serialize_bytes_finish, serializer); g_object_unref (input); g_bytes_unref (bytes); } #ifdef CAIRO_HAS_SVG_SURFACE static cairo_status_t gsk_render_node_cairo_serializer_write (gpointer user_data, const unsigned char *data, unsigned int length) { g_byte_array_append (user_data, data, length); return CAIRO_STATUS_SUCCESS; } static void gsk_render_node_svg_serializer (GdkContentSerializer *serializer) { GskRenderNode *node; cairo_surface_t *surface; cairo_t *cr; graphene_rect_t bounds; GByteArray *array; node = gsk_value_get_render_node (gdk_content_serializer_get_value (serializer)); gsk_render_node_get_bounds (node, &bounds); array = g_byte_array_new (); surface = cairo_svg_surface_create_for_stream (gsk_render_node_cairo_serializer_write, array, bounds.size.width, bounds.size.height); cairo_svg_surface_set_document_unit (surface, CAIRO_SVG_UNIT_PX); cairo_surface_set_device_offset (surface, -bounds.origin.x, -bounds.origin.y); cr = cairo_create (surface); gsk_render_node_draw (node, cr); cairo_destroy (cr); cairo_surface_finish (surface); if (cairo_surface_status (surface) == CAIRO_STATUS_SUCCESS) { gsk_render_node_serialize_bytes (serializer, g_byte_array_free_to_bytes (array)); } else { GError *error = g_error_new_literal (G_IO_ERROR, G_IO_ERROR_FAILED, cairo_status_to_string (cairo_surface_status (surface))); gdk_content_serializer_return_error (serializer, error); g_byte_array_unref (array); } cairo_surface_destroy (surface); } #endif static void gsk_render_node_png_serializer (GdkContentSerializer *serializer) { GskRenderNode *node; GdkTexture *texture; GskRenderer *renderer; GBytes *bytes; node = gsk_value_get_render_node (gdk_content_serializer_get_value (serializer)); renderer = gsk_gl_renderer_new (); if (!gsk_renderer_realize (renderer, NULL, NULL)) { g_object_unref (renderer); renderer = gsk_cairo_renderer_new (); if (!gsk_renderer_realize (renderer, NULL, NULL)) { g_assert_not_reached (); } } texture = gsk_renderer_render_texture (renderer, node, NULL); gsk_renderer_unrealize (renderer); g_object_unref (renderer); bytes = gdk_texture_save_to_png_bytes (texture); g_object_unref (texture); gsk_render_node_serialize_bytes (serializer, bytes); } static void gsk_render_node_content_serializer (GdkContentSerializer *serializer) { const GValue *value; GskRenderNode *node; GBytes *bytes; value = gdk_content_serializer_get_value (serializer); node = gsk_value_get_render_node (value); bytes = gsk_render_node_serialize (node); gsk_render_node_serialize_bytes (serializer, bytes); } static void gsk_render_node_content_deserializer_finish (GObject *source, GAsyncResult *result, gpointer deserializer) { GOutputStream *stream = G_OUTPUT_STREAM (source); GError *error = NULL; gssize written; GValue *value; GskRenderNode *node; GBytes *bytes; written = g_output_stream_splice_finish (stream, result, &error); if (written < 0) { gdk_content_deserializer_return_error (deserializer, error); return; } bytes = g_memory_output_stream_steal_as_bytes (G_MEMORY_OUTPUT_STREAM (stream)); /* For now, we ignore any parsing errors. We might want to revisit that if it turns * out copy/paste leads to too many errors */ node = gsk_render_node_deserialize (bytes, NULL, NULL); value = gdk_content_deserializer_get_value (deserializer); gsk_value_take_render_node (value, node); gdk_content_deserializer_return_success (deserializer); } static void gsk_render_node_content_deserializer (GdkContentDeserializer *deserializer) { GOutputStream *output; output = g_memory_output_stream_new_resizable (); g_output_stream_splice_async (output, gdk_content_deserializer_get_input_stream (deserializer), G_OUTPUT_STREAM_SPLICE_CLOSE_SOURCE | G_OUTPUT_STREAM_SPLICE_CLOSE_TARGET, gdk_content_deserializer_get_priority (deserializer), gdk_content_deserializer_get_cancellable (deserializer), gsk_render_node_content_deserializer_finish, deserializer); g_object_unref (output); } static void gsk_render_node_init_content_serializers (void) { gdk_content_register_serializer (GSK_TYPE_RENDER_NODE, "application/x-gtk-render-node", gsk_render_node_content_serializer, NULL, NULL); gdk_content_register_serializer (GSK_TYPE_RENDER_NODE, "text/plain;charset=utf-8", gsk_render_node_content_serializer, NULL, NULL); /* The serialization format only outputs ASCII, so we can do this */ gdk_content_register_serializer (GSK_TYPE_RENDER_NODE, "text/plain", gsk_render_node_content_serializer, NULL, NULL); #ifdef CAIRO_HAS_SVG_SURFACE gdk_content_register_serializer (GSK_TYPE_RENDER_NODE, "image/svg+xml", gsk_render_node_svg_serializer, NULL, NULL); #endif gdk_content_register_serializer (GSK_TYPE_RENDER_NODE, "image/png", gsk_render_node_png_serializer, NULL, NULL); gdk_content_register_deserializer ("application/x-gtk-render-node", GSK_TYPE_RENDER_NODE, gsk_render_node_content_deserializer, NULL, NULL); } /*< private > * gsk_render_node_init_types: * * Initialize all the `GskRenderNode` types provided by GSK. */ void gsk_render_node_init_types (void) { static gsize register_types__volatile; if (g_once_init_enter (®ister_types__volatile)) { gboolean initialized = TRUE; gsk_render_node_init_types_once (); gsk_render_node_init_content_serializers (); g_once_init_leave (®ister_types__volatile, initialized); } } /* vim:set foldmethod=marker expandtab: */