gtk/gsk/gl/gskglrenderer.c
Matthias Clasen 7293fd517e glyph cache: Stop storing driver and render
This is the first step towards sharing glyph
caches across renderers.
2019-06-04 23:00:02 +00:00

3367 lines
115 KiB
C

#include "config.h"
#include "gskglrenderer.h"
#include "gskdebugprivate.h"
#include "gskenums.h"
#include "gskgldriverprivate.h"
#include "gskglprofilerprivate.h"
#include "gskprofilerprivate.h"
#include "gskrendererprivate.h"
#include "gsktransformprivate.h"
#include "gskshaderbuilderprivate.h"
#include "gskglglyphcacheprivate.h"
#include "gskgliconcacheprivate.h"
#include "gskglrenderopsprivate.h"
#include "gskcairoblurprivate.h"
#include "gskglshadowcacheprivate.h"
#include "gskglnodesampleprivate.h"
#include "gsktransform.h"
#include "gskprivate.h"
#include "gdk/gdkgltextureprivate.h"
#include "gdk/gdkglcontextprivate.h"
#include "gdk/gdkprofilerprivate.h"
#include <epoxy/gl.h>
#include <cairo-ft.h>
#define SHADER_VERSION_GLES 100
#define SHADER_VERSION_GL2_LEGACY 110
#define SHADER_VERSION_GL3_LEGACY 130
#define SHADER_VERSION_GL3 150
#define ORTHO_NEAR_PLANE -10000
#define ORTHO_FAR_PLANE 10000
#define HIGHLIGHT_FALLBACK 0
#define DEBUG_OPS 0
#define SHADOW_EXTRA_SIZE 4
#if DEBUG_OPS
#define OP_PRINT(format, ...) g_print(format, ## __VA_ARGS__)
#else
#define OP_PRINT(format, ...)
#endif
#define INIT_PROGRAM_UNIFORM_LOCATION(program_name, uniform_basename) \
G_STMT_START{\
self->program_name ## _program.program_name.uniform_basename ## _location = \
glGetUniformLocation(self->program_name ## _program.id, "u_" #uniform_basename);\
g_assert_cmpint (self->program_name ## _program.program_name.uniform_basename ## _location, >, -1); \
}G_STMT_END
#define INIT_COMMON_UNIFORM_LOCATION(program_ptr, uniform_basename) \
G_STMT_START{\
program_ptr->uniform_basename ## _location = \
glGetUniformLocation(program_ptr->id, "u_" #uniform_basename);\
}G_STMT_END
typedef enum
{
FORCE_OFFSCREEN = 1 << 0,
RESET_CLIP = 1 << 1,
RESET_OPACITY = 1 << 2,
DUMP_FRAMEBUFFER = 1 << 3
} OffscreenFlags;
static void G_GNUC_UNUSED
print_render_node_tree (GskRenderNode *root, int level)
{
#define INDENT 4
const guint type = gsk_render_node_get_node_type (root);
guint i;
switch (type)
{
case GSK_CONTAINER_NODE:
g_print ("%*s Container\n", level * INDENT, " ");
for (i = 0; i < gsk_container_node_get_n_children (root); i++)
print_render_node_tree (gsk_container_node_get_child (root, i), level + 1);
break;
case GSK_TRANSFORM_NODE:
g_print ("%*s Transform\n", level * INDENT, " ");
print_render_node_tree (gsk_transform_node_get_child (root), level + 1);
break;
case GSK_COLOR_MATRIX_NODE:
g_print ("%*s Color Matrix\n", level * INDENT, " ");
print_render_node_tree (gsk_color_matrix_node_get_child (root), level + 1);
break;
case GSK_CROSS_FADE_NODE:
g_print ("%*s Crossfade(%.2f)\n", level * INDENT, " ",
gsk_cross_fade_node_get_progress (root));
print_render_node_tree (gsk_cross_fade_node_get_start_child (root), level + 1);
print_render_node_tree (gsk_cross_fade_node_get_end_child (root), level + 1);
break;
case GSK_TEXT_NODE:
g_print ("%*s Text\n", level * INDENT, " ");
break;
case GSK_SHADOW_NODE:
g_print ("%*s Shadow\n", level * INDENT, " ");
print_render_node_tree (gsk_shadow_node_get_child (root), level + 1);
break;
case GSK_TEXTURE_NODE:
g_print ("%*s Texture %p\n", level * INDENT, " ", gsk_texture_node_get_texture (root));
break;
case GSK_DEBUG_NODE:
g_print ("%*s Debug: %s\n", level * INDENT, " ", gsk_debug_node_get_message (root));
print_render_node_tree (gsk_debug_node_get_child (root), level + 1);
break;
case GSK_CLIP_NODE:
g_print ("%*s Clip (%f, %f, %f, %f):\n", level * INDENT, " ",
root->bounds.origin.x, root->bounds.origin.y, root->bounds.size.width, root->bounds.size.height);
print_render_node_tree (gsk_clip_node_get_child (root), level + 1);
break;
default:
g_print ("%*s %s\n", level * INDENT, " ", root->node_class->type_name);
}
#undef INDENT
}
static void G_GNUC_UNUSED
dump_framebuffer (const char *filename, int w, int h)
{
int stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, w);
guchar *data = g_malloc (h * stride);
cairo_surface_t *s;
glReadPixels (0, 0, w, h, GL_BGRA, GL_UNSIGNED_BYTE, data);
s = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, w, h, stride);
cairo_surface_write_to_png (s, filename);
cairo_surface_destroy (s);
g_free (data);
}
static void G_GNUC_UNUSED
dump_node (GskRenderNode *node,
const char *filename)
{
const int surface_width = ceilf (node->bounds.size.width);
const int surface_height = ceilf (node->bounds.size.height);
cairo_surface_t *surface;
cairo_t *cr;
surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
surface_width,
surface_height);
cr = cairo_create (surface);
cairo_save (cr);
cairo_translate (cr, -node->bounds.origin.x, -node->bounds.origin.y);
gsk_render_node_draw (node, cr);
cairo_restore (cr);
cairo_destroy (cr);
cairo_surface_write_to_png (surface, filename);
cairo_surface_destroy (surface);
}
static gboolean
font_has_color_glyphs (const PangoFont *font)
{
cairo_scaled_font_t *scaled_font;
gboolean has_color = FALSE;
scaled_font = pango_cairo_font_get_scaled_font ((PangoCairoFont *)font);
if (cairo_scaled_font_get_type (scaled_font) == CAIRO_FONT_TYPE_FT)
{
FT_Face ft_face = cairo_ft_scaled_font_lock_face (scaled_font);
has_color = (FT_HAS_COLOR (ft_face) != 0);
cairo_ft_scaled_font_unlock_face (scaled_font);
}
return has_color;
}
static void
get_gl_scaling_filters (GskRenderNode *node,
int *min_filter_r,
int *mag_filter_r)
{
*min_filter_r = GL_LINEAR;
*mag_filter_r = GL_LINEAR;
}
static inline void
rgba_to_float (const GdkRGBA *c,
float *f)
{
f[0] = c->red;
f[1] = c->green;
f[2] = c->blue;
f[3] = c->alpha;
}
static inline void
sort_border_sides (const GdkRGBA *colors,
int *indices)
{
gboolean done[4] = {0, 0, 0, 0};
int i, k;
int cur = 0;
for (i = 0; i < 3; i ++)
{
if (done[i])
continue;
indices[cur] = i;
done[i] = TRUE;
cur ++;
for (k = i + 1; k < 4; k ++)
{
if (gdk_rgba_equal (&colors[k], &colors[i]))
{
indices[cur] = k;
done[k] = TRUE;
cur ++;
}
}
if (cur >= 4)
break;
}
}
static inline gboolean
color_matrix_modifies_alpha (GskRenderNode *node)
{
const graphene_matrix_t *matrix = gsk_color_matrix_node_peek_color_matrix (node);
const graphene_vec4_t *offset = gsk_color_matrix_node_peek_color_offset (node);
graphene_vec4_t row3;
if (graphene_vec4_get_w (offset) != 0.0f)
return TRUE;
graphene_matrix_get_row (matrix, 3, &row3);
return !graphene_vec4_equal (graphene_vec4_w_axis (), &row3);
}
static inline void
gsk_rounded_rect_shrink_to_minimum (GskRoundedRect *self)
{
self->bounds.size.width = ceilf (MAX (MAX (self->corner[0].width, self->corner[1].width),
MAX (self->corner[2].width, self->corner[3].width)) * 2);
self->bounds.size.height = ceilf (MAX (MAX (self->corner[0].height, self->corner[1].height),
MAX (self->corner[2].height, self->corner[3].height)) * 2);
}
static inline gboolean
node_supports_transform (GskRenderNode *node)
{
/* Some nodes can't handle non-trivial transforms without being
* rendered to a texture (e.g. rotated clips, etc.). Some however
* work just fine, mostly because they already draw their child
* to a texture and just render the texture manipulated in some
* way, think opacity or color matrix. */
const guint node_type = gsk_render_node_get_node_type (node);
switch (node_type)
{
case GSK_COLOR_NODE:
case GSK_OPACITY_NODE:
case GSK_COLOR_MATRIX_NODE:
case GSK_TEXTURE_NODE:
case GSK_TRANSFORM_NODE:
case GSK_CROSS_FADE_NODE:
case GSK_LINEAR_GRADIENT_NODE:
case GSK_DEBUG_NODE:
case GSK_TEXT_NODE:
return TRUE;
default:
return FALSE;
}
return FALSE;
}
static void gsk_gl_renderer_setup_render_mode (GskGLRenderer *self);
static void add_offscreen_ops (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *bounds,
GskRenderNode *child_node,
int *texture_id,
gboolean *is_offscreen,
guint flags);
static void gsk_gl_renderer_add_render_ops (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder);
struct _GskGLRenderer
{
GskRenderer parent_instance;
int scale_factor;
GdkGLContext *gl_context;
GskGLDriver *gl_driver;
GskGLProfiler *gl_profiler;
union {
Program programs[GL_N_PROGRAMS];
struct {
Program blit_program;
Program color_program;
Program coloring_program;
Program color_matrix_program;
Program linear_gradient_program;
Program blur_program;
Program inset_shadow_program;
Program outset_shadow_program;
Program unblurred_outset_shadow_program;
Program border_program;
Program cross_fade_program;
Program blend_program;
};
};
RenderOpBuilder op_builder;
GArray *render_ops;
GskGLGlyphCache glyph_cache;
GskGLIconCache icon_cache;
GskGLShadowCache shadow_cache;
#ifdef G_ENABLE_DEBUG
struct {
GQuark frames;
GQuark draw_calls;
} profile_counters;
struct {
GQuark cpu_time;
GQuark gpu_time;
} profile_timers;
#endif
cairo_region_t *render_region;
};
struct _GskGLRendererClass
{
GskRendererClass parent_class;
};
G_DEFINE_TYPE (GskGLRenderer, gsk_gl_renderer, GSK_TYPE_RENDERER)
static void G_GNUC_UNUSED
add_rect_ops (RenderOpBuilder *builder,
const graphene_rect_t *r)
{
const float min_x = r->origin.x;
const float min_y = r->origin.y;
const float max_x = min_x + r->size.width;
const float max_y = min_y + r->size.height;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
});
}
static void G_GNUC_UNUSED
add_rect_outline_ops (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *rect)
{
ops_set_program (builder, &self->color_program);
ops_set_color (builder, &(GdkRGBA) { 1, 0, 0, 1 });
add_rect_ops (builder,
&GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y,
1, rect->size.height));
add_rect_ops (builder,
&GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y,
rect->size.width, 1));
add_rect_ops (builder,
&GRAPHENE_RECT_INIT (rect->origin.x + rect->size.width - 1, rect->origin.y,
1, rect->size.height));
add_rect_ops (builder,
&GRAPHENE_RECT_INIT (rect->origin.x, rect->origin.y + rect->size.height - 1,
rect->size.width, 1));
}
static inline void
rounded_rect_to_floats (GskGLRenderer *self,
RenderOpBuilder *builder,
const GskRoundedRect *rect,
float *outline,
float *corner_widths,
float *corner_heights)
{
const float scale = ops_get_scale (builder);
int i;
graphene_rect_t transformed_bounds;
ops_transform_bounds_modelview (builder, &rect->bounds, &transformed_bounds);
outline[0] = transformed_bounds.origin.x;
outline[1] = transformed_bounds.origin.y;
outline[2] = transformed_bounds.size.width;
outline[3] = transformed_bounds.size.height;
for (i = 0; i < 4; i ++)
{
corner_widths[i] = rect->corner[i].width * scale;
corner_heights[i] = rect->corner[i].height * scale;
}
}
static inline void
render_fallback_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
const float scale = ops_get_scale (builder);
const int surface_width = ceilf (node->bounds.size.width) * scale;
const int surface_height = ceilf (node->bounds.size.height) * scale;
cairo_surface_t *surface;
cairo_surface_t *rendered_surface;
cairo_t *cr;
int cached_id;
int texture_id;
const GskQuadVertex offscreen_vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
};
if (surface_width <= 0 ||
surface_height <= 0)
return;
cached_id = gsk_gl_driver_get_texture_for_pointer (self->gl_driver, node);
if (cached_id != 0)
{
ops_set_program (builder, &self->blit_program);
ops_set_texture (builder, cached_id);
ops_draw (builder, offscreen_vertex_data);
return;
}
/* We first draw the recording surface on an image surface,
* just because the scaleY(-1) later otherwise screws up the
* rendering... */
{
rendered_surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
surface_width,
surface_height);
cairo_surface_set_device_scale (rendered_surface, scale, scale);
cr = cairo_create (rendered_surface);
cairo_save (cr);
cairo_translate (cr, -node->bounds.origin.x, -node->bounds.origin.y);
gsk_render_node_draw (node, cr);
cairo_restore (cr);
cairo_destroy (cr);
}
surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
surface_width,
surface_height);
cairo_surface_set_device_scale (surface, scale, scale);
cr = cairo_create (surface);
/* We draw upside down here, so it matches what GL does. */
cairo_save (cr);
cairo_scale (cr, 1, -1);
cairo_translate (cr, 0, -surface_height / scale);
cairo_set_source_surface (cr, rendered_surface, 0, 0);
cairo_rectangle (cr, 0, 0, surface_width, surface_height);
cairo_fill (cr);
cairo_restore (cr);
#if HIGHLIGHT_FALLBACK
if (gsk_render_node_get_node_type (node) != GSK_CAIRO_NODE)
{
cairo_move_to (cr, 0, 0);
cairo_rectangle (cr, 0, 0, node->bounds.size.width, node->bounds.size.height);
cairo_set_source_rgba (cr, 1, 0, 0, 1);
cairo_stroke (cr);
}
#endif
cairo_destroy (cr);
/* Upload the Cairo surface to a GL texture */
texture_id = gsk_gl_driver_create_texture (self->gl_driver,
surface_width,
surface_height);
gsk_gl_driver_bind_source_texture (self->gl_driver, texture_id);
gsk_gl_driver_init_texture_with_surface (self->gl_driver,
texture_id,
surface,
GL_NEAREST, GL_NEAREST);
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Fallback %s %d", node->node_class->type_name, texture_id);
cairo_surface_destroy (surface);
cairo_surface_destroy (rendered_surface);
gsk_gl_driver_set_texture_for_pointer (self->gl_driver, node, texture_id);
ops_set_program (builder, &self->blit_program);
ops_set_texture (builder, texture_id);
ops_draw (builder, offscreen_vertex_data);
}
static inline void
render_text_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GdkRGBA *color,
gboolean force_color)
{
const PangoFont *font = gsk_text_node_peek_font (node);
const PangoGlyphInfo *glyphs = gsk_text_node_peek_glyphs (node);
const float text_scale = ops_get_scale (builder);
guint num_glyphs = gsk_text_node_get_num_glyphs (node);
int i;
int x_position = 0;
const graphene_point_t *offset = gsk_text_node_get_offset (node);
float x = offset->x + builder->dx;
float y = offset->y + builder->dy;
/* If the font has color glyphs, we don't need to recolor anything */
if (!force_color && font_has_color_glyphs (font))
{
ops_set_program (builder, &self->blit_program);
}
else
{
ops_set_program (builder, &self->coloring_program);
ops_set_color (builder, color);
}
/* We use one quad per character, unlike the other nodes which
* use at most one quad altogether */
for (i = 0; i < num_glyphs; i++)
{
const PangoGlyphInfo *gi = &glyphs[i];
const GskGLCachedGlyph *glyph;
float glyph_x, glyph_y, glyph_w, glyph_h;
float tx, ty, tx2, ty2;
double cx;
double cy;
if (gi->glyph == PANGO_GLYPH_EMPTY)
continue;
glyph = gsk_gl_glyph_cache_lookup (&self->glyph_cache,
TRUE,
(PangoFont *)font,
gi->glyph,
text_scale);
/* e.g. whitespace */
if (glyph->draw_width <= 0 || glyph->draw_height <= 0 || glyph->scale <= 0)
goto next;
cx = (double)(x_position + gi->geometry.x_offset) / PANGO_SCALE;
cy = (double)(gi->geometry.y_offset) / PANGO_SCALE;
ops_set_texture (builder, gsk_gl_glyph_cache_get_glyph_texture_id (&self->glyph_cache,
self->gl_driver,
glyph));
tx = glyph->tx;
ty = glyph->ty;
tx2 = tx + glyph->tw;
ty2 = ty + glyph->th;
glyph_x = x + cx + glyph->draw_x;
glyph_y = y + cy + glyph->draw_y;
glyph_w = glyph->draw_width;
glyph_h = glyph->draw_height;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { glyph_x, glyph_y }, { tx, ty }, },
{ { glyph_x, glyph_y + glyph_h }, { tx, ty2 }, },
{ { glyph_x + glyph_w, glyph_y }, { tx2, ty }, },
{ { glyph_x + glyph_w, glyph_y + glyph_h }, { tx2, ty2 }, },
{ { glyph_x, glyph_y + glyph_h }, { tx, ty2 }, },
{ { glyph_x + glyph_w, glyph_y }, { tx2, ty }, },
});
next:
x_position += gi->geometry.width;
}
}
static inline void
render_border_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float scale = ops_get_scale (builder);
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
const GdkRGBA *colors = gsk_border_node_peek_colors (node);
const GskRoundedRect *rounded_outline = gsk_border_node_peek_outline (node);
const float *og_widths = gsk_border_node_peek_widths (node);
GskRoundedRect outline;
float widths[4];
int i;
struct {
float w;
float h;
} sizes[4];
for (i = 0; i < 4; i ++)
widths[i] = og_widths[i];
/* Top left */
if (widths[3] > 0)
sizes[0].w = MAX (widths[3], rounded_outline->corner[0].width);
else
sizes[0].w = 0;
if (widths[0] > 0)
sizes[0].h = MAX (widths[0], rounded_outline->corner[0].height);
else
sizes[0].h = 0;
/* Top right */
if (widths[1] > 0)
sizes[1].w = MAX (widths[1], rounded_outline->corner[1].width);
else
sizes[1].w = 0;
if (widths[0] > 0)
sizes[1].h = MAX (widths[0], rounded_outline->corner[1].height);
else
sizes[1].h = 0;
/* Bottom right */
if (widths[1] > 0)
sizes[2].w = MAX (widths[1], rounded_outline->corner[2].width);
else
sizes[2].w = 0;
if (widths[2] > 0)
sizes[2].h = MAX (widths[2], rounded_outline->corner[2].height);
else
sizes[2].h = 0;
/* Bottom left */
if (widths[3] > 0)
sizes[3].w = MAX (widths[3], rounded_outline->corner[3].width);
else
sizes[3].w = 0;
if (widths[2] > 0)
sizes[3].h = MAX (widths[2], rounded_outline->corner[3].height);
else
sizes[3].h = 0;
for (i = 0; i < 4; i ++)
widths[i] *= scale;
{
const GskQuadVertex side_data[4][6] = {
/* Top */
{
{ { min_x, min_y }, { 0, 1 }, }, /* Upper left */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
{ { max_x - sizes[1].w, min_y + sizes[1].h }, { 1, 0 }, }, /* Lower right */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
},
/* Right */
{
{ { max_x - sizes[1].w, min_y + sizes[1].h }, { 0, 1 }, }, /* Upper left */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
{ { max_x, max_y }, { 1, 0 }, }, /* Lower right */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 0, 0 }, }, /* Lower left */
{ { max_x, min_y }, { 1, 1 }, }, /* Upper right */
},
/* Bottom */
{
{ { min_x + sizes[3].w, max_y - sizes[3].h }, { 0, 1 }, }, /* Upper left */
{ { min_x, max_y }, { 0, 0 }, }, /* Lower left */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 1, 1 }, }, /* Upper right */
{ { max_x, max_y }, { 1, 0 }, }, /* Lower right */
{ { min_x , max_y }, { 0, 0 }, }, /* Lower left */
{ { max_x - sizes[2].w, max_y - sizes[2].h }, { 1, 1 }, }, /* Upper right */
},
/* Left */
{
{ { min_x, min_y }, { 0, 1 }, }, /* Upper left */
{ { min_x, max_y }, { 0, 0 }, }, /* Lower left */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 1, 1 }, }, /* Upper right */
{ { min_x + sizes[3].w, max_y - sizes[3].h }, { 1, 0 }, }, /* Lower right */
{ { min_x, max_y }, { 0, 0 }, }, /* Lower left */
{ { min_x + sizes[0].w, min_y + sizes[0].h }, { 1, 1 }, }, /* Upper right */
}
};
int indices[4] = { 0, 1, 2, 3 };
/* We sort them by color */
sort_border_sides (colors, indices);
/* Prepare outline */
outline = *rounded_outline;
ops_transform_bounds_modelview (builder, &outline.bounds, &outline.bounds);
for (i = 0; i < 4; i ++)
{
outline.corner[i].width *= scale;
outline.corner[i].height *= scale;
}
ops_set_program (builder, &self->border_program);
ops_set_border_width (builder, widths);
ops_set_border (builder, &outline);
for (i = 0; i < 4; i ++)
{
if (widths[indices[i]] > 0)
{
ops_set_border_color (builder, &colors[indices[i]]);
ops_draw (builder, side_data[indices[i]]);
}
}
}
}
static inline void
render_color_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
ops_set_program (builder, &self->color_program);
ops_set_color (builder, gsk_color_node_peek_color (node));
ops_draw (builder, vertex_data);
}
static inline void
render_texture_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GdkTexture *texture = gsk_texture_node_get_texture (node);
const int max_texture_size = gsk_gl_driver_get_max_texture_size (self->gl_driver);
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
if (texture->width > max_texture_size || texture->height > max_texture_size)
{
const float scale_x = (max_x - min_x) / texture->width;
const float scale_y = (max_y - min_y) / texture->height;
TextureSlice *slices;
guint n_slices;
guint i;
gsk_gl_driver_slice_texture (self->gl_driver, texture, &slices, &n_slices);
ops_set_program (builder, &self->blit_program);
for (i = 0; i < n_slices; i ++)
{
const TextureSlice *slice = &slices[i];
float x1, x2, y1, y2;
x1 = min_x + (scale_x * slice->rect.x);
x2 = x1 + (slice->rect.width * scale_x);
y1 = min_y + (scale_y * slice->rect.y);
y2 = y1 + (slice->rect.height * scale_y);
ops_set_texture (builder, slice->texture_id);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { 0, 0 }, },
{ { x1, y2 }, { 0, 1 }, },
{ { x2, y1 }, { 1, 0 }, },
{ { x2, y2 }, { 1, 1 }, },
{ { x1, y2 }, { 0, 1 }, },
{ { x2, y1 }, { 1, 0 }, },
});
}
}
else
{
int texture_id;
float tx = 0, ty = 0, tx2 = 1, ty2 = 1;
if (texture->width <= 64 &&
texture->height <= 64)
{
graphene_rect_t trect;
gsk_gl_icon_cache_lookup_or_add (&self->icon_cache,
texture,
&texture_id,
&trect);
tx = trect.origin.x;
ty = trect.origin.y;
tx2 = tx + trect.size.width;
ty2 = ty + trect.size.height;
}
else
{
int gl_min_filter = GL_NEAREST, gl_mag_filter = GL_NEAREST;
get_gl_scaling_filters (node, &gl_min_filter, &gl_mag_filter);
texture_id = gsk_gl_driver_get_texture_for_texture (self->gl_driver,
texture,
gl_min_filter,
gl_mag_filter);
}
ops_set_program (builder, &self->blit_program);
ops_set_texture (builder, texture_id);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { min_x, min_y }, { tx, ty }, },
{ { min_x, max_y }, { tx, ty2 }, },
{ { max_x, min_y }, { tx2, ty }, },
{ { max_x, max_y }, { tx2, ty2 }, },
{ { min_x, max_y }, { tx, ty2 }, },
{ { max_x, min_y }, { tx2, ty }, },
});
}
}
static inline void
render_transform_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskTransform *node_transform = gsk_transform_node_get_transform (node);
const GskTransformCategory category = gsk_transform_get_category (node_transform);
GskRenderNode *child = gsk_transform_node_get_child (node);
switch (category)
{
case GSK_TRANSFORM_CATEGORY_IDENTITY:
gsk_gl_renderer_add_render_ops (self, child, builder);
break;
case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE:
{
float dx, dy;
gsk_transform_to_translate (node_transform, &dx, &dy);
ops_offset (builder, dx, dy);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_offset (builder, -dx, -dy);
}
break;
case GSK_TRANSFORM_CATEGORY_2D_AFFINE:
{
ops_push_modelview (builder, node_transform);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_modelview (builder);
}
break;
case GSK_TRANSFORM_CATEGORY_UNKNOWN:
case GSK_TRANSFORM_CATEGORY_ANY:
case GSK_TRANSFORM_CATEGORY_3D:
case GSK_TRANSFORM_CATEGORY_2D:
default:
{
graphene_matrix_t mat;
if (node_supports_transform (child))
{
gsk_transform_to_matrix (node_transform, &mat);
ops_push_modelview (builder, node_transform);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_modelview (builder);
}
else
{
const float min_x = child->bounds.origin.x;
const float min_y = child->bounds.origin.y;
const float max_x = min_x + child->bounds.size.width;
const float max_y = min_y + child->bounds.size.height;
int texture_id;
gboolean is_offscreen;
/* For non-trivial transforms, we draw everything on a texture and then
* draw the texture transformed. */
/* TODO: We should compute a modelview containing only the "non-trivial"
* part (e.g. the rotation) and use that. We want to keep the scale
* for the texture.
*/
add_offscreen_ops (self, builder,
&child->bounds,
child,
&texture_id, &is_offscreen,
RESET_CLIP | RESET_OPACITY);
gsk_transform_to_matrix (node_transform, &mat);
ops_push_modelview (builder, node_transform);
ops_set_texture (builder, texture_id);
ops_set_program (builder, &self->blit_program);
if (is_offscreen)
{
const GskQuadVertex offscreen_vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
};
ops_draw (builder, offscreen_vertex_data);
}
else
{
const GskQuadVertex onscreen_vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 0 }, },
{ { min_x, max_y }, { 0, 1 }, },
{ { max_x, min_y }, { 1, 0 }, },
{ { max_x, max_y }, { 1, 1 }, },
{ { min_x, max_y }, { 0, 1 }, },
{ { max_x, min_y }, { 1, 0 }, },
};
ops_draw (builder, onscreen_vertex_data);
}
ops_pop_modelview (builder);
}
}
}
}
static inline void
render_opacity_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
float prev_opacity;
prev_opacity = ops_set_opacity (builder,
builder->current_opacity * gsk_opacity_node_get_opacity (node));
gsk_gl_renderer_add_render_ops (self, gsk_opacity_node_get_child (node), builder);
ops_set_opacity (builder, prev_opacity);
}
static inline void
render_linear_gradient_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
RenderOp op;
int n_color_stops = MIN (8, gsk_linear_gradient_node_get_n_color_stops (node));
const GskColorStop *stops = gsk_linear_gradient_node_peek_color_stops (node);
const graphene_point_t *start = gsk_linear_gradient_node_peek_start (node);
const graphene_point_t *end = gsk_linear_gradient_node_peek_end (node);
int i;
for (i = 0; i < n_color_stops; i ++)
{
const GskColorStop *stop = stops + i;
op.linear_gradient.color_stops[(i * 4) + 0] = stop->color.red;
op.linear_gradient.color_stops[(i * 4) + 1] = stop->color.green;
op.linear_gradient.color_stops[(i * 4) + 2] = stop->color.blue;
op.linear_gradient.color_stops[(i * 4) + 3] = stop->color.alpha;
op.linear_gradient.color_offsets[i] = stop->offset;
}
ops_set_program (builder, &self->linear_gradient_program);
op.op = OP_CHANGE_LINEAR_GRADIENT;
op.linear_gradient.n_color_stops = n_color_stops;
op.linear_gradient.start_point = *start;
op.linear_gradient.start_point.x += builder->dx;
op.linear_gradient.start_point.y += builder->dy;
op.linear_gradient.end_point = *end;
op.linear_gradient.end_point.x += builder->dx;
op.linear_gradient.end_point.y += builder->dy;
ops_add (builder, &op);
ops_draw (builder, vertex_data);
}
static inline void
render_clip_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *child = gsk_clip_node_get_child (node);
graphene_rect_t transformed_clip;
graphene_rect_t intersection;
GskRoundedRect child_clip;
transformed_clip = *gsk_clip_node_peek_clip (node);
ops_transform_bounds_modelview (builder, &transformed_clip, &transformed_clip);
graphene_rect_intersection (&transformed_clip,
&builder->current_clip->bounds,
&intersection);
gsk_rounded_rect_init_from_rect (&child_clip, &intersection, 0.0f);
ops_push_clip (builder, &child_clip);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_clip (builder);
}
static inline void
get_inner_rect (const GskRoundedRect *rect,
graphene_rect_t *out)
{
const float left = MAX (rect->corner[GSK_CORNER_TOP_LEFT].width,
rect->corner[GSK_CORNER_BOTTOM_LEFT].width);
const float top = MAX (rect->corner[GSK_CORNER_TOP_LEFT].height,
rect->corner[GSK_CORNER_TOP_RIGHT].height);
out->origin.x = rect->bounds.origin.x + left;
out->origin.y = rect->bounds.origin.y + top;
out->size.width = rect->bounds.size.width - left -
MAX (rect->corner[GSK_CORNER_TOP_RIGHT].width,
rect->corner[GSK_CORNER_BOTTOM_RIGHT].width);
out->size.height = rect->bounds.size.height - top -
MAX (rect->corner[GSK_CORNER_BOTTOM_LEFT].height,
rect->corner[GSK_CORNER_BOTTOM_RIGHT].height);
}
/* Best effort intersection of two rounded rectangles */
static gboolean
gsk_rounded_rect_intersection (const GskRoundedRect *outer,
const GskRoundedRect *inner,
GskRoundedRect *out_intersection)
{
const graphene_rect_t *outer_bounds = &outer->bounds;
const graphene_rect_t *inner_bounds = &inner->bounds;
graphene_rect_t outer_inner;
graphene_rect_t inner_inner;
gboolean contained_x;
gboolean contained_y;
get_inner_rect (outer, &outer_inner);
if (graphene_rect_contains_rect (&outer_inner, inner_bounds))
{
*out_intersection = *inner;
return TRUE;
}
get_inner_rect (inner, &inner_inner);
contained_x = outer_inner.origin.x <= inner_inner.origin.x &&
(outer_inner.origin.x + outer_inner.size.width) > (inner_inner.origin.x +
inner_inner.size.width);
contained_y = outer_inner.origin.y <= inner_inner.origin.y &&
(outer_inner.origin.y + outer_inner.size.height) > (inner_inner.origin.y +
inner_inner.size.height);
if (contained_x && !contained_y)
{
/* The intersection is @inner, but cut-off and with the cut-off corners
* set to size 0 */
*out_intersection = *inner;
if (inner_bounds->origin.y < outer_bounds->origin.y)
{
/* Set top corners to 0 */
graphene_rect_intersection (outer_bounds, inner_bounds, &out_intersection->bounds);
graphene_size_init (&out_intersection->corner[GSK_CORNER_TOP_LEFT], 0, 0);
graphene_size_init (&out_intersection->corner[GSK_CORNER_TOP_RIGHT], 0, 0);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_BOTTOM_LEFT],
&inner->corner[GSK_CORNER_BOTTOM_LEFT]);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_BOTTOM_RIGHT],
&inner->corner[GSK_CORNER_BOTTOM_RIGHT]);
return TRUE;
}
else if (inner_bounds->origin.y + inner_bounds->size.height >
outer_bounds->origin.y + outer_bounds->size.height)
{
/* Set bottom corners to 0 */
graphene_rect_intersection (outer_bounds, inner_bounds, &out_intersection->bounds);
graphene_size_init (&out_intersection->corner[GSK_CORNER_BOTTOM_LEFT], 0, 0);
graphene_size_init (&out_intersection->corner[GSK_CORNER_BOTTOM_RIGHT], 0, 0);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_TOP_LEFT],
&inner->corner[GSK_CORNER_TOP_LEFT]);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_TOP_RIGHT],
&inner->corner[GSK_CORNER_TOP_RIGHT]);
return TRUE;
}
}
else if (!contained_x && contained_y)
{
/* The intersection is @inner, but cut-off and with the cut-off corners
* set to size 0 */
*out_intersection = *inner;
if (inner_bounds->origin.x < outer_bounds->origin.x)
{
/* Set left corners to 0 */
graphene_rect_intersection (outer_bounds, inner_bounds, &out_intersection->bounds);
graphene_size_init (&out_intersection->corner[GSK_CORNER_TOP_LEFT], 0, 0);
graphene_size_init (&out_intersection->corner[GSK_CORNER_BOTTOM_LEFT], 0, 0);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_TOP_RIGHT],
&inner->corner[GSK_CORNER_TOP_RIGHT]);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_BOTTOM_RIGHT],
&inner->corner[GSK_CORNER_BOTTOM_RIGHT]);
return TRUE;
}
else if (inner_bounds->origin.x + inner_bounds->size.width >
outer_bounds->origin.x + outer_bounds->size.width)
{
/* Set right corners to 0 */
graphene_rect_intersection (outer_bounds, inner_bounds, &out_intersection->bounds);
graphene_size_init (&out_intersection->corner[GSK_CORNER_TOP_RIGHT], 0, 0);
graphene_size_init (&out_intersection->corner[GSK_CORNER_BOTTOM_RIGHT], 0, 0);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_TOP_LEFT],
&inner->corner[GSK_CORNER_TOP_LEFT]);
graphene_size_init_from_size (&out_intersection->corner[GSK_CORNER_BOTTOM_LEFT],
&inner->corner[GSK_CORNER_BOTTOM_LEFT]);
return TRUE;
}
}
/* Actually not possible or just too much work. */
return FALSE;
}
static inline void
render_rounded_clip_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float scale = ops_get_scale (builder);
GskRoundedRect child_clip = *gsk_rounded_clip_node_peek_clip (node);
GskRoundedRect transformed_clip;
GskRenderNode *child = gsk_rounded_clip_node_get_child (node);
GskRoundedRect intersection;
gboolean need_offscreen;
int i;
transformed_clip = child_clip;
ops_transform_bounds_modelview (builder, &child_clip.bounds, &transformed_clip.bounds);
if (!ops_has_clip (builder))
{
intersection = transformed_clip;
need_offscreen = FALSE;
}
else
{
need_offscreen = !gsk_rounded_rect_intersection (builder->current_clip,
&transformed_clip,
&intersection);
}
if (!need_offscreen)
{
/* If they don't intersect at all, we can simply set
* the new clip and add the render ops */
for (i = 0; i < 4; i ++)
{
intersection.corner[i].width *= scale;
intersection.corner[i].height *= scale;
}
ops_push_clip (builder, &intersection);
gsk_gl_renderer_add_render_ops (self, child, builder);
ops_pop_clip (builder);
}
else
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
graphene_matrix_t scale_matrix;
gboolean is_offscreen;
int texture_id;
/* NOTE: We are *not* transforming the clip by the current modelview here.
* We instead draw the untransformed clip to a texture and then transform
* that texture.
*
* We do, however, apply the scale factor to the child clip of course.
*/
graphene_matrix_init_scale (&scale_matrix, scale, scale, 1.0f);
graphene_matrix_transform_bounds (&scale_matrix, &child_clip.bounds, &child_clip.bounds);
/* Increase corner radius size by scale factor */
for (i = 0; i < 4; i ++)
{
child_clip.corner[i].width *= scale;
child_clip.corner[i].height *= scale;
}
ops_push_clip (builder, &child_clip);
add_offscreen_ops (self, builder, &node->bounds,
child,
&texture_id, &is_offscreen,
FORCE_OFFSCREEN | RESET_OPACITY);
ops_pop_clip (builder);
ops_set_program (builder, &self->blit_program);
ops_set_texture (builder, texture_id);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
});
}
/* Else this node is entirely out of the current clip node and we don't draw it anyway. */
}
static inline void
render_color_matrix_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
GskRenderNode *child = gsk_color_matrix_node_get_child (node);
int texture_id;
gboolean is_offscreen;
add_offscreen_ops (self, builder,
&node->bounds,
child,
&texture_id, &is_offscreen,
RESET_CLIP | RESET_OPACITY);
ops_set_program (builder, &self->color_matrix_program);
ops_set_color_matrix (builder,
gsk_color_matrix_node_peek_color_matrix (node),
gsk_color_matrix_node_peek_color_offset (node));
ops_set_texture (builder, texture_id);
if (is_offscreen)
{
GskQuadVertex offscreen_vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
};
ops_draw (builder, offscreen_vertex_data);
}
else
{
ops_draw (builder, vertex_data);
}
}
static inline void
render_blur_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
const float blur_radius = gsk_blur_node_get_radius (node);
int texture_id;
gboolean is_offscreen;
RenderOp op;
if (blur_radius <= 0)
{
gsk_gl_renderer_add_render_ops (self, gsk_blur_node_get_child (node), builder);
return;
}
/* TODO(perf): We're forcing the child offscreen even if it's a texture
* so the resulting offscreen texture is bigger by the gaussian blur factor
* (see gsk_blur_node_new), but we didn't have to do that if the blur
* shader could handle that situation. */
add_offscreen_ops (self, builder,
&node->bounds,
gsk_blur_node_get_child (node),
&texture_id, &is_offscreen,
RESET_CLIP | FORCE_OFFSCREEN | RESET_OPACITY);
ops_set_program (builder, &self->blur_program);
op.op = OP_CHANGE_BLUR;
graphene_size_init_from_size (&op.blur.size, &node->bounds.size);
op.blur.radius = gsk_blur_node_get_radius (node);
ops_add (builder, &op);
ops_set_texture (builder, texture_id);
if (is_offscreen)
{
GskQuadVertex offscreen_vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
};
ops_draw (builder, offscreen_vertex_data);
}
else
{
ops_draw (builder, vertex_data);
}
}
static inline void
render_inset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
const float scale = ops_get_scale (builder);
RenderOp op;
/* TODO: Implement blurred inset shadows as well */
if (gsk_inset_shadow_node_get_blur_radius (node) > 0)
{
render_fallback_node (self, node, builder);
return;
}
op.op = OP_CHANGE_INSET_SHADOW;
rgba_to_float (gsk_inset_shadow_node_peek_color (node), op.inset_shadow.color);
rounded_rect_to_floats (self, builder,
gsk_inset_shadow_node_peek_outline (node),
op.inset_shadow.outline,
op.inset_shadow.corner_widths,
op.inset_shadow.corner_heights);
op.inset_shadow.radius = gsk_inset_shadow_node_get_blur_radius (node) * scale;
op.inset_shadow.spread = gsk_inset_shadow_node_get_spread (node) * scale;
op.inset_shadow.offset[0] = gsk_inset_shadow_node_get_dx (node) * scale;
op.inset_shadow.offset[1] = -gsk_inset_shadow_node_get_dy (node) * scale;
ops_set_program (builder, &self->inset_shadow_program);
ops_add (builder, &op);
ops_draw (builder, vertex_data);
}
static inline void
render_unblurred_outset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
const float scale = ops_get_scale (builder);
const float spread = gsk_outset_shadow_node_get_spread (node);
GskRoundedRect r = *gsk_outset_shadow_node_peek_outline (node);
RenderOp op;
op.op = OP_CHANGE_UNBLURRED_OUTSET_SHADOW;
rgba_to_float (gsk_outset_shadow_node_peek_color (node), op.unblurred_outset_shadow.color);
gsk_rounded_rect_shrink (&r, -spread, -spread, -spread, -spread);
rounded_rect_to_floats (self, builder,
&r,
op.unblurred_outset_shadow.outline,
op.unblurred_outset_shadow.corner_widths,
op.unblurred_outset_shadow.corner_heights);
op.unblurred_outset_shadow.spread = gsk_outset_shadow_node_get_spread (node) * scale;
op.unblurred_outset_shadow.offset[0] = gsk_outset_shadow_node_get_dx (node) * scale;
op.unblurred_outset_shadow.offset[1] = -gsk_outset_shadow_node_get_dy (node) * scale;
ops_set_program (builder, &self->unblurred_outset_shadow_program);
ops_add (builder, &op);
ops_draw (builder, vertex_data);
}
static inline void
render_outset_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const GskRoundedRect *outline = gsk_outset_shadow_node_peek_outline (node);
GskRoundedRect offset_outline;
const float blur_radius = gsk_outset_shadow_node_get_blur_radius (node);
const float blur_extra = gsk_cairo_blur_compute_pixels (blur_radius);
const float spread = gsk_outset_shadow_node_get_spread (node);
const float dx = gsk_outset_shadow_node_get_dx (node);
const float dy = gsk_outset_shadow_node_get_dy (node);
const float min_x = builder->dx + outline->bounds.origin.x - spread - blur_extra / 2.0;
const float min_y = builder->dy + outline->bounds.origin.y - spread - blur_extra / 2.0;
const float max_x = min_x + outline->bounds.size.width + (spread + blur_extra/2.0) * 2;
const float max_y = min_y + outline->bounds.size.height + (spread + blur_extra/2.0) * 2;
float texture_width, texture_height;
RenderOp op;
graphene_matrix_t identity;
graphene_matrix_t prev_projection;
graphene_rect_t prev_viewport;
graphene_matrix_t item_proj;
int blurred_texture_id;
int cached_tid;
/* offset_outline is the minimal outline we need to draw the given drop shadow,
* enlarged by the spread and offset by the blur radius. */
offset_outline = *outline;
/* Shrink our outline to the minimum size that can still hold all the border radii */
gsk_rounded_rect_shrink_to_minimum (&offset_outline);
/* Increase by the spread */
gsk_rounded_rect_shrink (&offset_outline, -spread, -spread, -spread, -spread);
/* No we need to incorporate the blur radius; since we blur an edge an equal blur_extra/2.0
* on both sides, the minimum side of both width and height needs to be blur_extra */
offset_outline.bounds.size.width = MAX (offset_outline.bounds.size.width, blur_extra);
offset_outline.bounds.size.height = MAX (offset_outline.bounds.size.height, blur_extra);
/* For the center part, we add a few pixels */
offset_outline.bounds.size.width += SHADOW_EXTRA_SIZE;
offset_outline.bounds.size.height += SHADOW_EXTRA_SIZE;
offset_outline.bounds.origin.x = blur_extra / 2.0f;
offset_outline.bounds.origin.y = blur_extra / 2.0f;
texture_width = offset_outline.bounds.size.width + blur_extra;
texture_height = offset_outline.bounds.size.height + blur_extra;
cached_tid = gsk_gl_shadow_cache_get_texture_id (&self->shadow_cache,
self->gl_driver,
&offset_outline,
blur_radius);
if (cached_tid == 0)
{
int texture_id, render_target;
int blurred_render_target;
int prev_render_target;
GskRoundedRect blit_clip;
gsk_gl_driver_create_render_target (self->gl_driver, texture_width, texture_height,
&texture_id, &render_target);
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Outset Shadow Temp %d", texture_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target,
"Outset Shadow FB Temp %d", render_target);
graphene_matrix_init_ortho (&item_proj,
0, texture_width, 0, texture_height,
ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE);
graphene_matrix_scale (&item_proj, 1, -1, 1);
graphene_matrix_init_identity (&identity);
prev_render_target = ops_set_render_target (builder, render_target);
op.op = OP_CLEAR;
ops_add (builder, &op);
prev_projection = ops_set_projection (builder, &item_proj);
ops_set_modelview (builder, NULL); /* Modelview */
prev_viewport = ops_set_viewport (builder, &GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height));
/* Draw outline */
ops_set_program (builder, &self->color_program);
ops_push_clip (builder, &offset_outline);
ops_set_color (builder, gsk_outset_shadow_node_peek_color (node));
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { 0, }, { 0, 1 }, },
{ { 0, texture_height }, { 0, 0 }, },
{ { texture_width, }, { 1, 1 }, },
{ { texture_width, texture_height }, { 1, 0 }, },
{ { 0, texture_height }, { 0, 0 }, },
{ { texture_width, }, { 1, 1 }, },
});
gsk_gl_driver_create_render_target (self->gl_driver, texture_width, texture_height,
&blurred_texture_id, &blurred_render_target);
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, blurred_texture_id,
"Outset Shadow Cache %d", blurred_texture_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target,
"Outset Shadow Cache FB %d", render_target);
ops_set_render_target (builder, blurred_render_target);
ops_pop_clip (builder);
op.op = OP_CLEAR;
ops_add (builder, &op);
gsk_rounded_rect_init_from_rect (&blit_clip,
&GRAPHENE_RECT_INIT (0, 0, texture_width, texture_height), 0.0f);
ops_set_program (builder, &self->blur_program);
op.op = OP_CHANGE_BLUR;
op.blur.size.width = texture_width;
op.blur.size.height = texture_height;
op.blur.radius = blur_radius;
ops_add (builder, &op);
ops_push_clip (builder, &blit_clip);
ops_set_texture (builder, texture_id);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { 0, 0 }, { 0, 1 }, },
{ { 0, texture_height }, { 0, 0 }, },
{ { texture_width, 0 }, { 1, 1 }, },
{ { texture_width, texture_height }, { 1, 0 }, },
{ { 0, texture_height }, { 0, 0 }, },
{ { texture_width, 0 }, { 1, 1 }, },
});
ops_pop_clip (builder);
ops_set_viewport (builder, &prev_viewport);
ops_pop_modelview (builder);
ops_set_projection (builder, &prev_projection);
ops_set_render_target (builder, prev_render_target);
gsk_gl_driver_mark_texture_permanent (self->gl_driver, blurred_texture_id);
gsk_gl_shadow_cache_commit (&self->shadow_cache,
&offset_outline,
blur_radius,
blurred_texture_id);
}
else
{
blurred_texture_id = cached_tid;
}
ops_set_program (builder, &self->outset_shadow_program);
ops_set_texture (builder, blurred_texture_id);
op.op = OP_CHANGE_OUTSET_SHADOW;
rounded_rect_to_floats (self, builder,
outline,
op.outset_shadow.outline,
op.outset_shadow.corner_widths,
op.outset_shadow.corner_heights);
ops_add (builder, &op);
/* We use the one outset shadow op from above to draw all 8 sides/corners. */
{
const GskRoundedRect *o = &offset_outline;
float top_height = MAX (o->corner[0].height, o->corner[1].height);
float bottom_height = MAX (o->corner[2].height, o->corner[3].height);
float left_width = MAX (o->corner[0].width, o->corner[3].width);
float right_width = MAX (o->corner[1].width, o->corner[2].width);
float x1, x2, y1, y2, tx1, tx2, ty1, ty2;
top_height = MAX (top_height, blur_extra / 2.0f) + (blur_extra / 2.0f);
bottom_height = MAX (bottom_height, blur_extra / 2.0f) + (blur_extra / 2.0f);
left_width = MAX (left_width, blur_extra / 2.0f) + (blur_extra / 2.0f);
right_width = MAX (right_width, blur_extra / 2.0f) + (blur_extra / 2.0f);
/* Top left */
if (top_height > 0 && left_width > 0)
{
x1 = min_x + dx;
x2 = min_x + dx + left_width;
y1 = min_y + dy;
y2 = min_y + dy + top_height;
tx1 = 0;
tx2 = left_width / texture_width;
ty1 = 1 - (top_height / texture_height);
ty2 = 1;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Top right */
if (top_height > 0 && right_width > 0)
{
x1 = max_x + dx - right_width;
x2 = max_x + dx;
y1 = min_y + dy;
y2 = min_y + dy + top_height;
tx1 = 1 - (right_width / texture_width);
tx2 = 1;
ty1 = 1 - (top_height / texture_height);
ty2 = 1;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Bottom right */
if (bottom_height > 0 && left_width > 0)
{
x1 = max_x + dx - right_width;
x2 = max_x + dx;
y1 = max_y + dy - bottom_height;
y2 = max_y + dy;
tx1 = 1 - (right_width / texture_width);
tx2 = 1;
ty1 = 0;
ty2 = (bottom_height / texture_height);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Bottom left */
if (bottom_height > 0 && left_width > 0)
{
x1 = min_x + dx;
x2 = min_x + dx + left_width;
y1 = max_y + dy - bottom_height;
y2 = max_y + dy;
tx1 = 0;
tx2 = left_width / texture_width;
ty1 = 0;
ty2 = bottom_height / texture_height;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Left side */
if (left_width > 0)
{
x1 = min_x + dx;
x2 = min_x + dx + left_width;
y1 = min_y + dy + top_height;
y2 = max_y + dy - bottom_height;
tx1 = 0;
tx2 = left_width / texture_width;
ty1 = 0.5f - SHADOW_EXTRA_SIZE / 2.0f / texture_height;
ty2 = ty1 + (SHADOW_EXTRA_SIZE / texture_height);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Right side */
if (right_width > 0)
{
x1 = max_x + dx - right_width;
x2 = max_x + dx;
y1 = min_y + dy + top_height;
y2 = max_y + dy - bottom_height;
tx1 = 1 - (right_width / texture_width);
tx2 = 1;
ty1 = 0.5f - SHADOW_EXTRA_SIZE / 2.0f / texture_height;
ty2 = ty1 + (SHADOW_EXTRA_SIZE / texture_height);
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Top side */
if (top_height > 0)
{
x1 = min_x + dx + left_width;
x2 = max_x + dx - right_width;
y1 = min_y + dy;
y2 = min_y + dy + top_height;
tx1 = 0.5f - (SHADOW_EXTRA_SIZE / 2.0f / texture_width);
tx2 = tx1 + (SHADOW_EXTRA_SIZE / texture_width);
ty1 = 1 - (top_height / texture_height);
ty2 = 1;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Bottom side */
if (bottom_height > 0)
{
x1 = min_x + dx + left_width;
x2 = max_x + dx - right_width;
y1 = max_y + dy - bottom_height;
y2 = max_y + dy;
tx1 = 0.5f - (SHADOW_EXTRA_SIZE / 2.0f / texture_width);
tx2 = tx1 + (SHADOW_EXTRA_SIZE / texture_width);
ty1 = 0;
ty2 = bottom_height / texture_height;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
/* Middle */
x1 = min_x + dx + left_width;
x2 = max_x + dx - right_width;
y1 = min_y + dy + top_height;
y2 = max_y + dy - bottom_height;
if (x2 > x1 && y2 > y1)
{
tx1 = (texture_width - SHADOW_EXTRA_SIZE) / 2.0f / texture_width;
tx2 = (texture_width + SHADOW_EXTRA_SIZE) / 2.0f / texture_width;
ty1 = (texture_height - SHADOW_EXTRA_SIZE) / 2.0f / texture_height;
ty2 = (texture_height + SHADOW_EXTRA_SIZE) / 2.0f / texture_height;
ops_draw (builder, (GskQuadVertex[GL_N_VERTICES]) {
{ { x1, y1 }, { tx1, ty2 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
{ { x2, y2 }, { tx2, ty1 }, },
{ { x1, y2 }, { tx1, ty1 }, },
{ { x2, y1 }, { tx2, ty2 }, },
});
}
}
}
static inline void
render_shadow_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder,
const GskQuadVertex *vertex_data)
{
float min_x = node->bounds.origin.x;
float min_y = node->bounds.origin.y;
float max_x = min_x + node->bounds.size.width;
float max_y = min_y + node->bounds.size.height;
GskRenderNode *original_child = gsk_shadow_node_get_child (node);
GskRenderNode *shadow_child = original_child;
gsize n_shadows = gsk_shadow_node_get_n_shadows (node);
guint i;
/* TODO: Implement blurred shadow nodes */;
for (i = 0; i < n_shadows; i ++)
{
const GskShadow *shadow = gsk_shadow_node_peek_shadow (node, i);
if (shadow->radius > 0)
{
render_fallback_node (self, node, builder);
return;
}
}
/* Shadow nodes recolor every pixel of the source texture, but leave the alpha in tact.
* If the child is a color matrix node that doesn't touch the alpha, we can throw that away. */
if (gsk_render_node_get_node_type (shadow_child) == GSK_COLOR_MATRIX_NODE &&
!color_matrix_modifies_alpha (shadow_child))
{
shadow_child = gsk_color_matrix_node_get_child (shadow_child);
}
for (i = 0; i < n_shadows; i ++)
{
const GskShadow *shadow = gsk_shadow_node_peek_shadow (node, i);
const float dx = shadow->dx;
const float dy = shadow->dy;
int texture_id;
gboolean is_offscreen;
g_assert (shadow->radius <= 0);
if (gsk_render_node_get_node_type (shadow_child) == GSK_TEXT_NODE)
{
ops_offset (builder, dx, dy);
render_text_node (self, shadow_child, builder, &shadow->color, TRUE);
ops_offset (builder, - dx, - dy);
continue;
}
if (gdk_rgba_is_clear (&shadow->color))
continue;
min_x = builder->dx + shadow_child->bounds.origin.x;
min_y = builder->dy + shadow_child->bounds.origin.y;
max_x = min_x + shadow_child->bounds.size.width;
max_y = min_y + shadow_child->bounds.size.height;
/* Draw the child offscreen, without the offset. */
add_offscreen_ops (self, builder,
&shadow_child->bounds,
shadow_child, &texture_id, &is_offscreen,
RESET_CLIP | RESET_OPACITY);
ops_set_program (builder, &self->coloring_program);
ops_set_color (builder, &shadow->color);
ops_set_texture (builder, texture_id);
if (is_offscreen)
{
const GskQuadVertex offscreen_vertex_data[GL_N_VERTICES] = {
{ { dx + min_x, dy + min_y }, { 0, 1 }, },
{ { dx + min_x, dy + max_y }, { 0, 0 }, },
{ { dx + max_x, dy + min_y }, { 1, 1 }, },
{ { dx + max_x, dy + max_y }, { 1, 0 }, },
{ { dx + min_x, dy + max_y }, { 0, 0 }, },
{ { dx + max_x, dy + min_y }, { 1, 1 }, },
};
ops_draw (builder, offscreen_vertex_data);
}
else
{
const GskQuadVertex onscreen_vertex_data[GL_N_VERTICES] = {
{ { dx + min_x, dy + min_y }, { 0, 0 }, },
{ { dx + min_x, dy + max_y }, { 0, 1 }, },
{ { dx + max_x, dy + min_y }, { 1, 0 }, },
{ { dx + max_x, dy + max_y }, { 1, 1 }, },
{ { dx + min_x, dy + max_y }, { 0, 1 }, },
{ { dx + max_x, dy + min_y }, { 1, 0 }, },
};
ops_draw (builder, onscreen_vertex_data);
}
}
/* Now draw the child normally */
gsk_gl_renderer_add_render_ops (self, original_child, builder);
}
static inline void
render_cross_fade_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
GskRenderNode *start_node = gsk_cross_fade_node_get_start_child (node);
GskRenderNode *end_node = gsk_cross_fade_node_get_end_child (node);
float progress = gsk_cross_fade_node_get_progress (node);
int start_texture_id;
int end_texture_id;
gboolean is_offscreen1, is_offscreen2;
RenderOp op;
const GskQuadVertex vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
};
/* TODO: We create 2 textures here as big as the cross-fade node, but both the
* start and the end node might be a lot smaller than that. */
add_offscreen_ops (self, builder,
&node->bounds,
start_node,
&start_texture_id, &is_offscreen1,
FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY);
add_offscreen_ops (self, builder,
&node->bounds,
end_node,
&end_texture_id, &is_offscreen2,
FORCE_OFFSCREEN | RESET_CLIP | RESET_OPACITY);
ops_set_program (builder, &self->cross_fade_program);
op.op = OP_CHANGE_CROSS_FADE;
op.cross_fade.progress = progress;
op.cross_fade.source2 = end_texture_id;
ops_add (builder, &op);
ops_set_texture (builder, start_texture_id);
ops_draw (builder, vertex_data);
}
static inline void
render_blend_node (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
GskRenderNode *top_child = gsk_blend_node_get_top_child (node);
GskRenderNode *bottom_child = gsk_blend_node_get_bottom_child (node);
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
int top_texture_id;
int bottom_texture_id;
gboolean is_offscreen1, is_offscreen2;
RenderOp op;
const GskQuadVertex vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 1 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
{ { max_x, max_y }, { 1, 0 }, },
{ { min_x, max_y }, { 0, 0 }, },
{ { max_x, min_y }, { 1, 1 }, },
};
/* TODO: We create 2 textures here as big as the blend node, but both the
* start and the end node might be a lot smaller than that. */
add_offscreen_ops (self, builder,
&node->bounds,
bottom_child,
&bottom_texture_id, &is_offscreen1,
FORCE_OFFSCREEN | RESET_CLIP);
add_offscreen_ops (self, builder,
&node->bounds,
top_child,
&top_texture_id, &is_offscreen2,
FORCE_OFFSCREEN | RESET_CLIP);
ops_set_program (builder, &self->blend_program);
ops_set_texture (builder, bottom_texture_id);
op.op = OP_CHANGE_BLEND;
op.blend.source2 = top_texture_id;
op.blend.mode = gsk_blend_node_get_blend_mode (node);
ops_add (builder, &op);
ops_draw (builder, vertex_data);
}
static inline void
apply_viewport_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> New Viewport: %f, %f, %f, %f", op->viewport.origin.x, op->viewport.origin.y, op->viewport.size.width, op->viewport.size.height);
glUniform4f (program->viewport_location,
op->viewport.origin.x, op->viewport.origin.y,
op->viewport.size.width, op->viewport.size.height);
glViewport (0, 0, op->viewport.size.width, op->viewport.size.height);
}
static inline void
apply_modelview_op (const Program *program,
const RenderOp *op)
{
float mat[16];
OP_PRINT (" -> Modelview");
graphene_matrix_to_float (&op->modelview, mat);
glUniformMatrix4fv (program->modelview_location, 1, GL_FALSE, mat);
}
static inline void
apply_projection_op (const Program *program,
const RenderOp *op)
{
float mat[16];
OP_PRINT (" -> Projection");
graphene_matrix_to_float (&op->projection, mat);
glUniformMatrix4fv (program->projection_location, 1, GL_FALSE, mat);
}
static inline void
apply_program_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Program: %d", op->program->index);
glUseProgram (op->program->id);
}
static inline void
apply_render_target_op (GskGLRenderer *self,
const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Render Target: %d", op->render_target_id);
glBindFramebuffer (GL_FRAMEBUFFER, op->render_target_id);
if (op->render_target_id != 0)
glDisable (GL_SCISSOR_TEST);
else
gsk_gl_renderer_setup_render_mode (self); /* Reset glScissor etc. */
}
static inline void
apply_color_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Color: (%f, %f, %f, %f)", op->color.red, op->color.green, op->color.blue, op->color.alpha);
glUniform4f (program->color.color_location,
op->color.red, op->color.green, op->color.blue, op->color.alpha);
}
static inline void
apply_opacity_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Opacity %f", op->opacity);
glUniform1f (program->alpha_location, op->opacity);
}
static inline void
apply_source_texture_op (const Program *program,
const RenderOp *op)
{
g_assert(op->texture_id != 0);
OP_PRINT (" -> New texture: %d", op->texture_id);
/* Use texture unit 0 for the source */
glUniform1i (program->source_location, 0);
glActiveTexture (GL_TEXTURE0);
glBindTexture (GL_TEXTURE_2D, op->texture_id);
}
static inline void
apply_color_matrix_op (const Program *program,
const RenderOp *op)
{
float mat[16];
float vec[4];
OP_PRINT (" -> Color Matrix");
graphene_matrix_to_float (&op->color_matrix.matrix, mat);
glUniformMatrix4fv (program->color_matrix.color_matrix_location, 1, GL_FALSE, mat);
graphene_vec4_to_float (&op->color_matrix.offset, vec);
glUniform4fv (program->color_matrix.color_offset_location, 1, vec);
}
static inline void
apply_clip_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Clip (%f, %f, %f, %f) (%f, %f, %f, %f), (%f, %f, %f, %f)",
op->clip.bounds.origin.x, op->clip.bounds.origin.y,
op->clip.bounds.size.width, op->clip.bounds.size.height,
op->clip.corner[0].width,
op->clip.corner[1].width,
op->clip.corner[2].width,
op->clip.corner[3].width,
op->clip.corner[0].height,
op->clip.corner[1].height,
op->clip.corner[2].height,
op->clip.corner[3].height);
glUniform4f (program->clip_location,
op->clip.bounds.origin.x, op->clip.bounds.origin.y,
op->clip.bounds.size.width, op->clip.bounds.size.height);
glUniform4f (program->clip_corner_widths_location,
op->clip.corner[0].width,
op->clip.corner[1].width,
op->clip.corner[2].width,
op->clip.corner[3].width);
glUniform4f (program->clip_corner_heights_location,
op->clip.corner[0].height,
op->clip.corner[1].height,
op->clip.corner[2].height,
op->clip.corner[3].height);
}
static inline void
apply_inset_shadow_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> inset shadow. Color: (%f, %f, %f, %f), Offset: (%f, %f), Spread: %f, Outline: (%f, %f, %f, %f) Corner widths: (%f, %f, %f, %f), Corner Heights: (%f, %f, %f, %f)",
op->inset_shadow.color[0],
op->inset_shadow.color[1],
op->inset_shadow.color[2],
op->inset_shadow.color[3],
op->inset_shadow.offset[0],
op->inset_shadow.offset[1],
op->inset_shadow.spread,
op->inset_shadow.outline[0],
op->inset_shadow.outline[1],
op->inset_shadow.outline[2],
op->inset_shadow.outline[3],
op->inset_shadow.corner_widths[0],
op->inset_shadow.corner_widths[1],
op->inset_shadow.corner_widths[2],
op->inset_shadow.corner_widths[3],
op->inset_shadow.corner_heights[0],
op->inset_shadow.corner_heights[1],
op->inset_shadow.corner_heights[2],
op->inset_shadow.corner_heights[3]);
glUniform4fv (program->inset_shadow.color_location, 1, op->inset_shadow.color);
glUniform2fv (program->inset_shadow.offset_location, 1, op->inset_shadow.offset);
glUniform1f (program->inset_shadow.spread_location, op->inset_shadow.spread);
glUniform4fv (program->inset_shadow.outline_location, 1, op->inset_shadow.outline);
glUniform4fv (program->inset_shadow.corner_widths_location, 1, op->inset_shadow.corner_widths);
glUniform4fv (program->inset_shadow.corner_heights_location, 1, op->inset_shadow.corner_heights);
}
static inline void
apply_unblurred_outset_shadow_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> unblurred outset shadow");
glUniform4fv (program->unblurred_outset_shadow.color_location, 1, op->unblurred_outset_shadow.color);
glUniform2fv (program->unblurred_outset_shadow.offset_location, 1, op->unblurred_outset_shadow.offset);
glUniform1f (program->unblurred_outset_shadow.spread_location, op->unblurred_outset_shadow.spread);
glUniform4fv (program->unblurred_outset_shadow.outline_location, 1, op->unblurred_outset_shadow.outline);
glUniform4fv (program->unblurred_outset_shadow.corner_widths_location, 1,
op->unblurred_outset_shadow.corner_widths);
glUniform4fv (program->unblurred_outset_shadow.corner_heights_location, 1,
op->unblurred_outset_shadow.corner_heights);
}
static inline void
apply_outset_shadow_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> outset shadow");
glUniform4fv (program->outset_shadow.outline_location, 1, op->outset_shadow.outline);
glUniform4fv (program->outset_shadow.corner_widths_location, 1, op->outset_shadow.corner_widths);
glUniform4fv (program->outset_shadow.corner_heights_location, 1, op->outset_shadow.corner_heights);
}
static inline void
apply_linear_gradient_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Linear gradient");
glUniform1i (program->linear_gradient.num_color_stops_location,
op->linear_gradient.n_color_stops);
glUniform4fv (program->linear_gradient.color_stops_location,
op->linear_gradient.n_color_stops,
op->linear_gradient.color_stops);
glUniform1fv (program->linear_gradient.color_offsets_location,
op->linear_gradient.n_color_stops,
op->linear_gradient.color_offsets);
glUniform2f (program->linear_gradient.start_point_location,
op->linear_gradient.start_point.x, op->linear_gradient.start_point.y);
glUniform2f (program->linear_gradient.end_point_location,
op->linear_gradient.end_point.x, op->linear_gradient.end_point.y);
}
static inline void
apply_border_op (const Program *program,
const RenderOp *op)
{
const GskRoundedRect *o = &op->border.outline;
float outline[4];
float widths[4];
float heights[4];
int i;
OP_PRINT (" -> Border Outline");
outline[0] = o->bounds.origin.x;
outline[1] = o->bounds.origin.y;
outline[2] = o->bounds.size.width;
outline[3] = o->bounds.size.height;
for (i = 0; i < 4; i ++)
{
widths[i] = o->corner[i].width;
heights[i] = o->corner[i].height;
}
glUniform4fv (program->border.outline_location, 1, outline);
glUniform4fv (program->border.corner_widths_location, 1, widths);
glUniform4fv (program->border.corner_heights_location, 1, heights);
}
static inline void
apply_border_width_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Border width (%f, %f, %f, %f)",
op->border.widths[0], op->border.widths[1], op->border.widths[2], op->border.widths[3]);
glUniform4fv (program->border.widths_location, 1, op->border.widths);
}
static inline void
apply_border_color_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Border color (%f, %f, %f, %f)",
op->border.color[0], op->border.color[1], op->border.color[2], op->border.color[3]);
glUniform4fv (program->border.color_location, 1, op->border.color);
}
static inline void
apply_blur_op (const Program *program,
const RenderOp *op)
{
OP_PRINT (" -> Blur");
glUniform1f (program->blur.blur_radius_location, op->blur.radius);
glUniform2f (program->blur.blur_size_location, op->blur.size.width, op->blur.size.height);
/*glUniform2f (program->blur.dir_location, op->blur.dir[0], op->blur.dir[1]);*/
}
static inline void
apply_cross_fade_op (const Program *program,
const RenderOp *op)
{
/* End texture id */
glUniform1i (program->cross_fade.source2_location, 1);
glActiveTexture (GL_TEXTURE0 + 1);
glBindTexture (GL_TEXTURE_2D, op->cross_fade.source2);
/* progress */
glUniform1f (program->cross_fade.progress_location, op->cross_fade.progress);
}
static inline void
apply_blend_op (const Program *program,
const RenderOp *op)
{
/* End texture id */
glUniform1i (program->blend.source2_location, 1);
glActiveTexture (GL_TEXTURE0 + 1);
glBindTexture (GL_TEXTURE_2D, op->blend.source2);
/* progress */
glUniform1i (program->blend.mode_location, op->blend.mode);
}
static void
gsk_gl_renderer_dispose (GObject *gobject)
{
GskGLRenderer *self = GSK_GL_RENDERER (gobject);
g_clear_pointer (&self->render_ops, g_array_unref);
G_OBJECT_CLASS (gsk_gl_renderer_parent_class)->dispose (gobject);
}
static gboolean
gsk_gl_renderer_create_programs (GskGLRenderer *self,
GError **error)
{
GskShaderBuilder *builder;
GError *shader_error = NULL;
int i;
static const struct {
const char *name;
const char *fs;
} program_definitions[] = {
{ "blit", "blit.fs.glsl" },
{ "color", "color.fs.glsl" },
{ "coloring", "coloring.fs.glsl" },
{ "color matrix", "color_matrix.fs.glsl" },
{ "linear gradient", "linear_gradient.fs.glsl" },
{ "blur", "blur.fs.glsl" },
{ "inset shadow", "inset_shadow.fs.glsl" },
{ "outset shadow", "outset_shadow.fs.glsl" },
{ "unblurred outset shadow", "unblurred_outset_shadow.fs.glsl" },
{ "border", "border.fs.glsl" },
{ "cross fade", "cross_fade.fs.glsl" },
{ "blend", "blend.fs.glsl" },
};
builder = gsk_shader_builder_new ();
gsk_shader_builder_set_resource_base_path (builder, "/org/gtk/libgsk/glsl");
if (gdk_gl_context_get_use_es (self->gl_context))
{
gsk_shader_builder_set_version (builder, SHADER_VERSION_GLES);
gsk_shader_builder_set_vertex_preamble (builder, "es2_common.vs.glsl");
gsk_shader_builder_set_fragment_preamble (builder, "es2_common.fs.glsl");
gsk_shader_builder_add_define (builder, "GSK_GLES", "1");
}
else if (gdk_gl_context_is_legacy (self->gl_context))
{
int maj, min;
gdk_gl_context_get_version (self->gl_context, &maj, &min);
if (maj == 3)
gsk_shader_builder_set_version (builder, SHADER_VERSION_GL3_LEGACY);
else
gsk_shader_builder_set_version (builder, SHADER_VERSION_GL2_LEGACY);
gsk_shader_builder_set_vertex_preamble (builder, "gl_common.vs.glsl");
gsk_shader_builder_set_fragment_preamble (builder, "gl_common.fs.glsl");
gsk_shader_builder_add_define (builder, "GSK_LEGACY", "1");
}
else
{
gsk_shader_builder_set_version (builder, SHADER_VERSION_GL3);
gsk_shader_builder_set_vertex_preamble (builder, "gl3_common.vs.glsl");
gsk_shader_builder_set_fragment_preamble (builder, "gl3_common.fs.glsl");
gsk_shader_builder_add_define (builder, "GSK_GL3", "1");
}
#ifdef G_ENABLE_DEBUG
if (GSK_RENDERER_DEBUG_CHECK (GSK_RENDERER (self), SHADERS))
gsk_shader_builder_add_define (builder, "GSK_DEBUG", "1");
#endif
gsk_shader_builder_set_common_vertex_shader (builder, "blit.vs.glsl",
&shader_error);
g_assert_no_error (shader_error);
for (i = 0; i < GL_N_PROGRAMS; i ++)
{
Program *prog = &self->programs[i];
prog->index = i;
prog->id = gsk_shader_builder_create_program (builder,
program_definitions[i].fs,
&shader_error);
if (shader_error != NULL)
{
g_propagate_prefixed_error (error, shader_error,
"Unable to create '%s' program (from %s and %s):\n",
program_definitions[i].name,
"blit.vs.glsl",
program_definitions[i].fs);
g_object_unref (builder);
return FALSE;
}
INIT_COMMON_UNIFORM_LOCATION (prog, alpha);
INIT_COMMON_UNIFORM_LOCATION (prog, source);
INIT_COMMON_UNIFORM_LOCATION (prog, clip);
INIT_COMMON_UNIFORM_LOCATION (prog, clip_corner_widths);
INIT_COMMON_UNIFORM_LOCATION (prog, clip_corner_heights);
INIT_COMMON_UNIFORM_LOCATION (prog, viewport);
INIT_COMMON_UNIFORM_LOCATION (prog, projection);
INIT_COMMON_UNIFORM_LOCATION (prog, modelview);
}
/* color */
INIT_PROGRAM_UNIFORM_LOCATION (color, color);
/* coloring */
INIT_PROGRAM_UNIFORM_LOCATION (coloring, color);
/* color matrix */
INIT_PROGRAM_UNIFORM_LOCATION (color_matrix, color_matrix);
INIT_PROGRAM_UNIFORM_LOCATION (color_matrix, color_offset);
/* linear gradient */
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, color_stops);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, color_offsets);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, num_color_stops);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, start_point);
INIT_PROGRAM_UNIFORM_LOCATION (linear_gradient, end_point);
/* blur */
INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_radius);
INIT_PROGRAM_UNIFORM_LOCATION (blur, blur_size);
/*INIT_PROGRAM_UNIFORM_LOCATION (blur, dir);*/
/* inset shadow */
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, color);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, spread);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, offset);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, outline);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, corner_widths);
INIT_PROGRAM_UNIFORM_LOCATION (inset_shadow, corner_heights);
/* outset shadow */
INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, outline);
INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, corner_widths);
INIT_PROGRAM_UNIFORM_LOCATION (outset_shadow, corner_heights);
/* unblurred outset shadow */
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, color);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, spread);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, offset);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, outline);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, corner_widths);
INIT_PROGRAM_UNIFORM_LOCATION (unblurred_outset_shadow, corner_heights);
/* border */
INIT_PROGRAM_UNIFORM_LOCATION (border, color);
INIT_PROGRAM_UNIFORM_LOCATION (border, widths);
INIT_PROGRAM_UNIFORM_LOCATION (border, outline);
INIT_PROGRAM_UNIFORM_LOCATION (border, corner_widths);
INIT_PROGRAM_UNIFORM_LOCATION (border, corner_heights);
/* cross fade */
INIT_PROGRAM_UNIFORM_LOCATION (cross_fade, progress);
INIT_PROGRAM_UNIFORM_LOCATION (cross_fade, source2);
/* blend */
INIT_PROGRAM_UNIFORM_LOCATION (blend, source2);
INIT_PROGRAM_UNIFORM_LOCATION (blend, mode);
g_object_unref (builder);
return TRUE;
}
static gboolean
gsk_gl_renderer_realize (GskRenderer *renderer,
GdkSurface *surface,
GError **error)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
/* If we didn't get a GdkGLContext before realization, try creating
* one now, for our exclusive use.
*/
if (self->gl_context == NULL)
{
self->gl_context = gdk_surface_create_gl_context (surface, error);
if (self->gl_context == NULL)
return FALSE;
}
if (!gdk_gl_context_realize (self->gl_context, error))
return FALSE;
gdk_gl_context_make_current (self->gl_context);
g_assert (self->gl_driver == NULL);
self->gl_profiler = gsk_gl_profiler_new (self->gl_context);
self->gl_driver = gsk_gl_driver_new (self->gl_context);
GSK_RENDERER_NOTE (renderer, OPENGL, g_message ("Creating buffers and programs"));
if (!gsk_gl_renderer_create_programs (self, error))
return FALSE;
gsk_gl_glyph_cache_init (&self->glyph_cache);
gsk_gl_icon_cache_init (&self->icon_cache, renderer, self->gl_driver);
gsk_gl_shadow_cache_init (&self->shadow_cache);
return TRUE;
}
static void
gsk_gl_renderer_unrealize (GskRenderer *renderer)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
guint i;
if (self->gl_context == NULL)
return;
gdk_gl_context_make_current (self->gl_context);
/* We don't need to iterate to destroy the associated GL resources,
* as they will be dropped when we finalize the GskGLDriver
*/
g_array_set_size (self->render_ops, 0);
for (i = 0; i < GL_N_PROGRAMS; i ++)
glDeleteProgram (self->programs[i].id);
gsk_gl_glyph_cache_free (&self->glyph_cache, self->gl_driver);
gsk_gl_icon_cache_free (&self->icon_cache);
gsk_gl_shadow_cache_free (&self->shadow_cache, self->gl_driver);
g_clear_object (&self->gl_profiler);
g_clear_object (&self->gl_driver);
if (self->gl_context == gdk_gl_context_get_current ())
gdk_gl_context_clear_current ();
g_clear_object (&self->gl_context);
}
static void
gsk_gl_renderer_clear_tree (GskGLRenderer *self)
{
int removed_textures;
if (self->gl_context == NULL)
return;
gdk_gl_context_make_current (self->gl_context);
g_array_remove_range (self->render_ops, 0, self->render_ops->len);
removed_textures = gsk_gl_driver_collect_textures (self->gl_driver);
GSK_RENDERER_NOTE (GSK_RENDERER (self), OPENGL, g_message ("Collected: %d textures", removed_textures));
}
static void
gsk_gl_renderer_clear (GskGLRenderer *self)
{
GSK_RENDERER_NOTE (GSK_RENDERER (self), OPENGL, g_message ("Clearing viewport"));
glClearColor (0, 0, 0, 0);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
}
static void
gsk_gl_renderer_setup_render_mode (GskGLRenderer *self)
{
if (self->render_region == NULL)
{
glDisable (GL_SCISSOR_TEST);
}
else
{
GdkSurface *surface = gsk_renderer_get_surface (GSK_RENDERER (self));
cairo_rectangle_int_t extents;
int surface_height;
g_assert (cairo_region_num_rectangles (self->render_region) == 1);
surface_height = gdk_surface_get_height (surface) * self->scale_factor;
cairo_region_get_rectangle (self->render_region, 0, &extents);
glEnable (GL_SCISSOR_TEST);
glScissor (extents.x * self->scale_factor,
surface_height - (extents.height * self->scale_factor) - (extents.y * self->scale_factor),
extents.width * self->scale_factor,
extents.height * self->scale_factor);
}
}
static void
gsk_gl_renderer_add_render_ops (GskGLRenderer *self,
GskRenderNode *node,
RenderOpBuilder *builder)
{
const float min_x = builder->dx + node->bounds.origin.x;
const float min_y = builder->dy + node->bounds.origin.y;
const float max_x = min_x + node->bounds.size.width;
const float max_y = min_y + node->bounds.size.height;
/* Default vertex data */
const GskQuadVertex vertex_data[GL_N_VERTICES] = {
{ { min_x, min_y }, { 0, 0 }, },
{ { min_x, max_y }, { 0, 1 }, },
{ { max_x, min_y }, { 1, 0 }, },
{ { max_x, max_y }, { 1, 1 }, },
{ { min_x, max_y }, { 0, 1 }, },
{ { max_x, min_y }, { 1, 0 }, },
};
/* This can still happen, even if the render nodes are created using
* GtkSnapshot, so let's juse be safe. */
if (node->bounds.size.width == 0.0f || node->bounds.size.height == 0.0f ||
isnan (node->bounds.size.width) || isnan (node->bounds.size.height))
return;
/* Check whether the render node is entirely out of the current
* already transformed clip region */
{
graphene_rect_t transformed_node_bounds;
ops_transform_bounds_modelview (builder,
&node->bounds,
&transformed_node_bounds);
if (!graphene_rect_intersection (&builder->current_clip->bounds,
&transformed_node_bounds, NULL))
return;
}
switch (gsk_render_node_get_node_type (node))
{
case GSK_NOT_A_RENDER_NODE:
g_assert_not_reached ();
case GSK_CONTAINER_NODE:
{
guint i, p;
for (i = 0, p = gsk_container_node_get_n_children (node); i < p; i ++)
{
GskRenderNode *child = gsk_container_node_get_child (node, i);
gsk_gl_renderer_add_render_ops (self, child, builder);
}
}
break;
case GSK_DEBUG_NODE:
{
const char *message = gsk_debug_node_get_message (node);
if (message)
ops_push_debug_group (builder, message);
gsk_gl_renderer_add_render_ops (self,
gsk_debug_node_get_child (node),
builder);
if (message)
ops_pop_debug_group (builder);
}
break;
case GSK_COLOR_NODE:
render_color_node (self, node, builder, vertex_data);
break;
case GSK_TEXTURE_NODE:
render_texture_node (self, node, builder);
break;
case GSK_TRANSFORM_NODE:
render_transform_node (self, node, builder);
break;
case GSK_OPACITY_NODE:
render_opacity_node (self, node, builder);
break;
case GSK_LINEAR_GRADIENT_NODE:
render_linear_gradient_node (self, node, builder, vertex_data);
break;
case GSK_CLIP_NODE:
render_clip_node (self, node, builder);
break;
case GSK_ROUNDED_CLIP_NODE:
render_rounded_clip_node (self, node, builder);
break;
case GSK_TEXT_NODE:
render_text_node (self, node, builder,
gsk_text_node_peek_color (node), FALSE);
break;
case GSK_COLOR_MATRIX_NODE:
render_color_matrix_node (self, node, builder, vertex_data);
break;
case GSK_BLUR_NODE:
render_blur_node (self, node, builder, vertex_data);
break;
case GSK_INSET_SHADOW_NODE:
render_inset_shadow_node (self, node, builder, vertex_data);
break;
case GSK_OUTSET_SHADOW_NODE:
if (gsk_outset_shadow_node_get_blur_radius (node) > 0)
render_outset_shadow_node (self, node, builder);
else
render_unblurred_outset_shadow_node (self, node, builder, vertex_data);
break;
case GSK_SHADOW_NODE:
render_shadow_node (self, node, builder, vertex_data);
break;
case GSK_BORDER_NODE:
render_border_node (self, node, builder);
break;
case GSK_CROSS_FADE_NODE:
render_cross_fade_node (self, node, builder);
break;
case GSK_BLEND_NODE:
render_blend_node (self, node, builder);
break;
case GSK_REPEATING_LINEAR_GRADIENT_NODE:
case GSK_REPEAT_NODE:
case GSK_CAIRO_NODE:
default:
{
render_fallback_node (self, node, builder);
}
}
}
static void
add_offscreen_ops (GskGLRenderer *self,
RenderOpBuilder *builder,
const graphene_rect_t *bounds,
GskRenderNode *child_node,
int *texture_id_out,
gboolean *is_offscreen,
guint flags)
{
const float scale = ops_get_scale (builder);
const float width = ceilf (bounds->size.width * scale);
const float height = ceilf (bounds->size.height * scale);
const float dx = builder->dx;
const float dy = builder->dy;
int render_target;
int prev_render_target;
RenderOp op;
graphene_matrix_t modelview;
graphene_matrix_t prev_projection;
graphene_rect_t prev_viewport;
graphene_matrix_t item_proj;
float prev_opacity;
int texture_id = 0;
/* We need the child node as a texture. If it already is one, we don't need to draw
* it on a framebuffer of course. */
if (gsk_render_node_get_node_type (child_node) == GSK_TEXTURE_NODE &&
(flags & FORCE_OFFSCREEN) == 0)
{
GdkTexture *texture = gsk_texture_node_get_texture (child_node);
int gl_min_filter = GL_NEAREST, gl_mag_filter = GL_NEAREST;
get_gl_scaling_filters (child_node, &gl_min_filter, &gl_mag_filter);
*texture_id_out = gsk_gl_driver_get_texture_for_texture (self->gl_driver,
texture,
gl_min_filter,
gl_mag_filter);
*is_offscreen = FALSE;
return;
}
/* Check if we've already cached the drawn texture. */
{
const int cached_id = gsk_gl_driver_get_texture_for_pointer (self->gl_driver, child_node);
if (cached_id != 0)
{
*texture_id_out = cached_id;
/* We didn't render it offscreen, but hand out an offscreen texture id */
*is_offscreen = TRUE;
return;
}
}
gsk_gl_driver_create_render_target (self->gl_driver, width, height, &texture_id, &render_target);
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Offscreen<%s> %d", child_node->node_class->type_name, texture_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, render_target,
"Offscreen<%s> FB %d", child_node->node_class->type_name, render_target);
graphene_matrix_init_ortho (&item_proj,
bounds->origin.x * scale,
(bounds->origin.x + bounds->size.width) * scale,
bounds->origin.y * scale,
(bounds->origin.y + bounds->size.height) * scale,
ORTHO_NEAR_PLANE, ORTHO_FAR_PLANE);
graphene_matrix_scale (&item_proj, 1, -1, 1);
graphene_matrix_init_scale (&modelview, scale, scale, 1);
prev_render_target = ops_set_render_target (builder, render_target);
/* Clear since we use this rendertarget for the first time */
op.op = OP_CLEAR;
ops_add (builder, &op);
prev_projection = ops_set_projection (builder, &item_proj);
ops_set_modelview (builder, gsk_transform_scale (NULL, scale, scale));
prev_viewport = ops_set_viewport (builder,
&GRAPHENE_RECT_INIT (bounds->origin.x * scale,
bounds->origin.y * scale,
width, height));
if (flags & RESET_CLIP)
ops_push_clip (builder,
&GSK_ROUNDED_RECT_INIT (bounds->origin.x * scale,
bounds->origin.y * scale,
width, height));
builder->dx = 0;
builder->dy = 0;
if (flags & RESET_OPACITY)
prev_opacity = ops_set_opacity (builder, 1.0);
gsk_gl_renderer_add_render_ops (self, child_node, builder);
#ifdef G_ENABLE_DEBUG
if (G_UNLIKELY (flags & DUMP_FRAMEBUFFER))
{
static int k;
ops_dump_framebuffer (builder, g_strdup_printf ("%s_%p_%d.png",
child_node->node_class->type_name,
child_node,
k ++),
width, height);
}
#endif
if (flags & RESET_OPACITY)
ops_set_opacity (builder, prev_opacity);
builder->dx = dx;
builder->dy = dy;
if (flags & RESET_CLIP)
ops_pop_clip (builder);
ops_set_viewport (builder, &prev_viewport);
ops_pop_modelview (builder);
ops_set_projection (builder, &prev_projection);
ops_set_render_target (builder, prev_render_target);
*is_offscreen = TRUE;
*texture_id_out = texture_id;
gsk_gl_driver_set_texture_for_pointer (self->gl_driver, child_node, texture_id);
}
static void
gsk_gl_renderer_render_ops (GskGLRenderer *self,
gsize vertex_data_size)
{
guint i;
guint n_ops = self->render_ops->len;
const Program *program = NULL;
gsize buffer_index = 0;
float *vertex_data = g_malloc (vertex_data_size);
/*g_message ("%s: Buffer size: %ld", __FUNCTION__, vertex_data_size);*/
GLuint buffer_id, vao_id;
glGenVertexArrays (1, &vao_id);
glBindVertexArray (vao_id);
glGenBuffers (1, &buffer_id);
glBindBuffer (GL_ARRAY_BUFFER, buffer_id);
// Fill buffer data
for (i = 0; i < n_ops; i ++)
{
const RenderOp *op = &g_array_index (self->render_ops, RenderOp, i);
if (op->op == OP_CHANGE_VAO)
{
memcpy (vertex_data + buffer_index, &op->vertex_data, sizeof (GskQuadVertex) * GL_N_VERTICES);
buffer_index += sizeof (GskQuadVertex) * GL_N_VERTICES / sizeof (float);
}
}
// Set buffer data
glBufferData (GL_ARRAY_BUFFER, vertex_data_size, vertex_data, GL_STATIC_DRAW);
// Describe buffer contents
/* 0 = position location */
glEnableVertexAttribArray (0);
glVertexAttribPointer (0, 2, GL_FLOAT, GL_FALSE,
sizeof (GskQuadVertex),
(void *) G_STRUCT_OFFSET (GskQuadVertex, position));
/* 1 = texture coord location */
glEnableVertexAttribArray (1);
glVertexAttribPointer (1, 2, GL_FLOAT, GL_FALSE,
sizeof (GskQuadVertex),
(void *) G_STRUCT_OFFSET (GskQuadVertex, uv));
for (i = 0; i < n_ops; i ++)
{
const RenderOp *op = &g_array_index (self->render_ops, RenderOp, i);
if (op->op == OP_NONE ||
op->op == OP_CHANGE_VAO)
continue;
if (op->op != OP_PUSH_DEBUG_GROUP &&
op->op != OP_POP_DEBUG_GROUP &&
op->op != OP_CHANGE_PROGRAM &&
op->op != OP_CHANGE_RENDER_TARGET &&
op->op != OP_CLEAR &&
program == NULL)
continue;
OP_PRINT ("Op %u: %u", i, op->op);
switch (op->op)
{
case OP_CHANGE_PROJECTION:
apply_projection_op (program, op);
break;
case OP_CHANGE_MODELVIEW:
apply_modelview_op (program, op);
break;
case OP_CHANGE_PROGRAM:
apply_program_op (program, op);
program = op->program;
break;
case OP_CHANGE_RENDER_TARGET:
apply_render_target_op (self, program, op);
break;
case OP_CLEAR:
glClearColor (0, 0, 0, 0);
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
break;
case OP_CHANGE_VIEWPORT:
apply_viewport_op (program, op);
break;
case OP_CHANGE_OPACITY:
apply_opacity_op (program, op);
break;
case OP_CHANGE_COLOR_MATRIX:
apply_color_matrix_op (program, op);
break;
case OP_CHANGE_COLOR:
/*g_assert (program == &self->color_program || program == &self->coloring_program ||*/
/*program == &self->shadow_program);*/
apply_color_op (program, op);
break;
case OP_CHANGE_BORDER_COLOR:
apply_border_color_op (program, op);
break;
case OP_CHANGE_CLIP:
apply_clip_op (program, op);
break;
case OP_CHANGE_SOURCE_TEXTURE:
apply_source_texture_op (program, op);
break;
case OP_CHANGE_CROSS_FADE:
g_assert (program == &self->cross_fade_program);
apply_cross_fade_op (program, op);
break;
case OP_CHANGE_BLEND:
g_assert (program == &self->blend_program);
apply_blend_op (program, op);
break;
case OP_CHANGE_LINEAR_GRADIENT:
apply_linear_gradient_op (program, op);
break;
case OP_CHANGE_BLUR:
apply_blur_op (program, op);
break;
case OP_CHANGE_INSET_SHADOW:
apply_inset_shadow_op (program, op);
break;
case OP_CHANGE_OUTSET_SHADOW:
apply_outset_shadow_op (program, op);
break;
case OP_CHANGE_BORDER:
apply_border_op (program, op);
break;
case OP_CHANGE_BORDER_WIDTH:
apply_border_width_op (program, op);
break;
case OP_CHANGE_UNBLURRED_OUTSET_SHADOW:
apply_unblurred_outset_shadow_op (program, op);
break;
case OP_DRAW:
OP_PRINT (" -> draw %ld, size %ld and program %d\n",
op->draw.vao_offset, op->draw.vao_size, program->index);
glDrawArrays (GL_TRIANGLES, op->draw.vao_offset, op->draw.vao_size);
break;
case OP_DUMP_FRAMEBUFFER:
dump_framebuffer (op->dump.filename, op->dump.width, op->dump.height);
break;
case OP_PUSH_DEBUG_GROUP:
gdk_gl_context_push_debug_group (self->gl_context, op->debug_group.text);
break;
case OP_POP_DEBUG_GROUP:
gdk_gl_context_pop_debug_group (self->gl_context);
break;
default:
g_warn_if_reached ();
}
OP_PRINT ("\n");
}
/* Done drawing, destroy the buffer again.
* TODO: Can we reuse the memory, though? */
g_free (vertex_data);
glDeleteVertexArrays (1, &vao_id);
glDeleteBuffers (1, &buffer_id);
}
static void
gsk_gl_renderer_do_render (GskRenderer *renderer,
GskRenderNode *root,
const graphene_rect_t *viewport,
int fbo_id,
int scale_factor)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
graphene_matrix_t modelview, projection;
gsize buffer_size;
#ifdef G_ENABLE_DEBUG
GskProfiler *profiler;
gint64 gpu_time, cpu_time, start_time;
#endif
#ifdef G_ENABLE_DEBUG
profiler = gsk_renderer_get_profiler (renderer);
#endif
if (self->gl_context == NULL)
{
GSK_RENDERER_NOTE (renderer, OPENGL, g_message ("No valid GL context associated to the renderer"));
return;
}
g_assert (gsk_gl_driver_in_frame (self->gl_driver));
/* Set up the modelview and projection matrices to fit our viewport */
graphene_matrix_init_scale (&modelview, scale_factor, scale_factor, 1.0);
graphene_matrix_init_ortho (&projection,
viewport->origin.x,
viewport->origin.x + viewport->size.width,
viewport->origin.y,
viewport->origin.y + viewport->size.height,
ORTHO_NEAR_PLANE,
ORTHO_FAR_PLANE);
graphene_matrix_scale (&projection, 1, -1, 1);
gsk_gl_glyph_cache_begin_frame (&self->glyph_cache, self->gl_driver);
gsk_gl_icon_cache_begin_frame (&self->icon_cache);
gsk_gl_shadow_cache_begin_frame (&self->shadow_cache, self->gl_driver);
ops_set_projection (&self->op_builder, &projection);
ops_set_viewport (&self->op_builder, viewport);
ops_set_modelview (&self->op_builder, gsk_transform_scale (NULL, scale_factor, scale_factor));
/* Initial clip is self->render_region! */
if (self->render_region != NULL)
{
graphene_rect_t transformed_render_region;
cairo_rectangle_int_t render_extents;
cairo_region_get_extents (self->render_region, &render_extents);
ops_transform_bounds_modelview (&self->op_builder,
&GRAPHENE_RECT_INIT (render_extents.x,
render_extents.y,
render_extents.width,
render_extents.height),
&transformed_render_region);
ops_push_clip (&self->op_builder,
&GSK_ROUNDED_RECT_INIT (transformed_render_region.origin.x,
transformed_render_region.origin.y,
transformed_render_region.size.width,
transformed_render_region.size.height));
}
else
{
ops_push_clip (&self->op_builder,
&GSK_ROUNDED_RECT_INIT (viewport->origin.x,
viewport->origin.y,
viewport->size.width,
viewport->size.height));
}
if (fbo_id != 0)
ops_set_render_target (&self->op_builder, fbo_id);
gdk_gl_context_push_debug_group (self->gl_context, "Adding render ops");
gsk_gl_renderer_add_render_ops (self, root, &self->op_builder);
gdk_gl_context_pop_debug_group (self->gl_context);
/* We correctly reset the state everywhere */
g_assert_cmpint (self->op_builder.current_render_target, ==, fbo_id);
ops_pop_modelview (&self->op_builder);
ops_pop_clip (&self->op_builder);
buffer_size = self->op_builder.buffer_size;
ops_finish (&self->op_builder);
/*g_message ("Ops: %u", self->render_ops->len);*/
/* Now actually draw things... */
#ifdef G_ENABLE_DEBUG
gsk_gl_profiler_begin_gpu_region (self->gl_profiler);
gsk_profiler_timer_begin (profiler, self->profile_timers.cpu_time);
#endif
/* Actually do the rendering */
if (fbo_id != 0)
glBindFramebuffer (GL_FRAMEBUFFER, fbo_id);
glViewport (0, 0, ceilf (viewport->size.width), ceilf (viewport->size.height));
gsk_gl_renderer_setup_render_mode (self);
gsk_gl_renderer_clear (self);
glEnable (GL_DEPTH_TEST);
glDepthFunc (GL_LEQUAL);
/* Pre-multiplied alpha! */
glEnable (GL_BLEND);
glBlendFunc (GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glBlendEquation (GL_FUNC_ADD);
gdk_gl_context_push_debug_group (self->gl_context, "Rendering ops");
gsk_gl_renderer_render_ops (self, buffer_size);
gdk_gl_context_pop_debug_group (self->gl_context);
#ifdef G_ENABLE_DEBUG
gsk_profiler_counter_inc (profiler, self->profile_counters.frames);
start_time = gsk_profiler_timer_get_start (profiler, self->profile_timers.cpu_time);
cpu_time = gsk_profiler_timer_end (profiler, self->profile_timers.cpu_time);
gsk_profiler_timer_set (profiler, self->profile_timers.cpu_time, cpu_time);
gpu_time = gsk_gl_profiler_end_gpu_region (self->gl_profiler);
gsk_profiler_timer_set (profiler, self->profile_timers.gpu_time, gpu_time);
gsk_profiler_push_samples (profiler);
if (gdk_profiler_is_running ())
gdk_profiler_add_mark (start_time, cpu_time, "render", "");
#endif
}
static GdkTexture *
gsk_gl_renderer_render_texture (GskRenderer *renderer,
GskRenderNode *root,
const graphene_rect_t *viewport)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
GdkTexture *texture;
int width, height;
guint texture_id;
guint fbo_id;
g_return_val_if_fail (self->gl_context != NULL, NULL);
gdk_gl_context_make_current (self->gl_context);
gdk_gl_context_push_debug_group_printf (self->gl_context,
"Render %s<%p> to texture", root->node_class->type_name, root);
width = ceilf (viewport->size.width);
height = ceilf (viewport->size.height);
self->scale_factor = gdk_surface_get_scale_factor (gsk_renderer_get_surface (renderer));
/* Prepare our framebuffer */
gsk_gl_driver_begin_frame (self->gl_driver);
glGenTextures (1, &texture_id);
glBindTexture (GL_TEXTURE_2D, texture_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, texture_id,
"Texture %s<%p> %d", root->node_class->type_name, root, texture_id);
if (gdk_gl_context_get_use_es (self->gl_context))
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
else
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glGenFramebuffers (1, &fbo_id);
glBindFramebuffer (GL_FRAMEBUFFER, fbo_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_FRAMEBUFFER, fbo_id,
"FB %s<%p> %d", root->node_class->type_name, root, fbo_id);
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture_id, 0);
g_assert_cmphex (glCheckFramebufferStatus (GL_FRAMEBUFFER), ==, GL_FRAMEBUFFER_COMPLETE);
/* Render the actual scene */
gsk_gl_renderer_do_render (renderer, root, viewport, fbo_id, 1);
texture = gdk_gl_texture_new (self->gl_context,
texture_id,
width, height,
NULL, NULL);
glDeleteFramebuffers (1, &fbo_id);
gsk_gl_driver_end_frame (self->gl_driver);
gdk_gl_context_pop_debug_group (self->gl_context);
gsk_gl_renderer_clear_tree (self);
return texture;
}
static void
gsk_gl_renderer_render (GskRenderer *renderer,
GskRenderNode *root,
const cairo_region_t *update_area)
{
GskGLRenderer *self = GSK_GL_RENDERER (renderer);
graphene_rect_t viewport;
const cairo_region_t *damage;
GdkRectangle whole_surface;
GdkSurface *surface;
if (self->gl_context == NULL)
return;
gdk_gl_context_make_current (self->gl_context);
gdk_gl_context_push_debug_group_printf (self->gl_context,
"Render root node %p", root);
surface = gsk_renderer_get_surface (renderer);
whole_surface = (GdkRectangle) {
0, 0,
gdk_surface_get_width (surface) * self->scale_factor,
gdk_surface_get_height (surface) * self->scale_factor
};
gdk_draw_context_begin_frame (GDK_DRAW_CONTEXT (self->gl_context),
update_area);
damage = gdk_draw_context_get_frame_region (GDK_DRAW_CONTEXT (self->gl_context));
if (cairo_region_contains_rectangle (damage, &whole_surface) == CAIRO_REGION_OVERLAP_IN)
{
self->render_region = NULL;
}
else
{
GdkRectangle extents;
cairo_region_get_extents (damage, &extents);
if (gdk_rectangle_equal (&extents, &whole_surface))
self->render_region = NULL;
else
self->render_region = cairo_region_create_rectangle (&extents);
}
self->scale_factor = gdk_surface_get_scale_factor (surface);
gdk_gl_context_make_current (self->gl_context);
viewport.origin.x = 0;
viewport.origin.y = 0;
viewport.size.width = gdk_surface_get_width (surface) * self->scale_factor;
viewport.size.height = gdk_surface_get_height (surface) * self->scale_factor;
gsk_gl_driver_begin_frame (self->gl_driver);
gsk_gl_renderer_do_render (renderer, root, &viewport, 0, self->scale_factor);
gsk_gl_driver_end_frame (self->gl_driver);
gsk_gl_renderer_clear_tree (self);
gdk_draw_context_end_frame (GDK_DRAW_CONTEXT (self->gl_context));
gdk_gl_context_make_current (self->gl_context);
gdk_gl_context_pop_debug_group (self->gl_context);
g_clear_pointer (&self->render_region, cairo_region_destroy);
}
static void
gsk_gl_renderer_class_init (GskGLRendererClass *klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
GskRendererClass *renderer_class = GSK_RENDERER_CLASS (klass);
gobject_class->dispose = gsk_gl_renderer_dispose;
renderer_class->realize = gsk_gl_renderer_realize;
renderer_class->unrealize = gsk_gl_renderer_unrealize;
renderer_class->render = gsk_gl_renderer_render;
renderer_class->render_texture = gsk_gl_renderer_render_texture;
}
static void
gsk_gl_renderer_init (GskGLRenderer *self)
{
gsk_ensure_resources ();
self->render_ops = g_array_new (FALSE, FALSE, sizeof (RenderOp));
ops_init (&self->op_builder);
self->op_builder.renderer = self;
self->op_builder.render_ops = self->render_ops;
#ifdef G_ENABLE_DEBUG
{
GskProfiler *profiler = gsk_renderer_get_profiler (GSK_RENDERER (self));
self->profile_counters.frames = gsk_profiler_add_counter (profiler, "frames", "Frames", FALSE);
self->profile_counters.draw_calls = gsk_profiler_add_counter (profiler, "draws", "glDrawArrays", TRUE);
self->profile_timers.cpu_time = gsk_profiler_add_timer (profiler, "cpu-time", "CPU time", FALSE, TRUE);
self->profile_timers.gpu_time = gsk_profiler_add_timer (profiler, "gpu-time", "GPU time", FALSE, TRUE);
}
#endif
}
/**
* gsk_gl_renderer_new:
*
* Creates a new #GskRenderer using OpenGL. This is the default renderer
* used by GTK.
*
* Returns: a new GL renderer
**/
GskRenderer *
gsk_gl_renderer_new (void)
{
return g_object_new (GSK_TYPE_GL_RENDERER, NULL);
}