mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2024-12-27 22:20:24 +00:00
4779e4e488
What was previously done in the layout phase is now done in response to a GdkSurface signal, which means size computation can happen on layout.
802 lines
30 KiB
C
802 lines
30 KiB
C
/* GDK - The GIMP Drawing Kit
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GTK+ Team and others 1997-2010. See the AUTHORS
|
|
* file for a list of people on the GTK+ Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GTK+ at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "gdkframeclockidleprivate.h"
|
|
|
|
#include "gdkinternals.h"
|
|
#include "gdkframeclockprivate.h"
|
|
#include "gdk.h"
|
|
#include "gdkprofilerprivate.h"
|
|
|
|
#ifdef G_OS_WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#define FRAME_INTERVAL 16667 /* microseconds */
|
|
|
|
typedef enum {
|
|
SMOOTH_PHASE_STATE_VALID = 0, /* explicit, since we count on zero-init */
|
|
SMOOTH_PHASE_STATE_AWAIT_FIRST,
|
|
SMOOTH_PHASE_STATE_AWAIT_DRAWN,
|
|
} SmoothDeltaState;
|
|
|
|
struct _GdkFrameClockIdlePrivate
|
|
{
|
|
gint64 frame_time; /* The exact time we last ran the clock cycle, or 0 if never */
|
|
gint64 smoothed_frame_time_base; /* A grid-aligned version of frame_time (grid size == refresh period), never more than half a grid from frame_time */
|
|
gint64 smoothed_frame_time_period; /* The grid size that smoothed_frame_time_base is aligned to */
|
|
gint64 smoothed_frame_time_reported; /* Ensures we are always monotonic */
|
|
gint64 smoothed_frame_time_phase; /* The offset of the first reported frame time, in the current animation sequence, from the preceding vsync */
|
|
gint64 min_next_frame_time; /* We're not synced to vblank, so wait at least until this before next cycle to avoid busy looping */
|
|
SmoothDeltaState smooth_phase_state; /* The state of smoothed_frame_time_phase - is it valid, awaiting vsync etc. Thanks to zero-init, the initial value
|
|
of smoothed_frame_time_phase is `0`. This is valid, since we didn't get a "frame drawn" event yet. Accordingly,
|
|
the initial value of smooth_phase_state is SMOOTH_PHASE_STATE_VALID. See the comment in gdk_frame_clock_paint_idle()
|
|
for details. */
|
|
|
|
gint64 sleep_serial;
|
|
gint64 freeze_time; /* in microseconds */
|
|
|
|
guint flush_idle_id;
|
|
guint paint_idle_id;
|
|
guint freeze_count;
|
|
guint updating_count;
|
|
|
|
GdkFrameClockPhase requested;
|
|
GdkFrameClockPhase phase;
|
|
|
|
guint in_paint_idle : 1;
|
|
guint paint_is_thaw : 1;
|
|
#ifdef G_OS_WIN32
|
|
guint begin_period : 1;
|
|
#endif
|
|
};
|
|
|
|
static gboolean gdk_frame_clock_flush_idle (void *data);
|
|
static gboolean gdk_frame_clock_paint_idle (void *data);
|
|
|
|
G_DEFINE_TYPE_WITH_PRIVATE (GdkFrameClockIdle, gdk_frame_clock_idle, GDK_TYPE_FRAME_CLOCK)
|
|
|
|
static gint64 sleep_serial;
|
|
static gint64 sleep_source_prepare_time;
|
|
static GSource *sleep_source;
|
|
|
|
static gboolean
|
|
sleep_source_prepare (GSource *source,
|
|
int *timeout)
|
|
{
|
|
sleep_source_prepare_time = g_source_get_time (source);
|
|
*timeout = -1;
|
|
return FALSE;
|
|
}
|
|
|
|
static gboolean
|
|
sleep_source_check (GSource *source)
|
|
{
|
|
if (g_source_get_time (source) != sleep_source_prepare_time)
|
|
sleep_serial++;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static gboolean
|
|
sleep_source_dispatch (GSource *source,
|
|
GSourceFunc callback,
|
|
gpointer user_data)
|
|
{
|
|
return TRUE;
|
|
}
|
|
|
|
static GSourceFuncs sleep_source_funcs = {
|
|
sleep_source_prepare,
|
|
sleep_source_check,
|
|
sleep_source_dispatch,
|
|
NULL /* finalize */
|
|
};
|
|
|
|
static gint64
|
|
get_sleep_serial (void)
|
|
{
|
|
if (sleep_source == NULL)
|
|
{
|
|
sleep_source = g_source_new (&sleep_source_funcs, sizeof (GSource));
|
|
|
|
g_source_set_priority (sleep_source, G_PRIORITY_HIGH);
|
|
g_source_attach (sleep_source, NULL);
|
|
g_source_unref (sleep_source);
|
|
}
|
|
|
|
return sleep_serial;
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_init (GdkFrameClockIdle *frame_clock_idle)
|
|
{
|
|
GdkFrameClockIdlePrivate *priv;
|
|
|
|
frame_clock_idle->priv = priv =
|
|
gdk_frame_clock_idle_get_instance_private (frame_clock_idle);
|
|
|
|
priv->freeze_count = 0;
|
|
priv->smoothed_frame_time_period = FRAME_INTERVAL;
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_dispose (GObject *object)
|
|
{
|
|
GdkFrameClockIdlePrivate *priv = GDK_FRAME_CLOCK_IDLE (object)->priv;
|
|
|
|
if (priv->flush_idle_id != 0)
|
|
{
|
|
g_source_remove (priv->flush_idle_id);
|
|
priv->flush_idle_id = 0;
|
|
}
|
|
|
|
if (priv->paint_idle_id != 0)
|
|
{
|
|
g_source_remove (priv->paint_idle_id);
|
|
priv->paint_idle_id = 0;
|
|
}
|
|
|
|
#ifdef G_OS_WIN32
|
|
if (priv->begin_period)
|
|
{
|
|
timeEndPeriod(1);
|
|
priv->begin_period = FALSE;
|
|
}
|
|
#endif
|
|
|
|
G_OBJECT_CLASS (gdk_frame_clock_idle_parent_class)->dispose (object);
|
|
}
|
|
|
|
/* Note: This is never called on first frame, so
|
|
* smoothed_frame_time_base != 0 and we have a valid frame_interval. */
|
|
static gint64
|
|
compute_smooth_frame_time (GdkFrameClock *clock,
|
|
gint64 new_frame_time,
|
|
gboolean new_frame_time_is_vsync_related,
|
|
gint64 smoothed_frame_time_base,
|
|
gint64 frame_interval)
|
|
{
|
|
GdkFrameClockIdlePrivate *priv = GDK_FRAME_CLOCK_IDLE (clock)->priv;
|
|
int frames_passed;
|
|
gint64 new_smoothed_time;
|
|
gint64 current_error;
|
|
gint64 correction_magnitude;
|
|
|
|
/* Consecutive frame, assume it is an integer number of frames later, so round to nearest such */
|
|
/* NOTE: This is >= 0, because smoothed_frame_time_base is < frame_interval/2 from old_frame_time
|
|
* and new_frame_time >= old_frame_time. */
|
|
frames_passed = (new_frame_time - smoothed_frame_time_base + frame_interval / 2) / frame_interval;
|
|
|
|
/* We use an approximately whole number of frames in the future from
|
|
* last smoothed frame time. This way we avoid minor jitter in the
|
|
* frame times making the animation speed uneven, but still animate
|
|
* evenly in case of whole frame skips. */
|
|
new_smoothed_time = smoothed_frame_time_base + frames_passed * frame_interval;
|
|
|
|
/* However, sometimes the smoothed time is too much off from the
|
|
* real time. For example, if the first frame clock cycle happened
|
|
* not due to a frame rendering but an input event, then
|
|
* new_frame_time could happen to be near the middle between two
|
|
* frames. If that happens and we then start regularly animating at
|
|
* the refresh_rate, then the jitter in the real time may cause us
|
|
* to randomly sometimes round up, and sometimes down.
|
|
*
|
|
* To combat this we converge the smooth time towards the real time
|
|
* in a way that is slow when they are near and fast when they are
|
|
* far from each other.
|
|
*
|
|
* This is done by using the square of the error as the correction
|
|
* magnitude. I.e. if the error is 0.5 frame, we correct by
|
|
* 0.5*0.5=0.25 frame, if the error is 0.25 we correct by 0.125, if
|
|
* the error is 0.1, frame we correct by 0.01 frame, etc.
|
|
*
|
|
* The actual computation is:
|
|
* (current_error/frame_interval)*(current_error/frame_interval)*frame_interval
|
|
* But this can be simplified as below.
|
|
*
|
|
* Note: We only do this correction if the new frame is caused by a
|
|
* thaw of the frame clock, so that we know the time is actually
|
|
* related to the physical vblank. For frameclock cycles triggered
|
|
* by other events we always step up in whole frames from the last
|
|
* reported time.
|
|
*/
|
|
if (new_frame_time_is_vsync_related)
|
|
{
|
|
current_error = new_smoothed_time - new_frame_time;
|
|
correction_magnitude = current_error * current_error / frame_interval; /* Note, this is always > 0 due to the square */
|
|
if (current_error > 0)
|
|
new_smoothed_time -= correction_magnitude;
|
|
else
|
|
new_smoothed_time += correction_magnitude;
|
|
}
|
|
|
|
/* Ensure we're always monotonic */
|
|
if (new_smoothed_time <= priv->smoothed_frame_time_reported)
|
|
new_smoothed_time = priv->smoothed_frame_time_reported;
|
|
|
|
return new_smoothed_time;
|
|
}
|
|
|
|
static gint64
|
|
gdk_frame_clock_idle_get_frame_time (GdkFrameClock *clock)
|
|
{
|
|
GdkFrameClockIdlePrivate *priv = GDK_FRAME_CLOCK_IDLE (clock)->priv;
|
|
gint64 now;
|
|
gint64 new_smoothed_time;
|
|
|
|
/* can't change frame time during a paint */
|
|
if (priv->phase != GDK_FRAME_CLOCK_PHASE_NONE &&
|
|
priv->phase != GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS &&
|
|
(priv->phase != GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT || priv->in_paint_idle))
|
|
return priv->smoothed_frame_time_base;
|
|
|
|
/* Outside a paint, pick something smoothed close to now */
|
|
now = g_get_monotonic_time ();
|
|
|
|
/* First time frame, just return something */
|
|
if (priv->smoothed_frame_time_base == 0)
|
|
{
|
|
priv->smoothed_frame_time_reported = now;
|
|
return now;
|
|
}
|
|
|
|
/* Since time is monotonic this is <= what we will pick for the next cycle, but
|
|
more likely than not it will be equal if we're doing a constant animation. */
|
|
new_smoothed_time = compute_smooth_frame_time (clock, now, FALSE,
|
|
priv->smoothed_frame_time_base,
|
|
priv->smoothed_frame_time_period);
|
|
|
|
priv->smoothed_frame_time_reported = new_smoothed_time;
|
|
return new_smoothed_time;
|
|
}
|
|
|
|
#define RUN_FLUSH_IDLE(priv) \
|
|
((priv)->freeze_count == 0 && \
|
|
((priv)->requested & GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS) != 0)
|
|
|
|
/* The reason why we track updating_count separately here and don't
|
|
* just add GDK_FRAME_CLOCK_PHASE_UPDATE into ->request on every frame
|
|
* is so that we can avoid doing one more frame when an animation
|
|
* is cancelled.
|
|
*/
|
|
#define RUN_PAINT_IDLE(priv) \
|
|
((priv)->freeze_count == 0 && \
|
|
(((priv)->requested & ~GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS) != 0 || \
|
|
(priv)->updating_count > 0))
|
|
|
|
static void
|
|
maybe_start_idle (GdkFrameClockIdle *clock_idle,
|
|
gboolean caused_by_thaw)
|
|
{
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
if (RUN_FLUSH_IDLE (priv) || RUN_PAINT_IDLE (priv))
|
|
{
|
|
guint min_interval = 0;
|
|
|
|
if (priv->min_next_frame_time != 0)
|
|
{
|
|
gint64 now = g_get_monotonic_time ();
|
|
gint64 min_interval_us = MAX (priv->min_next_frame_time, now) - now;
|
|
min_interval = (min_interval_us + 500) / 1000;
|
|
}
|
|
|
|
if (priv->flush_idle_id == 0 && RUN_FLUSH_IDLE (priv))
|
|
{
|
|
priv->flush_idle_id = g_timeout_add_full (GDK_PRIORITY_EVENTS + 1,
|
|
min_interval,
|
|
gdk_frame_clock_flush_idle,
|
|
g_object_ref (clock_idle),
|
|
(GDestroyNotify) g_object_unref);
|
|
g_source_set_name_by_id (priv->flush_idle_id, "[gtk] gdk_frame_clock_flush_idle");
|
|
}
|
|
|
|
if (!priv->in_paint_idle &&
|
|
priv->paint_idle_id == 0 && RUN_PAINT_IDLE (priv))
|
|
{
|
|
priv->paint_is_thaw = caused_by_thaw;
|
|
priv->paint_idle_id = g_timeout_add_full (GDK_PRIORITY_REDRAW,
|
|
min_interval,
|
|
gdk_frame_clock_paint_idle,
|
|
g_object_ref (clock_idle),
|
|
(GDestroyNotify) g_object_unref);
|
|
g_source_set_name_by_id (priv->paint_idle_id, "[gtk] gdk_frame_clock_paint_idle");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
maybe_stop_idle (GdkFrameClockIdle *clock_idle)
|
|
{
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
if (priv->flush_idle_id != 0 && !RUN_FLUSH_IDLE (priv))
|
|
{
|
|
g_source_remove (priv->flush_idle_id);
|
|
priv->flush_idle_id = 0;
|
|
}
|
|
|
|
if (priv->paint_idle_id != 0 && !RUN_PAINT_IDLE (priv))
|
|
{
|
|
g_source_remove (priv->paint_idle_id);
|
|
priv->paint_idle_id = 0;
|
|
}
|
|
}
|
|
|
|
static gboolean
|
|
gdk_frame_clock_flush_idle (void *data)
|
|
{
|
|
GdkFrameClock *clock = GDK_FRAME_CLOCK (data);
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
priv->flush_idle_id = 0;
|
|
|
|
if (priv->phase != GDK_FRAME_CLOCK_PHASE_NONE)
|
|
return FALSE;
|
|
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS;
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS;
|
|
|
|
_gdk_frame_clock_emit_flush_events (clock);
|
|
|
|
if ((priv->requested & ~GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS) != 0 ||
|
|
priv->updating_count > 0)
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT;
|
|
else
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_NONE;
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* Returns the positive remainder.
|
|
*
|
|
* As an example, lets consider (-5) % 16:
|
|
*
|
|
* (-5) % 16 = (0 * 16) + (-5) = -5
|
|
*
|
|
* If we only want positive remainders, we can instead calculate
|
|
*
|
|
* (-5) % 16 = (1 * 16) + (-5) = 11
|
|
*
|
|
* The built-in `%` operator returns the former, positive_modulo() returns the latter.
|
|
*/
|
|
static int
|
|
positive_modulo (int i, int n)
|
|
{
|
|
return (i % n + n) % n;
|
|
}
|
|
|
|
static gboolean
|
|
gdk_frame_clock_paint_idle (void *data)
|
|
{
|
|
GdkFrameClock *clock = GDK_FRAME_CLOCK (data);
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
gboolean skip_to_resume_events;
|
|
GdkFrameTimings *timings = NULL;
|
|
gint64 before G_GNUC_UNUSED;
|
|
|
|
before = GDK_PROFILER_CURRENT_TIME;
|
|
|
|
priv->paint_idle_id = 0;
|
|
priv->in_paint_idle = TRUE;
|
|
priv->min_next_frame_time = 0;
|
|
|
|
skip_to_resume_events =
|
|
(priv->requested & ~(GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS | GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS)) == 0 &&
|
|
priv->updating_count == 0;
|
|
|
|
if (priv->phase > GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT)
|
|
{
|
|
timings = gdk_frame_clock_get_current_timings (clock);
|
|
}
|
|
|
|
if (!skip_to_resume_events)
|
|
{
|
|
switch (priv->phase)
|
|
{
|
|
case GDK_FRAME_CLOCK_PHASE_FLUSH_EVENTS:
|
|
break;
|
|
case GDK_FRAME_CLOCK_PHASE_NONE:
|
|
case GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT:
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
gint64 frame_interval = FRAME_INTERVAL;
|
|
GdkFrameTimings *prev_timings = gdk_frame_clock_get_current_timings (clock);
|
|
|
|
if (prev_timings && prev_timings->refresh_interval)
|
|
frame_interval = prev_timings->refresh_interval;
|
|
|
|
priv->frame_time = g_get_monotonic_time ();
|
|
|
|
/*
|
|
* The first clock cycle of an animation might have been triggered by some external event. An external
|
|
* event can be an input event, an expired timer, data arriving over the network etc. This can happen at
|
|
* any time, so the cycle could have been scheduled at some random time rather then immediately after a
|
|
* frame completion. The offset between the start of the first animation cycle and the preceding vsync is
|
|
* called the "phase" of the clock cycle start time (not to be confused with the phase of the frame
|
|
* clock).
|
|
*
|
|
* In this first clock cycle, the "smooth" frame time is simply the time when the cycle was started. This
|
|
* could be followed by several cycles which are not vsync-related. As long as we don't get a "frame
|
|
* drawn" signal from the compositor, the clock cycles will occur every about frame_interval. Once we do
|
|
* get a "frame drawn" signal, from this point on the frame clock cycles will start shortly after the
|
|
* corresponding vsync signals, again every about frame_interval. The first vsync-related clock cycle
|
|
* might occur less than a refresh interval away from the last non-vsync-related cycle. See the diagram
|
|
* below for details. So while the cadence stays the same - a frame clock cycle every about frame_interval
|
|
* - the phase of the cycles start time has changed.
|
|
*
|
|
* Since we might have already reported the frame time to the application in the previous clock cycles, we
|
|
* have to adjust future reported frame times. We want the first vsync-related smooth time to be separated
|
|
* by exactly 1 frame_interval from the previous one, in order to maintain the regularity of the reported
|
|
* frame times. To achieve that, from this point on we add the phase of the first clock cycle start time to
|
|
* the smooth time. In order to compute that phase, accounting for possible skipped frames (e.g. due to
|
|
* compositor stalls), we want the following to be true:
|
|
*
|
|
* first_vsync_smooth_time = last_non_vsync_smooth_time + frame_interval * (1 + frames_skipped)
|
|
*
|
|
* We can assign the following known/desired values to the above equation:
|
|
*
|
|
* last_non_vsync_smooth_time = smoothed_frame_time_base
|
|
* first_vsync_smooth_time = frame_time + smoothed_frame_time_phase
|
|
*
|
|
* That leads us to the following, from which we can extract smoothed_frame_time_phase:
|
|
*
|
|
* frame_time + smoothed_frame_time_phase = smoothed_frame_time_base +
|
|
* frame_interval * (1 + frames_skipped)
|
|
*
|
|
* In the following diagram, '|' mark a vsync, '*' mark the start of a clock cycle, '+' is the adjusted
|
|
* frame time, '!' marks the reception of "frame drawn" events from the compositor. Note that the clock
|
|
* cycle cadence changed after the first vsync-related cycle. This cadence is kept even if we don't
|
|
* receive a 'frame drawn' signal in a subsequent frame, since then we schedule the clock at intervals of
|
|
* refresh_interval.
|
|
*
|
|
* vsync | | | | | |...
|
|
* frame drawn | | |! |! | |...
|
|
* cycle start | * | * |* |* |* |...
|
|
* adjusted times | * | * | + | + | + |...
|
|
* phase ^------^
|
|
*/
|
|
if (priv->smooth_phase_state == SMOOTH_PHASE_STATE_AWAIT_FIRST)
|
|
{
|
|
/* First animation cycle - usually unrelated to vsync */
|
|
priv->smoothed_frame_time_base = 0;
|
|
priv->smoothed_frame_time_phase = 0;
|
|
priv->smooth_phase_state = SMOOTH_PHASE_STATE_AWAIT_DRAWN;
|
|
}
|
|
else if (priv->smooth_phase_state == SMOOTH_PHASE_STATE_AWAIT_DRAWN &&
|
|
priv->paint_is_thaw)
|
|
{
|
|
/* First vsync-related animation cycle, we can now compute the phase. We want the phase to satisfy
|
|
0 <= phase < frame_interval */
|
|
priv->smoothed_frame_time_phase =
|
|
positive_modulo (priv->smoothed_frame_time_base - priv->frame_time,
|
|
frame_interval);
|
|
priv->smooth_phase_state = SMOOTH_PHASE_STATE_VALID;
|
|
}
|
|
|
|
if (priv->smoothed_frame_time_base == 0)
|
|
{
|
|
/* First frame ever, or first cycle in a new animation sequence. Ensure monotonicity */
|
|
priv->smoothed_frame_time_base = MAX (priv->frame_time, priv->smoothed_frame_time_reported);
|
|
}
|
|
else
|
|
{
|
|
/* compute_smooth_frame_time() ensures monotonicity */
|
|
priv->smoothed_frame_time_base =
|
|
compute_smooth_frame_time (clock, priv->frame_time + priv->smoothed_frame_time_phase,
|
|
priv->paint_is_thaw,
|
|
priv->smoothed_frame_time_base,
|
|
priv->smoothed_frame_time_period);
|
|
}
|
|
|
|
priv->smoothed_frame_time_period = frame_interval;
|
|
priv->smoothed_frame_time_reported = priv->smoothed_frame_time_base;
|
|
|
|
_gdk_frame_clock_begin_frame (clock);
|
|
/* Note "current" is different now so timings != prev_timings */
|
|
timings = gdk_frame_clock_get_current_timings (clock);
|
|
|
|
timings->frame_time = priv->frame_time;
|
|
timings->smoothed_frame_time = priv->smoothed_frame_time_base;
|
|
timings->slept_before = priv->sleep_serial != get_sleep_serial ();
|
|
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT;
|
|
|
|
/* We always emit ::before-paint and ::after-paint if
|
|
* any of the intermediate phases are requested and
|
|
* they don't get repeated if you freeze/thaw while
|
|
* in them.
|
|
*/
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_BEFORE_PAINT;
|
|
_gdk_frame_clock_emit_before_paint (clock);
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_UPDATE;
|
|
}
|
|
G_GNUC_FALLTHROUGH;
|
|
|
|
case GDK_FRAME_CLOCK_PHASE_UPDATE:
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
if ((priv->requested & GDK_FRAME_CLOCK_PHASE_UPDATE) != 0 ||
|
|
priv->updating_count > 0)
|
|
{
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_UPDATE;
|
|
_gdk_frame_clock_emit_update (clock);
|
|
}
|
|
}
|
|
G_GNUC_FALLTHROUGH;
|
|
|
|
case GDK_FRAME_CLOCK_PHASE_LAYOUT:
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
int iter;
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (GDK_DEBUG_CHECK (FRAMES))
|
|
{
|
|
if (priv->phase != GDK_FRAME_CLOCK_PHASE_LAYOUT &&
|
|
(priv->requested & GDK_FRAME_CLOCK_PHASE_LAYOUT))
|
|
timings->layout_start_time = g_get_monotonic_time ();
|
|
}
|
|
#endif
|
|
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_LAYOUT;
|
|
/* We loop in the layout phase, because we don't want to progress
|
|
* into the paint phase with invalid size allocations. This may
|
|
* happen in some situation like races between user window
|
|
* resizes and natural size changes.
|
|
*/
|
|
iter = 0;
|
|
while ((priv->requested & GDK_FRAME_CLOCK_PHASE_LAYOUT) &&
|
|
priv->freeze_count == 0 && iter++ < 4)
|
|
{
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_LAYOUT;
|
|
_gdk_frame_clock_emit_layout (clock);
|
|
}
|
|
if (iter == 5)
|
|
g_warning ("gdk-frame-clock: layout continuously requested, giving up after 4 tries");
|
|
}
|
|
G_GNUC_FALLTHROUGH;
|
|
|
|
case GDK_FRAME_CLOCK_PHASE_PAINT:
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (GDK_DEBUG_CHECK (FRAMES))
|
|
{
|
|
if (priv->phase != GDK_FRAME_CLOCK_PHASE_PAINT &&
|
|
(priv->requested & GDK_FRAME_CLOCK_PHASE_PAINT))
|
|
timings->paint_start_time = g_get_monotonic_time ();
|
|
}
|
|
#endif
|
|
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_PAINT;
|
|
if (priv->requested & GDK_FRAME_CLOCK_PHASE_PAINT)
|
|
{
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_PAINT;
|
|
_gdk_frame_clock_emit_paint (clock);
|
|
}
|
|
}
|
|
G_GNUC_FALLTHROUGH;
|
|
|
|
case GDK_FRAME_CLOCK_PHASE_AFTER_PAINT:
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_AFTER_PAINT;
|
|
_gdk_frame_clock_emit_after_paint (clock);
|
|
/* the ::after-paint phase doesn't get repeated on freeze/thaw,
|
|
*/
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_NONE;
|
|
}
|
|
#ifdef G_ENABLE_DEBUG
|
|
if (GDK_DEBUG_CHECK (FRAMES))
|
|
timings->frame_end_time = g_get_monotonic_time ();
|
|
#endif /* G_ENABLE_DEBUG */
|
|
G_GNUC_FALLTHROUGH;
|
|
|
|
case GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS:
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
|
|
if (priv->requested & GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS)
|
|
{
|
|
priv->requested &= ~GDK_FRAME_CLOCK_PHASE_RESUME_EVENTS;
|
|
_gdk_frame_clock_emit_resume_events (clock);
|
|
}
|
|
|
|
if (priv->freeze_count == 0)
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_NONE;
|
|
|
|
priv->in_paint_idle = FALSE;
|
|
|
|
/* If there is throttling in the backend layer, then we'll do another
|
|
* update as soon as the backend unthrottles (if there is work to do),
|
|
* otherwise we need to figure when the next frame should be.
|
|
*/
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
/*
|
|
* If we don't receive "frame drawn" events, smooth_cycle_start will simply be advanced in constant increments of
|
|
* the refresh interval. That way we get absolute target times for the next cycles, which should prevent skewing
|
|
* in the scheduling of the frame clock.
|
|
*
|
|
* Once we do receive "frame drawn" events, smooth_cycle_start will track the vsync, and do so in a more stable
|
|
* way compared to frame_time. If we then no longer receive "frame drawn" events, smooth_cycle_start will again be
|
|
* simply advanced in increments of the refresh interval, but this time we are in sync with the vsync. If we start
|
|
* receiving "frame drawn" events shortly after losing them, then we should still be in sync.
|
|
*/
|
|
gint64 smooth_cycle_start = priv->smoothed_frame_time_base - priv->smoothed_frame_time_phase;
|
|
priv->min_next_frame_time = smooth_cycle_start + priv->smoothed_frame_time_period;
|
|
|
|
maybe_start_idle (clock_idle, FALSE);
|
|
}
|
|
|
|
if (priv->freeze_count == 0)
|
|
priv->sleep_serial = get_sleep_serial ();
|
|
|
|
gdk_profiler_end_mark (before, "frameclock cycle", NULL);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_request_phase (GdkFrameClock *clock,
|
|
GdkFrameClockPhase phase)
|
|
{
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
priv->requested |= phase;
|
|
maybe_start_idle (clock_idle, FALSE);
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_begin_updating (GdkFrameClock *clock)
|
|
{
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
#ifdef G_OS_WIN32
|
|
/* We need a higher resolution timer while doing animations */
|
|
if (priv->updating_count == 0 && !priv->begin_period)
|
|
{
|
|
timeBeginPeriod(1);
|
|
priv->begin_period = TRUE;
|
|
}
|
|
#endif
|
|
|
|
if (priv->updating_count == 0)
|
|
{
|
|
priv->smooth_phase_state = SMOOTH_PHASE_STATE_AWAIT_FIRST;
|
|
}
|
|
|
|
priv->updating_count++;
|
|
maybe_start_idle (clock_idle, FALSE);
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_end_updating (GdkFrameClock *clock)
|
|
{
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
g_return_if_fail (priv->updating_count > 0);
|
|
|
|
priv->updating_count--;
|
|
maybe_stop_idle (clock_idle);
|
|
|
|
if (priv->updating_count == 0)
|
|
{
|
|
priv->smooth_phase_state = SMOOTH_PHASE_STATE_VALID;
|
|
}
|
|
|
|
#ifdef G_OS_WIN32
|
|
if (priv->updating_count == 0 && priv->begin_period)
|
|
{
|
|
timeEndPeriod(1);
|
|
priv->begin_period = FALSE;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_freeze (GdkFrameClock *clock)
|
|
{
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
if (GDK_PROFILER_IS_RUNNING)
|
|
priv->freeze_time = g_get_monotonic_time ();
|
|
}
|
|
|
|
priv->freeze_count++;
|
|
maybe_stop_idle (clock_idle);
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_thaw (GdkFrameClock *clock)
|
|
{
|
|
GdkFrameClockIdle *clock_idle = GDK_FRAME_CLOCK_IDLE (clock);
|
|
GdkFrameClockIdlePrivate *priv = clock_idle->priv;
|
|
|
|
g_return_if_fail (priv->freeze_count > 0);
|
|
|
|
priv->freeze_count--;
|
|
if (priv->freeze_count == 0)
|
|
{
|
|
maybe_start_idle (clock_idle, TRUE);
|
|
/* If nothing is requested so we didn't start an idle, we need
|
|
* to skip to the end of the state chain, since the idle won't
|
|
* run and do it for us.
|
|
*/
|
|
if (priv->paint_idle_id == 0)
|
|
priv->phase = GDK_FRAME_CLOCK_PHASE_NONE;
|
|
|
|
priv->sleep_serial = get_sleep_serial ();
|
|
|
|
if (GDK_PROFILER_IS_RUNNING)
|
|
{
|
|
if (priv->freeze_time != 0)
|
|
{
|
|
gdk_profiler_end_mark (priv->freeze_time * 1000, "frameclock frozen", NULL);
|
|
priv->freeze_time = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_idle_class_init (GdkFrameClockIdleClass *klass)
|
|
{
|
|
GObjectClass *gobject_class = (GObjectClass*) klass;
|
|
GdkFrameClockClass *frame_clock_class = (GdkFrameClockClass *)klass;
|
|
|
|
gobject_class->dispose = gdk_frame_clock_idle_dispose;
|
|
|
|
frame_clock_class->get_frame_time = gdk_frame_clock_idle_get_frame_time;
|
|
frame_clock_class->request_phase = gdk_frame_clock_idle_request_phase;
|
|
frame_clock_class->begin_updating = gdk_frame_clock_idle_begin_updating;
|
|
frame_clock_class->end_updating = gdk_frame_clock_idle_end_updating;
|
|
frame_clock_class->freeze = gdk_frame_clock_idle_freeze;
|
|
frame_clock_class->thaw = gdk_frame_clock_idle_thaw;
|
|
}
|
|
|
|
GdkFrameClock *
|
|
_gdk_frame_clock_idle_new (void)
|
|
{
|
|
GdkFrameClockIdle *clock;
|
|
|
|
clock = g_object_new (GDK_TYPE_FRAME_CLOCK_IDLE, NULL);
|
|
|
|
return GDK_FRAME_CLOCK (clock);
|
|
}
|