gtk/gdk/Makefile.am
Tim Janik 39ff37dc74 postfix -lg* libraries with LT_RELEASE.
Thu May  7 05:14:19 1998  Tim Janik  <timj@gtk.org>

        * gtk-config.in (--libs): postfix -lg* libraries with LT_RELEASE.

        * ltmain.sh: added a new commandline flag -postfix similar to -release,
        but will immediately change the library name.

        * gdk/Makefile.am:
        * gtk/Makefile.am: specify -postfix and -version-info

        * configure.in: version bump to 1.1.0. added GTK_INTERFACE_AGE and
        GTK_BINARY_AGE. calculate LT_* variables for libtool.
1998-05-07 04:04:15 +00:00

83 lines
1.5 KiB
Makefile

## Process this file with automake to produce Makefile.in
gdkincludedir = $(includedir)/gdk
lib_LTLIBRARIES = libgdk.la
libgdk_la_SOURCES = \
gdk.c \
gdkcc.c \
gdkcolor.c \
gdkcursor.c \
gdkdnd.c \
gdkdraw.c \
gdkfont.c \
gdkgc.c \
gdkglobals.c \
gdkimage.c \
gdkinput.c \
gdkinput.h \
gdkinputnone.h \
gdkinputcommon.h\
gdkinputgxi.h \
gdkinputxfree.h \
gdkpixmap.c \
gdkproperty.c \
gdkrectangle.c \
gdkregion.c \
gdkselection.c \
gdkvisual.c \
gdkwindow.c \
gdkxid.c \
MwmUtil.h \
gxid_lib.h \
gxid_proto.h \
gxid_lib.c
## this last one is ifdef'd out unless XINPUT_GXI is defined
## It's easier than trying to get automake to handle compiling
## it conditionally
gdkinclude_HEADERS = \
gdk.h \
gdkcursors.h \
gdki18n.h \
gdkkeysyms.h \
gdkprivate.h \
gdktypes.h \
gdkx.h
libgdk_la_LDFLAGS = \
-postfix $(LT_RELEASE) \
-version-info $(LT_CURRENT):$(LT_REVISION):$(LT_AGE) \
@x_ldflags@ @x_libs@
INCLUDES = -I$(top_srcdir) -I../glib -I$(top_srcdir)/glib @x_cflags@
EXTRA_PROGRAMS = gxid
bin_PROGRAMS = @xinput_progs@
gxid_SOURCES = gxid.c
gxid_LDADD = \
@x_ldflags@ \
@x_libs@ \
-lm
BUILT_SOURCES = gdkcursors.h gdkkeysyms.h
EXTRA_DIST = makecursors.awk makekeysyms.awk
gdkcursors.h:
awk -f $(srcdir)/makecursors.awk @x_includes@/X11/cursorfont.h > $@
gdkkeysyms.h:
awk -f $(srcdir)/makekeysyms.awk @x_includes@/X11/keysymdef.h > $@
.PHONY: files
files:
@files=`ls $(DISTFILES) 2> /dev/null `; for p in $$files; do \
echo $$p; \
done