mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2025-01-07 19:30:12 +00:00
ad65db901a
Our coverage computation only works for well-behaved rects and rounded rects. But our modelview transform might flip x or y around, causing things to fail. Add functions to normalize rects and rounded rects, and use it whenever we transform a rounded rect in GLSL.
113 lines
2.5 KiB
GLSL
113 lines
2.5 KiB
GLSL
#ifndef GSK_LEGACY
|
|
precision highp float;
|
|
#endif
|
|
|
|
#if defined(GSK_GLES) || defined(GSK_LEGACY)
|
|
#define _OUT_ varying
|
|
#define _IN_ varying
|
|
#define _GSK_ROUNDED_RECT_UNIFORM_ vec4[3]
|
|
#else
|
|
#define _OUT_ out
|
|
#define _IN_ in
|
|
#define _GSK_ROUNDED_RECT_UNIFORM_ GskRoundedRect
|
|
#endif
|
|
|
|
|
|
struct GskRoundedRect
|
|
{
|
|
vec4 bounds; // Top left and bottom right
|
|
// Look, arrays can't be in structs if you want to return the struct
|
|
// from a function in gles or whatever. Just kill me.
|
|
vec4 corner_points1; // xy = top left, zw = top right
|
|
vec4 corner_points2; // xy = bottom right, zw = bottom left
|
|
};
|
|
|
|
void gsk_rounded_rect_normalize(inout GskRoundedRect r)
|
|
{
|
|
if (r.bounds.x > r.bounds.z)
|
|
{
|
|
float t = r.bounds.x;
|
|
r.bounds.x = r.bounds.z;
|
|
r.bounds.z = t;
|
|
|
|
vec2 c = r.corner_points1.xy;
|
|
r.corner_points1.xy = r.corner_points1.zw;
|
|
r.corner_points1.zw = c;
|
|
|
|
c = r.corner_points2.xy;
|
|
r.corner_points2.xy = r.corner_points2.zw;
|
|
r.corner_points2.zw = c;
|
|
}
|
|
|
|
if (r.bounds.y > r.bounds.w)
|
|
{
|
|
float t = r.bounds.y;
|
|
r.bounds.y = r.bounds.w;
|
|
r.bounds.w = t;
|
|
|
|
vec2 c = r.corner_points1.xy;
|
|
r.corner_points1.xy = r.corner_points2.xy;
|
|
r.corner_points2.xy = c;
|
|
|
|
c = r.corner_points1.zw;
|
|
r.corner_points1.zw = r.corner_points2.zw;
|
|
r.corner_points2.zw = c;
|
|
}
|
|
}
|
|
|
|
void gsk_bounds_normalize (inout vec4 bounds)
|
|
{
|
|
if (bounds.x > bounds.z)
|
|
{
|
|
float t = bounds.x;
|
|
bounds.x = bounds.z;
|
|
bounds.z = t;
|
|
}
|
|
if (bounds.y > bounds.w)
|
|
{
|
|
float t = bounds.y;
|
|
bounds.y = bounds.w;
|
|
bounds.w = t;
|
|
}
|
|
}
|
|
|
|
// Transform from a C GskRoundedRect to what we need.
|
|
GskRoundedRect
|
|
gsk_create_rect(vec4[3] data)
|
|
{
|
|
vec4 bounds = vec4(data[0].xy, data[0].xy + data[0].zw);
|
|
|
|
vec4 corner_points1 = vec4(bounds.xy + data[1].xy,
|
|
bounds.zy + vec2(data[1].zw * vec2(-1, 1)));
|
|
vec4 corner_points2 = vec4(bounds.zw + (data[2].xy * vec2(-1, -1)),
|
|
bounds.xw + vec2(data[2].zw * vec2(1, -1)));
|
|
|
|
GskRoundedRect rect = GskRoundedRect(bounds, corner_points1, corner_points2);
|
|
|
|
gsk_rounded_rect_normalize (rect);
|
|
|
|
return rect;
|
|
}
|
|
|
|
vec4
|
|
gsk_get_bounds(vec4[3] data)
|
|
{
|
|
vec4 bounds = vec4(data[0].xy, data[0].xy + data[0].zw);
|
|
|
|
gsk_bounds_normalize (bounds);
|
|
|
|
return bounds;
|
|
}
|
|
|
|
vec4 gsk_premultiply(vec4 c) {
|
|
return vec4(c.rgb * c.a, c.a);
|
|
}
|
|
|
|
vec4 gsk_scaled_premultiply(vec4 c, float s) {
|
|
// Fast version of gsk_premultiply(c) * s
|
|
// 4 muls instead of 7
|
|
float a = s * c.a;
|
|
|
|
return vec4(c.rgb * a, a);
|
|
}
|