gtk/gsk/gpu/gskvulkandevice.c
Benjamin Otte 9e27acb0a6 gpu: Allocate Vulkan descriptor pools dynamically
Instead of allocating one large descriptor pool and hoping we never run
out of descriptors, allocate small ones dynamically, so we know we never
run out.

Test incldued, though the test doesn't fail in CI, because llvmpipe
doesn't care about pool size limits. It does fail on my AMD though.

A fun side note about that test is that the GL renderer handles it best
in normal operationbecause it caches offscreens per node and we draw the
same node repeatedly.
But, the replay test expands them to duplicated unique nodes, and then
the GL renderer runs out of command queue length, so I had to disable
the test on it.
2024-07-22 19:40:24 +02:00

1093 lines
46 KiB
C

#include "config.h"
#include "gskvulkandeviceprivate.h"
#include "gskgpuglobalsopprivate.h"
#include "gskgpushaderopprivate.h"
#include "gskvulkanbufferprivate.h"
#include "gskvulkanimageprivate.h"
#include "gskvulkanycbcrprivate.h"
#include "gdk/gdkdisplayprivate.h"
#include "gdk/gdkvulkancontextprivate.h"
#include "gdk/gdkprofilerprivate.h"
#define GDK_ARRAY_NAME descriptor_pools
#define GDK_ARRAY_TYPE_NAME DescriptorPools
#define GDK_ARRAY_ELEMENT_TYPE VkDescriptorPool
#define GDK_ARRAY_PREALLOC 4
#define GDK_ARRAY_NO_MEMSET 1
#include "gdk/gdkarrayimpl.c"
struct _GskVulkanDevice
{
GskGpuDevice parent_instance;
GskVulkanAllocator *allocators[VK_MAX_MEMORY_TYPES];
GskVulkanAllocator *external_allocator;
GdkVulkanFeatures features;
GHashTable *ycbcr_cache;
GHashTable *render_pass_cache;
GHashTable *pipeline_cache;
VkCommandPool vk_command_pool;
DescriptorPools descriptor_pools;
gsize last_pool;
VkSampler vk_samplers[GSK_GPU_SAMPLER_N_SAMPLERS];
VkDescriptorSetLayout vk_image_set_layout;
VkPipelineLayout default_vk_pipeline_layout;
};
struct _GskVulkanDeviceClass
{
GskGpuDeviceClass parent_class;
};
G_DEFINE_TYPE (GskVulkanDevice, gsk_vulkan_device, GSK_TYPE_GPU_DEVICE)
typedef struct _ConversionCacheEntry ConversionCacheEntry;
typedef struct _PipelineCacheKey PipelineCacheKey;
typedef struct _RenderPassCacheKey RenderPassCacheKey;
struct _ConversionCacheEntry
{
VkFormat vk_format;
/* actual data */
VkSamplerYcbcrConversion vk_conversion;
VkSampler vk_sampler;
};
struct _PipelineCacheKey
{
const GskGpuShaderOpClass *op_class;
GskGpuShaderFlags flags;
GskGpuColorStates color_states;
guint32 variation;
GskGpuBlend blend;
VkFormat vk_format;
VkPipelineLayout vk_layout;
VkPipeline vk_pipeline;
};
struct _RenderPassCacheKey
{
VkFormat format;
VkImageLayout from_layout;
VkImageLayout to_layout;
VkRenderPass render_pass;
};
static guint
pipeline_cache_key_hash (gconstpointer data)
{
const PipelineCacheKey *key = data;
return GPOINTER_TO_UINT (key->op_class) ^
key->flags ^
(key->color_states << 8) ^
(key->variation << 16) ^
(key->blend << 24) ^
GPOINTER_TO_UINT (key->vk_layout) ^
(key->vk_format << 21) ^ (key->vk_format >> 11);
}
static gboolean
pipeline_cache_key_equal (gconstpointer a,
gconstpointer b)
{
const PipelineCacheKey *keya = a;
const PipelineCacheKey *keyb = b;
return keya->op_class == keyb->op_class &&
keya->flags == keyb->flags &&
keya->color_states == keyb->color_states &&
keya->variation == keyb->variation &&
keya->blend == keyb->blend &&
keya->vk_layout == keyb->vk_layout &&
keya->vk_format == keyb->vk_format;
}
static guint
render_pass_cache_key_hash (gconstpointer data)
{
const RenderPassCacheKey *key = data;
return (key->from_layout << 20) ^
(key->to_layout << 16) ^
(key->format);
}
static gboolean
render_pass_cache_key_equal (gconstpointer a,
gconstpointer b)
{
const RenderPassCacheKey *keya = a;
const RenderPassCacheKey *keyb = b;
return keya->from_layout == keyb->from_layout &&
keya->to_layout == keyb->to_layout &&
keya->format == keyb->format;
}
static VkDescriptorSetLayout
gsk_vulkan_device_create_vk_image_set_layout (GskVulkanDevice *self)
{
VkDevice vk_device;
VkDescriptorSetLayout result;
vk_device = gsk_vulkan_device_get_vk_device (self);
GSK_VK_CHECK (vkCreateDescriptorSetLayout, vk_device,
&(VkDescriptorSetLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.bindingCount = 1,
.flags = 0,
.pBindings = (VkDescriptorSetLayoutBinding[1]) {
{
.binding = 0,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
}
},
},
NULL,
&result);
return result;
}
VkPipelineLayout
gsk_vulkan_device_create_vk_pipeline_layout (GskVulkanDevice *self,
VkDescriptorSetLayout image1_layout,
VkDescriptorSetLayout image2_layout)
{
VkDevice vk_device;
VkPipelineLayout result;
vk_device = gsk_vulkan_device_get_vk_device (self);
GSK_VK_CHECK (vkCreatePipelineLayout, vk_device,
&(VkPipelineLayoutCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.setLayoutCount = 2,
.pSetLayouts = (VkDescriptorSetLayout[2]) {
image1_layout,
image2_layout,
},
.pushConstantRangeCount = 1,
.pPushConstantRanges = (VkPushConstantRange[1]) {
{
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT,
.offset = 0,
.size = sizeof (GskGpuGlobalsInstance)
}
}
},
NULL,
&result);
return result;
}
static GskGpuImage *
gsk_vulkan_device_create_offscreen_image (GskGpuDevice *device,
gboolean with_mipmap,
GdkMemoryDepth depth,
gsize width,
gsize height)
{
GskVulkanDevice *self = GSK_VULKAN_DEVICE (device);
return gsk_vulkan_image_new_for_offscreen (self,
with_mipmap,
gdk_memory_depth_get_format (depth),
gdk_memory_depth_is_srgb (depth),
width,
height);
}
static GskGpuImage *
gsk_vulkan_device_create_atlas_image (GskGpuDevice *device,
gsize width,
gsize height)
{
GskVulkanDevice *self = GSK_VULKAN_DEVICE (device);
return gsk_vulkan_image_new_for_atlas (self,
width,
height);
}
static GskGpuImage *
gsk_vulkan_device_create_upload_image (GskGpuDevice *device,
gboolean with_mipmap,
GdkMemoryFormat format,
gboolean try_srgb,
gsize width,
gsize height)
{
GskVulkanDevice *self = GSK_VULKAN_DEVICE (device);
return gsk_vulkan_image_new_for_upload (self,
with_mipmap,
format,
try_srgb,
width,
height);
}
static GskGpuImage *
gsk_vulkan_device_create_download_image (GskGpuDevice *device,
GdkMemoryDepth depth,
gsize width,
gsize height)
{
GskVulkanDevice *self = GSK_VULKAN_DEVICE (device);
GskGpuImage *image;
#ifdef HAVE_DMABUF
image = gsk_vulkan_image_new_dmabuf (self,
gdk_memory_depth_get_format (depth),
gdk_memory_depth_is_srgb (depth),
width,
height);
if (image != NULL)
return image;
#endif
image = gsk_vulkan_image_new_for_offscreen (self,
FALSE,
gdk_memory_depth_get_format (depth),
gdk_memory_depth_is_srgb (depth),
width,
height);
return image;
}
static void
gsk_vulkan_device_make_current (GskGpuDevice *device)
{
}
static void
gsk_vulkan_device_finalize (GObject *object)
{
GskVulkanDevice *self = GSK_VULKAN_DEVICE (object);
GskGpuDevice *device = GSK_GPU_DEVICE (self);
VkDevice vk_device;
GdkDisplay *display;
GHashTableIter iter;
gpointer key, value;
gsize i;
display = gsk_gpu_device_get_display (device);
vk_device = gsk_vulkan_device_get_vk_device (self);
g_object_steal_data (G_OBJECT (display), "-gsk-vulkan-device");
g_assert (g_hash_table_size (self->ycbcr_cache) == 0);
g_hash_table_unref (self->ycbcr_cache);
g_hash_table_iter_init (&iter, self->pipeline_cache);
while (g_hash_table_iter_next (&iter, &key, &value))
{
vkDestroyPipeline (vk_device,
((PipelineCacheKey *)key)->vk_pipeline,
NULL);
g_free (key);
}
g_hash_table_unref (self->pipeline_cache);
g_hash_table_iter_init (&iter, self->render_pass_cache);
while (g_hash_table_iter_next (&iter, &key, &value))
{
vkDestroyRenderPass (vk_device,
((RenderPassCacheKey *)key)->render_pass,
NULL);
g_free (key);
}
g_hash_table_unref (self->render_pass_cache);
for (i = 0; i < G_N_ELEMENTS (self->vk_samplers); i++)
{
if (self->vk_samplers[i] != VK_NULL_HANDLE)
vkDestroySampler (vk_device,
self->vk_samplers[i],
NULL);
}
vkDestroyPipelineLayout (vk_device,
self->default_vk_pipeline_layout,
NULL);
vkDestroyDescriptorSetLayout (vk_device,
self->vk_image_set_layout,
NULL);
for (i = 0; i < descriptor_pools_get_size (&self->descriptor_pools); i++)
vkDestroyDescriptorPool (vk_device,
descriptor_pools_get (&self->descriptor_pools, i),
NULL);
descriptor_pools_clear (&self->descriptor_pools);
vkDestroyCommandPool (vk_device,
self->vk_command_pool,
NULL);
for (i = 0; i < VK_MAX_MEMORY_TYPES; i++)
g_clear_pointer (&self->allocators[i], gsk_vulkan_allocator_unref);
g_clear_pointer (&self->external_allocator, gsk_vulkan_allocator_unref);
gdk_display_unref_vulkan (display);
G_OBJECT_CLASS (gsk_vulkan_device_parent_class)->finalize (object);
}
static void
gsk_vulkan_device_class_init (GskVulkanDeviceClass *klass)
{
GskGpuDeviceClass *gpu_device_class = GSK_GPU_DEVICE_CLASS (klass);
GObjectClass *object_class = G_OBJECT_CLASS (klass);
gpu_device_class->create_offscreen_image = gsk_vulkan_device_create_offscreen_image;
gpu_device_class->create_atlas_image = gsk_vulkan_device_create_atlas_image;
gpu_device_class->create_upload_image = gsk_vulkan_device_create_upload_image;
gpu_device_class->create_download_image = gsk_vulkan_device_create_download_image;
gpu_device_class->make_current = gsk_vulkan_device_make_current;
object_class->finalize = gsk_vulkan_device_finalize;
}
static void
gsk_vulkan_device_init (GskVulkanDevice *self)
{
self->ycbcr_cache = g_hash_table_new (g_direct_hash, g_direct_equal);
self->render_pass_cache = g_hash_table_new (render_pass_cache_key_hash, render_pass_cache_key_equal);
self->pipeline_cache = g_hash_table_new (pipeline_cache_key_hash, pipeline_cache_key_equal);
descriptor_pools_init (&self->descriptor_pools);
}
static void
gsk_vulkan_device_create_vk_objects (GskVulkanDevice *self)
{
VkDevice vk_device;
vk_device = gsk_vulkan_device_get_vk_device (self);
GSK_VK_CHECK (vkCreateCommandPool, vk_device,
&(const VkCommandPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO,
.queueFamilyIndex = gsk_vulkan_device_get_vk_queue_family_index (self),
.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT,
},
NULL,
&self->vk_command_pool);
self->vk_image_set_layout = gsk_vulkan_device_create_vk_image_set_layout (self);
self->default_vk_pipeline_layout = gsk_vulkan_device_create_vk_pipeline_layout (self,
self->vk_image_set_layout,
self->vk_image_set_layout);
}
static void
gsk_vulkan_device_setup (GskVulkanDevice *self,
GdkDisplay *display)
{
VkPhysicalDeviceProperties2 vk_props = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2,
.pNext = NULL
};
vkGetPhysicalDeviceProperties2 (display->vk_physical_device, &vk_props);
gsk_gpu_device_setup (GSK_GPU_DEVICE (self),
display,
vk_props.properties.limits.maxImageDimension2D,
GSK_GPU_DEVICE_DEFAULT_TILE_SIZE);
}
GskGpuDevice *
gsk_vulkan_device_get_for_display (GdkDisplay *display,
GError **error)
{
GskVulkanDevice *self;
self = g_object_get_data (G_OBJECT (display), "-gsk-vulkan-device");
if (self)
return GSK_GPU_DEVICE (g_object_ref (self));
if (!gdk_display_init_vulkan (display, error))
return NULL;
self = g_object_new (GSK_TYPE_VULKAN_DEVICE, NULL);
self->features = display->vulkan_features;
gsk_vulkan_device_setup (self, display);
gsk_vulkan_device_create_vk_objects (self);
g_object_set_data (G_OBJECT (display), "-gsk-vulkan-device", self);
return GSK_GPU_DEVICE (self);
}
gboolean
gsk_vulkan_device_has_feature (GskVulkanDevice *self,
GdkVulkanFeatures feature)
{
return (self->features & feature) == feature;
}
VkDevice
gsk_vulkan_device_get_vk_device (GskVulkanDevice *self)
{
return gsk_gpu_device_get_display (GSK_GPU_DEVICE (self))->vk_device;
}
VkPhysicalDevice
gsk_vulkan_device_get_vk_physical_device (GskVulkanDevice *self)
{
return gsk_gpu_device_get_display (GSK_GPU_DEVICE (self))->vk_physical_device;
}
VkQueue
gsk_vulkan_device_get_vk_queue (GskVulkanDevice *self)
{
return gsk_gpu_device_get_display (GSK_GPU_DEVICE (self))->vk_queue;
}
uint32_t
gsk_vulkan_device_get_vk_queue_family_index (GskVulkanDevice *self)
{
return gsk_gpu_device_get_display (GSK_GPU_DEVICE (self))->vk_queue_family_index;
}
VkDescriptorSetLayout
gsk_vulkan_device_get_vk_image_set_layout (GskVulkanDevice *self)
{
return self->vk_image_set_layout;
}
VkPipelineLayout
gsk_vulkan_device_get_default_vk_pipeline_layout (GskVulkanDevice *self)
{
return self->default_vk_pipeline_layout;
}
VkPipelineLayout
gsk_vulkan_device_get_vk_pipeline_layout (GskVulkanDevice *self,
GskVulkanYcbcr *ycbcr0,
GskVulkanYcbcr *ycbcr1)
{
if (ycbcr0 == VK_NULL_HANDLE)
{
if (ycbcr1 == VK_NULL_HANDLE)
return self->default_vk_pipeline_layout;
else
return gsk_vulkan_ycbcr_get_vk_pipeline_layout (ycbcr1, 1);
}
else
{
if (ycbcr1 == VK_NULL_HANDLE)
return gsk_vulkan_ycbcr_get_vk_pipeline_layout (ycbcr0, 0);
else
{
/* FIXME: someone write a test plz */
g_assert_not_reached ();
}
}
}
VkCommandPool
gsk_vulkan_device_get_vk_command_pool (GskVulkanDevice *self)
{
return self->vk_command_pool;
}
VkDescriptorSet
gsk_vulkan_device_allocate_descriptor (GskVulkanDevice *self,
const VkDescriptorSetLayout layout,
gsize *out_pool_id)
{
VkDescriptorSet result;
VkDevice vk_device;
VkDescriptorPool new_pool;
gsize i, n;
vk_device = gsk_vulkan_device_get_vk_device (self);
n = descriptor_pools_get_size (&self->descriptor_pools);
for (i = 0; i < n; i++)
{
gsize pool_id = (i + self->last_pool) % n;
VkResult res = vkAllocateDescriptorSets (vk_device,
&(VkDescriptorSetAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = descriptor_pools_get (&self->descriptor_pools, pool_id),
.descriptorSetCount = 1,
.pSetLayouts = (VkDescriptorSetLayout[1]) {
layout,
},
},
&result);
if (res == VK_SUCCESS)
{
self->last_pool = pool_id;
*out_pool_id = self->last_pool;
return result;
}
else if (res == VK_ERROR_OUT_OF_POOL_MEMORY ||
res == VK_ERROR_FRAGMENTED_POOL)
{
continue;
}
else
{
gsk_vulkan_handle_result (res, "vkAllocateDescriptorSets");
}
}
GSK_VK_CHECK (vkCreateDescriptorPool, vk_device,
&(VkDescriptorPoolCreateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT,
.maxSets = 100,
.poolSizeCount = 1,
.pPoolSizes = (VkDescriptorPoolSize[1]) {
{
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = 100,
},
}
},
NULL,
&new_pool);
descriptor_pools_append (&self->descriptor_pools, new_pool);
GSK_VK_CHECK (vkAllocateDescriptorSets, vk_device,
&(VkDescriptorSetAllocateInfo) {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO,
.descriptorPool = new_pool,
.descriptorSetCount = 1,
.pSetLayouts = (VkDescriptorSetLayout[1]) {
layout,
},
},
&result);
self->last_pool = descriptor_pools_get_size (&self->descriptor_pools) - 1;
*out_pool_id = self->last_pool;
return result;
}
void
gsk_vulkan_device_free_descriptor (GskVulkanDevice *self,
gsize pool_id,
VkDescriptorSet set)
{
vkFreeDescriptorSets (gsk_vulkan_device_get_vk_device (self),
descriptor_pools_get (&self->descriptor_pools, pool_id),
1,
&set);
}
static VkSampler
gsk_vulkan_device_create_sampler (GskVulkanDevice *self,
VkSamplerYcbcrConversion vk_conversion,
VkFilter vk_filter,
VkSamplerAddressMode vk_address_mode,
VkSamplerMipmapMode vk_mipmap_mode,
float max_lod)
{
VkSampler result;
GSK_VK_CHECK (vkCreateSampler, gsk_vulkan_device_get_vk_device (self),
&(VkSamplerCreateInfo) {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = vk_filter,
.minFilter = vk_filter,
.mipmapMode = vk_mipmap_mode,
.addressModeU = vk_address_mode,
.addressModeV = vk_address_mode,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK,
.unnormalizedCoordinates = VK_FALSE,
.maxAnisotropy = 1.0,
.minLod = 0.0,
.maxLod = max_lod,
.pNext = vk_conversion == VK_NULL_HANDLE ? NULL : &(VkSamplerYcbcrConversionInfo) {
.sType = VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO,
.conversion = vk_conversion
}
},
NULL,
&result);
return result;
}
VkSampler
gsk_vulkan_device_get_vk_sampler (GskVulkanDevice *self,
GskGpuSampler sampler)
{
const struct {
VkFilter filter;
VkSamplerAddressMode address_mode;
VkSamplerMipmapMode mipmap_mode;
float max_lod;
} filter_attrs[GSK_GPU_SAMPLER_N_SAMPLERS] = {
[GSK_GPU_SAMPLER_DEFAULT] = {
.filter = VK_FILTER_LINEAR,
.address_mode = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.mipmap_mode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.max_lod = 0.0f,
},
[GSK_GPU_SAMPLER_TRANSPARENT] = {
.filter = VK_FILTER_LINEAR,
.address_mode = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
.mipmap_mode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.max_lod = 0.0f,
},
[GSK_GPU_SAMPLER_REPEAT] = {
.filter = VK_FILTER_LINEAR,
.address_mode = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.mipmap_mode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.max_lod = 0.0f,
},
[GSK_GPU_SAMPLER_NEAREST] = {
.filter = VK_FILTER_NEAREST,
.address_mode = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.mipmap_mode = VK_SAMPLER_MIPMAP_MODE_NEAREST,
.max_lod = 0.0f,
},
[GSK_GPU_SAMPLER_MIPMAP_DEFAULT] = {
.filter = VK_FILTER_LINEAR,
.address_mode = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
.mipmap_mode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.max_lod = VK_LOD_CLAMP_NONE,
},
};
if (self->vk_samplers[sampler] == VK_NULL_HANDLE)
{
self->vk_samplers[sampler] = gsk_vulkan_device_create_sampler (self,
VK_NULL_HANDLE,
filter_attrs[sampler].filter,
filter_attrs[sampler].address_mode,
filter_attrs[sampler].mipmap_mode,
filter_attrs[sampler].max_lod);
}
return self->vk_samplers[sampler];
}
GskVulkanYcbcr *
gsk_vulkan_device_get_ycbcr (GskVulkanDevice *self,
VkFormat vk_format)
{
GskVulkanYcbcr *ycbcr;
ycbcr = g_hash_table_lookup (self->ycbcr_cache, GSIZE_TO_POINTER(vk_format));
if (ycbcr)
return ycbcr;
ycbcr = gsk_vulkan_ycbcr_new (self, vk_format);
g_hash_table_insert (self->ycbcr_cache, GSIZE_TO_POINTER(vk_format), ycbcr);
return ycbcr;
}
void
gsk_vulkan_device_remove_ycbcr (GskVulkanDevice *self,
VkFormat vk_format)
{
g_hash_table_remove (self->ycbcr_cache, GSIZE_TO_POINTER(vk_format));
}
VkRenderPass
gsk_vulkan_device_get_vk_render_pass (GskVulkanDevice *self,
VkFormat format,
VkImageLayout from_layout,
VkImageLayout to_layout)
{
RenderPassCacheKey cache_key;
RenderPassCacheKey *cached_result;
VkRenderPass render_pass;
GdkDisplay *display;
cache_key = (RenderPassCacheKey) {
.format = format,
.from_layout = from_layout,
.to_layout = to_layout,
};
cached_result = g_hash_table_lookup (self->render_pass_cache, &cache_key);
if (cached_result)
return cached_result->render_pass;
display = gsk_gpu_device_get_display (GSK_GPU_DEVICE (self));
GSK_VK_CHECK (vkCreateRenderPass, display->vk_device,
&(VkRenderPassCreateInfo) {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = (VkAttachmentDescription[]) {
{
.format = format,
.samples = VK_SAMPLE_COUNT_1_BIT,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.initialLayout = from_layout,
.finalLayout = to_layout
}
},
.subpassCount = 1,
.pSubpasses = (VkSubpassDescription []) {
{
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.inputAttachmentCount = 0,
.colorAttachmentCount = 1,
.pColorAttachments = (VkAttachmentReference []) {
{
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
}
},
.pResolveAttachments = (VkAttachmentReference []) {
{
.attachment = VK_ATTACHMENT_UNUSED,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL
}
},
.pDepthStencilAttachment = NULL,
}
},
.dependencyCount = 0,
},
NULL,
&render_pass);
cached_result = g_memdup (&cache_key, sizeof (RenderPassCacheKey));
cached_result->render_pass = render_pass;
g_hash_table_insert (self->render_pass_cache, cached_result, cached_result);
return render_pass;
}
typedef struct _GskVulkanShaderSpecialization GskVulkanShaderSpecialization;
struct _GskVulkanShaderSpecialization
{
guint32 flags;
guint32 color_states;
guint32 variation;
};
static VkPipelineColorBlendAttachmentState blend_attachment_states[4] = {
[GSK_GPU_BLEND_NONE] = {
.blendEnable = VK_FALSE,
.colorWriteMask = VK_COLOR_COMPONENT_A_BIT
| VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
},
[GSK_GPU_BLEND_OVER] = {
.blendEnable = VK_TRUE,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcColorBlendFactor = VK_BLEND_FACTOR_ONE,
.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
.alphaBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
.colorWriteMask = VK_COLOR_COMPONENT_A_BIT
| VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
},
[GSK_GPU_BLEND_ADD] = {
.blendEnable = VK_TRUE,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcColorBlendFactor = VK_BLEND_FACTOR_ONE,
.dstColorBlendFactor = VK_BLEND_FACTOR_ONE,
.alphaBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE,
.colorWriteMask = VK_COLOR_COMPONENT_A_BIT
| VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
},
[GSK_GPU_BLEND_CLEAR] = {
.blendEnable = VK_TRUE,
.colorBlendOp = VK_BLEND_OP_ADD,
.srcColorBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
.alphaBlendOp = VK_BLEND_OP_ADD,
.srcAlphaBlendFactor = VK_BLEND_FACTOR_ZERO,
.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA,
.colorWriteMask = VK_COLOR_COMPONENT_A_BIT
| VK_COLOR_COMPONENT_R_BIT
| VK_COLOR_COMPONENT_G_BIT
| VK_COLOR_COMPONENT_B_BIT
},
};
VkPipeline
gsk_vulkan_device_get_vk_pipeline (GskVulkanDevice *self,
VkPipelineLayout vk_layout,
const GskGpuShaderOpClass *op_class,
GskGpuShaderFlags flags,
GskGpuColorStates color_states,
guint32 variation,
GskGpuBlend blend,
VkFormat vk_format,
VkRenderPass render_pass)
{
PipelineCacheKey cache_key;
PipelineCacheKey *cached_result;
VkPipeline vk_pipeline;
GdkDisplay *display;
char *vertex_shader_name, *fragment_shader_name;
G_GNUC_UNUSED gint64 begin_time = GDK_PROFILER_CURRENT_TIME;
const char *blend_name[] = { "NONE", "OVER", "ADD", "CLEAR" };
cache_key = (PipelineCacheKey) {
.vk_layout = vk_layout,
.op_class = op_class,
.color_states = color_states,
.variation = variation,
.flags = flags,
.blend = blend,
.vk_format = vk_format,
};
cached_result = g_hash_table_lookup (self->pipeline_cache, &cache_key);
if (cached_result)
return cached_result->vk_pipeline;
display = gsk_gpu_device_get_display (GSK_GPU_DEVICE (self));
vertex_shader_name = g_strconcat ("/org/gtk/libgsk/shaders/vulkan/",
op_class->shader_name,
".vert.spv",
NULL);
fragment_shader_name = g_strconcat ("/org/gtk/libgsk/shaders/vulkan/",
op_class->shader_name,
".frag.spv",
NULL);
GSK_VK_CHECK (vkCreateGraphicsPipelines, display->vk_device,
display->vk_pipeline_cache,
1,
&(VkGraphicsPipelineCreateInfo) {
.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
.stageCount = 2,
.pStages = (VkPipelineShaderStageCreateInfo[2]) {
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_VERTEX_BIT,
.module = gdk_display_get_vk_shader_module (display, vertex_shader_name),
.pName = "main",
.pSpecializationInfo = &(VkSpecializationInfo) {
.mapEntryCount = 3,
.pMapEntries = (VkSpecializationMapEntry[6]) {
{
.constantID = 0,
.offset = G_STRUCT_OFFSET (GskVulkanShaderSpecialization, flags),
.size = sizeof (guint32),
},
{
.constantID = 1,
.offset = G_STRUCT_OFFSET (GskVulkanShaderSpecialization, color_states),
.size = sizeof (guint32),
},
{
.constantID = 2,
.offset = G_STRUCT_OFFSET (GskVulkanShaderSpecialization, variation),
.size = sizeof (guint32),
},
},
.dataSize = sizeof (GskVulkanShaderSpecialization),
.pData = &(GskVulkanShaderSpecialization) {
.flags = flags,
.color_states = color_states,
.variation = variation,
},
},
},
{
.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
.stage = VK_SHADER_STAGE_FRAGMENT_BIT,
.module = gdk_display_get_vk_shader_module (display, fragment_shader_name),
.pName = "main",
.pSpecializationInfo = &(VkSpecializationInfo) {
.mapEntryCount = 3,
.pMapEntries = (VkSpecializationMapEntry[6]) {
{
.constantID = 0,
.offset = G_STRUCT_OFFSET (GskVulkanShaderSpecialization, flags),
.size = sizeof (guint32),
},
{
.constantID = 1,
.offset = G_STRUCT_OFFSET (GskVulkanShaderSpecialization, color_states),
.size = sizeof (guint32),
},
{
.constantID = 2,
.offset = G_STRUCT_OFFSET (GskVulkanShaderSpecialization, variation),
.size = sizeof (guint32),
},
},
.dataSize = sizeof (GskVulkanShaderSpecialization),
.pData = &(GskVulkanShaderSpecialization) {
.flags = flags,
.color_states = color_states,
.variation = variation,
},
},
},
},
.pVertexInputState = op_class->vertex_input_state,
.pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
.primitiveRestartEnable = VK_FALSE,
},
.pTessellationState = NULL,
.pViewportState = &(VkPipelineViewportStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
.viewportCount = 1,
.scissorCount = 1
},
.pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
.depthClampEnable = VK_FALSE,
.rasterizerDiscardEnable = VK_FALSE,
.polygonMode = VK_POLYGON_MODE_FILL,
.cullMode = VK_CULL_MODE_NONE,
.frontFace = VK_FRONT_FACE_CLOCKWISE,
.lineWidth = 1.0f,
},
.pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
.rasterizationSamples = 1,
},
.pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO
},
.pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
.attachmentCount = 1,
.pAttachments = &blend_attachment_states[blend],
},
.pDynamicState = &(VkPipelineDynamicStateCreateInfo) {
.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
.dynamicStateCount = 2,
.pDynamicStates = (VkDynamicState[2]) {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
},
},
.layout = vk_layout,
.renderPass = render_pass,
.subpass = 0,
.basePipelineHandle = VK_NULL_HANDLE,
.basePipelineIndex = -1,
},
NULL,
&vk_pipeline);
gdk_profiler_end_markf (begin_time,
"Create Vulkan pipeline", "%s color states=%u variation=%u clip=%u blend=%s format=%u",
op_class->shader_name,
flags,
color_states,
variation,
blend_name[blend],
vk_format);
GSK_DEBUG (SHADERS,
"Create Vulkan pipeline (%s, %u/%u/%u/%s/%u)",
op_class->shader_name,
flags,
color_states,
variation,
blend_name[blend],
vk_format);
g_free (fragment_shader_name);
g_free (vertex_shader_name);
cached_result = g_memdup (&cache_key, sizeof (PipelineCacheKey));
cached_result->vk_pipeline = vk_pipeline;
g_hash_table_add (self->pipeline_cache, cached_result);
gdk_display_vulkan_pipeline_cache_updated (display);
return vk_pipeline;
}
static GskVulkanAllocator *
gsk_vulkan_device_get_allocator (GskVulkanDevice *self,
gsize index,
const VkMemoryType *type)
{
if (self->allocators[index] == NULL)
{
self->allocators[index] = gsk_vulkan_direct_allocator_new (gsk_vulkan_device_get_vk_device (self),
index,
type);
self->allocators[index] = gsk_vulkan_buddy_allocator_new (self->allocators[index],
1024 * 1024);
//allocators[index] = gsk_vulkan_stats_allocator_new (allocators[index]);
}
return self->allocators[index];
}
/* following code found in
* https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkPhysicalDeviceMemoryProperties.html */
GskVulkanAllocator *
gsk_vulkan_device_find_allocator (GskVulkanDevice *self,
uint32_t allowed_types,
VkMemoryPropertyFlags required_flags,
VkMemoryPropertyFlags desired_flags)
{
VkPhysicalDeviceMemoryProperties properties;
uint32_t i, found;
vkGetPhysicalDeviceMemoryProperties (gsk_vulkan_device_get_vk_physical_device (self),
&properties);
found = properties.memoryTypeCount;
for (i = 0; i < properties.memoryTypeCount; i++)
{
if (!(allowed_types & (1 << i)))
continue;
if ((properties.memoryTypes[i].propertyFlags & required_flags) != required_flags)
continue;
found = MIN (i, found);
if ((properties.memoryTypes[i].propertyFlags & desired_flags) == desired_flags)
break;
}
g_assert (found < properties.memoryTypeCount);
return gsk_vulkan_allocator_ref (gsk_vulkan_device_get_allocator (self, found, &properties.memoryTypes[found]));
}
GskVulkanAllocator *
gsk_vulkan_device_get_external_allocator (GskVulkanDevice *self)
{
if (self->external_allocator == NULL)
{
self->external_allocator = gsk_vulkan_external_allocator_new (gsk_vulkan_device_get_vk_device (self));
//self->external_allocator = gsk_vulkan_stats_allocator_new (self->external_allocator);
}
return self->external_allocator;
}