mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2025-01-12 13:30:19 +00:00
0092a08dfc
This adds a small demo of using OpenGL shaders, it renders a quad over the entire widget with a custom fragment shader. The coordinates and the uniform names are compatible with the ones on shadertoy.com (although some features, like texture inputs are missing currently). The default shader in the demo is https://www.shadertoy.com/view/wsjBD3 which is CC0, so it is redistributable by Gtk+ (most other shaders are CC-BY-NC-SA which isn't obviously compatible). I also added a set of buttons loading a few other CC0 shaders I found.
96 lines
2.1 KiB
GLSL
96 lines
2.1 KiB
GLSL
// Originally from: https://www.shadertoy.com/view/wdBfDK
|
|
// License: CC0
|
|
|
|
#define MANDELBROT_ZOOM_START 0.0
|
|
#define MANDELBROT_ITER 240
|
|
|
|
void pR(inout vec2 p, in float a) {
|
|
p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
|
|
}
|
|
|
|
vec2 pMod2(inout vec2 p, in vec2 size) {
|
|
vec2 c = floor((p + size*0.5)/size);
|
|
p = mod(p + size*0.5,size) - size*0.5;
|
|
return c;
|
|
}
|
|
|
|
|
|
vec3 mandelbrot(float time, vec2 p, out float ii) {
|
|
vec3 col = vec3(0.0);
|
|
|
|
float ztime = (time - MANDELBROT_ZOOM_START)*step(MANDELBROT_ZOOM_START, time);
|
|
|
|
float zoo = 0.64 + 0.36*cos(.07*ztime);
|
|
float coa = cos(0.15*(1.0-zoo)*ztime);
|
|
float sia = sin(0.15*(1.0-zoo)*ztime);
|
|
zoo = pow(zoo,8.0);
|
|
vec2 xy = vec2( p.x*coa-p.y*sia, p.x*sia+p.y*coa);
|
|
vec2 c = vec2(-.745,.186) + xy*zoo;
|
|
|
|
const float B = 10.0;
|
|
float l = 0.0;
|
|
vec2 z = vec2(0.0);
|
|
|
|
vec2 zc = vec2(1.0);
|
|
|
|
pR(zc, ztime);
|
|
|
|
float d = 1e20;
|
|
|
|
int i = 0;
|
|
|
|
for(int j = 0; j < MANDELBROT_ITER; ++j) {
|
|
float re2 = z.x*z.x;
|
|
float im2 = z.y*z.y;
|
|
float reim= z.x*z.y;
|
|
|
|
if(re2 + im2 > (B*B)) break;
|
|
|
|
z = vec2(re2 - im2, 2.0*reim) + c;
|
|
|
|
vec2 zm = z;
|
|
vec2 n = pMod2(zm, vec2(4));
|
|
vec2 pp = zm - zc;
|
|
float dd = dot(pp, pp);
|
|
|
|
d = min(d, dd);
|
|
|
|
l += 1.0;
|
|
|
|
i = j;
|
|
}
|
|
|
|
ii = float(i)/float(MANDELBROT_ITER);
|
|
|
|
float sl = l - log2(log2(dot(z,z))) + 4.0;
|
|
|
|
vec3 dc = vec3(pow(max(1.0 - d, 0.0), 20.0));
|
|
vec3 gc = 0.5 + 0.5*cos(3.0 + sl*0.15 + vec3(0.1,0.5,0.9));
|
|
return gc + dc*smoothstep(28.8, 29.0, ztime);
|
|
}
|
|
|
|
void mainImage(out vec4 fragColor, in vec2 fragCoord) {
|
|
float s = 2.0/iResolution.y;
|
|
|
|
vec2 o1 = vec2(1.0/8.0, 3.0/8.0)*s;
|
|
vec2 o2 = vec2(-3.0/8.0, 1.0/8.0)*s;
|
|
|
|
vec2 p = (-iResolution.xy + 2.0*fragCoord.xy)/iResolution.y;
|
|
float ii = 0.0;
|
|
vec3 col = mandelbrot(iTime, p+o1, ii);
|
|
|
|
// "smart" AA? Is that a good idea?
|
|
vec2 dii2 = vec2(dFdx(ii), dFdy(ii));
|
|
float dii = length(dii2);
|
|
|
|
if(abs(dii) > 0.01) {
|
|
col += mandelbrot(iTime, p-o1, ii);
|
|
col += mandelbrot(iTime, p+o2, ii);
|
|
col += mandelbrot(iTime, p-o2, ii);
|
|
col *=0.25;
|
|
// col = vec3(1.0, 0.0, 0.0);
|
|
}
|
|
|
|
fragColor = vec4(col, 1.0);
|
|
}
|