gtk/gsk/gskspline.c
Matthias Clasen 1b5dfcba7e gsk: Add GskPath
This commit adds the basic infrastructure for paths.
The public APIs consists of GskPath, GskPathPoint and
GskPathBuilder.

GskPath is a data structure for paths that consists
of contours, which in turn might contain Bézier curves.
The Bezier data structure is inspired by Skia, with separate
arrays for points and operations. One advantage of this
arrangement is that start and end points are shared
between adjacent curves.

A GskPathPoint represents a point on a path, which can
be queried for various properties.

GskPathBuilder is an auxiliary builder object for paths.
2023-08-06 20:48:09 -04:00

209 lines
6.9 KiB
C

/*
* Copyright © 2002 University of Southern California
* 2020 Benjamin Otte
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Benjamin Otte <otte@gnome.org>
* Carl D. Worth <cworth@cworth.org>
*/
#include "config.h"
#include "gsksplineprivate.h"
#include <math.h>
/* Spline deviation from the circle in radius would be given by:
error = sqrt (x**2 + y**2) - 1
A simpler error function to work with is:
e = x**2 + y**2 - 1
From "Good approximation of circles by curvature-continuous Bezier
curves", Tor Dokken and Morten Daehlen, Computer Aided Geometric
Design 8 (1990) 22-41, we learn:
abs (max(e)) = 4/27 * sin**6(angle/4) / cos**2(angle/4)
and
abs (error) =~ 1/2 * e
Of course, this error value applies only for the particular spline
approximation that is used in _cairo_gstate_arc_segment.
*/
static float
arc_error_normalized (float angle)
{
return 2.0/27.0 * pow (sin (angle / 4), 6) / pow (cos (angle / 4), 2);
}
static float
arc_max_angle_for_tolerance_normalized (float tolerance)
{
float angle, error;
guint i;
/* Use table lookup to reduce search time in most cases. */
struct {
float angle;
float error;
} table[] = {
{ G_PI / 1.0, 0.0185185185185185036127 },
{ G_PI / 2.0, 0.000272567143730179811158 },
{ G_PI / 3.0, 2.38647043651461047433e-05 },
{ G_PI / 4.0, 4.2455377443222443279e-06 },
{ G_PI / 5.0, 1.11281001494389081528e-06 },
{ G_PI / 6.0, 3.72662000942734705475e-07 },
{ G_PI / 7.0, 1.47783685574284411325e-07 },
{ G_PI / 8.0, 6.63240432022601149057e-08 },
{ G_PI / 9.0, 3.2715520137536980553e-08 },
{ G_PI / 10.0, 1.73863223499021216974e-08 },
{ G_PI / 11.0, 9.81410988043554039085e-09 },
};
for (i = 0; i < G_N_ELEMENTS (table); i++)
{
if (table[i].error < tolerance)
return table[i].angle;
}
i++;
do {
angle = G_PI / i++;
error = arc_error_normalized (angle);
} while (error > tolerance);
return angle;
}
static guint
arc_segments_needed (float angle,
float radius,
float tolerance)
{
float max_angle;
/* the error is amplified by at most the length of the
* major axis of the circle; see cairo-pen.c for a more detailed analysis
* of this. */
max_angle = arc_max_angle_for_tolerance_normalized (tolerance / radius);
return ceil (fabs (angle) / max_angle);
}
/* We want to draw a single spline approximating a circular arc radius
R from angle A to angle B. Since we want a symmetric spline that
matches the endpoints of the arc in position and slope, we know
that the spline control points must be:
(R * cos(A), R * sin(A))
(R * cos(A) - h * sin(A), R * sin(A) + h * cos (A))
(R * cos(B) + h * sin(B), R * sin(B) - h * cos (B))
(R * cos(B), R * sin(B))
for some value of h.
"Approximation of circular arcs by cubic polynomials", Michael
Goldapp, Computer Aided Geometric Design 8 (1991) 227-238, provides
various values of h along with error analysis for each.
From that paper, a very practical value of h is:
h = 4/3 * R * tan(angle/4)
This value does not give the spline with minimal error, but it does
provide a very good approximation, (6th-order convergence), and the
error expression is quite simple, (see the comment for
_arc_error_normalized).
*/
static gboolean
gsk_spline_decompose_arc_segment (const graphene_point_t *center,
float radius,
float angle_A,
float angle_B,
GskSplineAddCurveFunc curve_func,
gpointer user_data)
{
float r_sin_A, r_cos_A;
float r_sin_B, r_cos_B;
float h;
r_sin_A = radius * sin (angle_A);
r_cos_A = radius * cos (angle_A);
r_sin_B = radius * sin (angle_B);
r_cos_B = radius * cos (angle_B);
h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0);
return curve_func ((graphene_point_t[4]) {
GRAPHENE_POINT_INIT (
center->x + r_cos_A,
center->y + r_sin_A
),
GRAPHENE_POINT_INIT (
center->x + r_cos_A - h * r_sin_A,
center->y + r_sin_A + h * r_cos_A
),
GRAPHENE_POINT_INIT (
center->x + r_cos_B + h * r_sin_B,
center->y + r_sin_B - h * r_cos_B
),
GRAPHENE_POINT_INIT (
center->x + r_cos_B,
center->y + r_sin_B
)
},
user_data);
}
gboolean
gsk_spline_decompose_arc (const graphene_point_t *center,
float radius,
float tolerance,
float start_angle,
float end_angle,
GskSplineAddCurveFunc curve_func,
gpointer user_data)
{
float step = start_angle - end_angle;
guint i, n_segments;
/* Recurse if drawing arc larger than pi */
if (ABS (step) > G_PI)
{
float mid_angle = (start_angle + end_angle) / 2.0;
return gsk_spline_decompose_arc (center, radius, tolerance, start_angle, mid_angle, curve_func, user_data)
&& gsk_spline_decompose_arc (center, radius, tolerance, mid_angle, end_angle, curve_func, user_data);
}
else if (ABS (step) < tolerance)
{
return gsk_spline_decompose_arc_segment (center, radius, start_angle, end_angle, curve_func, user_data);
}
n_segments = arc_segments_needed (ABS (step), radius, tolerance);
step = (end_angle - start_angle) / n_segments;
for (i = 0; i < n_segments - 1; i++, start_angle += step)
{
if (!gsk_spline_decompose_arc_segment (center, radius, start_angle, start_angle + step, curve_func, user_data))
return FALSE;
}
return gsk_spline_decompose_arc_segment (center, radius, start_angle, end_angle, curve_func, user_data);
}