mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2024-12-24 20:51:10 +00:00
5777587e7a
Mention that GskPathBuilder will simplify added Bézier curves.
1721 lines
49 KiB
C
1721 lines
49 KiB
C
/*
|
|
* Copyright © 2020 Benjamin Otte
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Authors: Benjamin Otte <otte@gnome.org>
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "gskpathbuilder.h"
|
|
|
|
#include "gskpathprivate.h"
|
|
#include "gskcurveprivate.h"
|
|
#include "gskpathpointprivate.h"
|
|
#include "gskcontourprivate.h"
|
|
|
|
/**
|
|
* GskPathBuilder:
|
|
*
|
|
* `GskPathBuilder` is an auxiliary object for constructing
|
|
* `GskPath` objects.
|
|
*
|
|
* A path is constructed like this:
|
|
*
|
|
* |[<!-- language="C" -->
|
|
* GskPath *
|
|
* construct_path (void)
|
|
* {
|
|
* GskPathBuilder *builder;
|
|
*
|
|
* builder = gsk_path_builder_new ();
|
|
*
|
|
* // add contours to the path here
|
|
*
|
|
* return gsk_path_builder_free_to_path (builder);
|
|
* ]|
|
|
*
|
|
* Adding contours to the path can be done in two ways.
|
|
* The easiest option is to use the `gsk_path_builder_add_*` group
|
|
* of functions that add predefined contours to the current path,
|
|
* either common shapes like [method@Gsk.PathBuilder.add_circle]
|
|
* or by adding from other paths like [method@Gsk.PathBuilder.add_path].
|
|
*
|
|
* The `gsk_path_builder_add_*` methods always add complete contours,
|
|
* and do not use or modify the current point.
|
|
*
|
|
* The other option is to define each line and curve manually with
|
|
* the `gsk_path_builder_*_to` group of functions. You start with
|
|
* a call to [method@Gsk.PathBuilder.move_to] to set the starting point
|
|
* and then use multiple calls to any of the drawing functions to
|
|
* move the pen along the plane. Once you are done, you can call
|
|
* [method@Gsk.PathBuilder.close] to close the path by connecting it
|
|
* back with a line to the starting point.
|
|
*
|
|
* This is similar to how paths are drawn in Cairo.
|
|
*
|
|
* Note that `GskPathBuilder` will reduce the degree of added Bézier
|
|
* curves as much as possible, to simplify rendering.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
|
|
struct _GskPathBuilder
|
|
{
|
|
int ref_count;
|
|
|
|
GSList *contours; /* (reverse) list of already recorded contours */
|
|
|
|
GskPathFlags flags; /* flags for the current path */
|
|
graphene_point_t current_point; /* the point all drawing ops start from */
|
|
GArray *ops; /* operations for current contour - size == 0 means no current contour */
|
|
GArray *points; /* points for the operations */
|
|
};
|
|
|
|
G_DEFINE_BOXED_TYPE (GskPathBuilder,
|
|
gsk_path_builder,
|
|
gsk_path_builder_ref,
|
|
gsk_path_builder_unref)
|
|
|
|
|
|
/**
|
|
* gsk_path_builder_new:
|
|
*
|
|
* Create a new `GskPathBuilder` object.
|
|
*
|
|
* The resulting builder would create an empty `GskPath`.
|
|
* Use addition functions to add types to it.
|
|
*
|
|
* Returns: a new `GskPathBuilder`
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
GskPathBuilder *
|
|
gsk_path_builder_new (void)
|
|
{
|
|
GskPathBuilder *self;
|
|
|
|
self = g_slice_new0 (GskPathBuilder);
|
|
self->ref_count = 1;
|
|
|
|
self->ops = g_array_new (FALSE, FALSE, sizeof (gskpathop));
|
|
self->points = g_array_new (FALSE, FALSE, sizeof (graphene_point_t));
|
|
|
|
/* Be explicit here */
|
|
self->current_point = GRAPHENE_POINT_INIT (0, 0);
|
|
|
|
return self;
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_ref:
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Acquires a reference on the given builder.
|
|
*
|
|
* This function is intended primarily for language bindings.
|
|
* `GskPathBuilder` objects should not be kept around.
|
|
*
|
|
* Returns: (transfer none): the given `GskPathBuilder` with
|
|
* its reference count increased
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
GskPathBuilder *
|
|
gsk_path_builder_ref (GskPathBuilder *self)
|
|
{
|
|
g_return_val_if_fail (self != NULL, NULL);
|
|
g_return_val_if_fail (self->ref_count > 0, NULL);
|
|
|
|
self->ref_count += 1;
|
|
|
|
return self;
|
|
}
|
|
|
|
/* We're cheating here. Out pathops are relative to the NULL pointer,
|
|
* so that we can not care about the points GArray reallocating itself
|
|
* until we create the contour.
|
|
* This does however mean that we need to not use gsk_pathop_get_points()
|
|
* without offsetting the returned pointer.
|
|
*/
|
|
static inline gskpathop
|
|
gsk_pathop_encode_index (GskPathOperation op,
|
|
gsize index)
|
|
{
|
|
return gsk_pathop_encode (op, ((graphene_point_t *) NULL) + index);
|
|
}
|
|
|
|
static void
|
|
gsk_path_builder_ensure_current (GskPathBuilder *self)
|
|
{
|
|
if (self->ops->len != 0)
|
|
return;
|
|
|
|
self->flags = GSK_PATH_FLAT;
|
|
g_array_append_vals (self->ops, (gskpathop[1]) { gsk_pathop_encode_index (GSK_PATH_MOVE, 0) }, 1);
|
|
g_array_append_val (self->points, self->current_point);
|
|
}
|
|
|
|
static void
|
|
gsk_path_builder_append_current (GskPathBuilder *self,
|
|
GskPathOperation op,
|
|
gsize n_points,
|
|
const graphene_point_t *points)
|
|
{
|
|
gsk_path_builder_ensure_current (self);
|
|
|
|
g_array_append_vals (self->ops, (gskpathop[1]) { gsk_pathop_encode_index (op, self->points->len - 1) }, 1);
|
|
g_array_append_vals (self->points, points, n_points);
|
|
|
|
self->current_point = points[n_points - 1];
|
|
}
|
|
|
|
static void
|
|
gsk_path_builder_end_current (GskPathBuilder *self)
|
|
{
|
|
GskContour *contour;
|
|
|
|
if (self->ops->len == 0)
|
|
return;
|
|
|
|
contour = gsk_standard_contour_new (self->flags,
|
|
(graphene_point_t *) self->points->data,
|
|
self->points->len,
|
|
(gskpathop *) self->ops->data,
|
|
self->ops->len,
|
|
(graphene_point_t *) self->points->data - (graphene_point_t *) NULL);
|
|
|
|
g_array_set_size (self->ops, 0);
|
|
g_array_set_size (self->points, 0);
|
|
|
|
/* do this at the end to avoid inflooping when add_contour calls back here */
|
|
gsk_path_builder_add_contour (self, contour);
|
|
}
|
|
|
|
static void
|
|
gsk_path_builder_clear (GskPathBuilder *self)
|
|
{
|
|
gsk_path_builder_end_current (self);
|
|
|
|
g_slist_free_full (self->contours, g_free);
|
|
self->contours = NULL;
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_unref:
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Releases a reference on the given builder.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_unref (GskPathBuilder *self)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (self->ref_count > 0);
|
|
|
|
self->ref_count -= 1;
|
|
|
|
if (self->ref_count > 0)
|
|
return;
|
|
|
|
gsk_path_builder_clear (self);
|
|
g_array_unref (self->ops);
|
|
g_array_unref (self->points);
|
|
g_slice_free (GskPathBuilder, self);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_free_to_path: (skip)
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Creates a new `GskPath` from the current state of the
|
|
* given builder, and unrefs the @builder instance.
|
|
*
|
|
* Returns: (transfer full): the newly created `GskPath`
|
|
* with all the contours added to the builder
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
GskPath *
|
|
gsk_path_builder_free_to_path (GskPathBuilder *self)
|
|
{
|
|
GskPath *res;
|
|
|
|
g_return_val_if_fail (self != NULL, NULL);
|
|
|
|
res = gsk_path_builder_to_path (self);
|
|
|
|
gsk_path_builder_unref (self);
|
|
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_to_path:
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Creates a new `GskPath` from the given builder.
|
|
*
|
|
* The given `GskPathBuilder` is reset once this function returns;
|
|
* you cannot call this function multiple times on the same builder
|
|
* instance.
|
|
*
|
|
* This function is intended primarily for language bindings.
|
|
* C code should use [method@Gsk.PathBuilder.free_to_path].
|
|
*
|
|
* Returns: (transfer full): the newly created `GskPath`
|
|
* with all the contours added to the builder
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
GskPath *
|
|
gsk_path_builder_to_path (GskPathBuilder *self)
|
|
{
|
|
GskPath *path;
|
|
|
|
g_return_val_if_fail (self != NULL, NULL);
|
|
|
|
gsk_path_builder_end_current (self);
|
|
|
|
self->contours = g_slist_reverse (self->contours);
|
|
|
|
path = gsk_path_new_from_contours (self->contours);
|
|
|
|
gsk_path_builder_clear (self);
|
|
|
|
return path;
|
|
}
|
|
|
|
void
|
|
gsk_path_builder_add_contour (GskPathBuilder *self,
|
|
GskContour *contour)
|
|
{
|
|
gsk_path_builder_end_current (self);
|
|
|
|
self->contours = g_slist_prepend (self->contours, contour);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_get_current_point:
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Gets the current point.
|
|
*
|
|
* The current point is used for relative drawing commands and
|
|
* updated after every operation.
|
|
*
|
|
* When the builder is created, the default current point is set
|
|
* to `0, 0`. Note that this is different from cairo, which starts
|
|
* out without a current point.
|
|
*
|
|
* Returns: (transfer none): The current point
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
const graphene_point_t *
|
|
gsk_path_builder_get_current_point (GskPathBuilder *self)
|
|
{
|
|
g_return_val_if_fail (self != NULL, NULL);
|
|
|
|
return &self->current_point;
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_path:
|
|
* @self: a `GskPathBuilder`
|
|
* @path: (transfer none): the path to append
|
|
*
|
|
* Appends all of @path to the builder.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_path (GskPathBuilder *self,
|
|
GskPath *path)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (path != NULL);
|
|
|
|
for (gsize i = 0; i < gsk_path_get_n_contours (path); i++)
|
|
{
|
|
const GskContour *contour = gsk_path_get_contour (path, i);
|
|
|
|
gsk_path_builder_add_contour (self, gsk_contour_dup (contour));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_reverse_path:
|
|
* @self: a `GskPathBuilder`
|
|
* @path: (transfer none): the path to append
|
|
*
|
|
* Appends all of @path to the builder, in reverse order.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_reverse_path (GskPathBuilder *self,
|
|
GskPath *path)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (path != NULL);
|
|
|
|
for (gsize i = gsk_path_get_n_contours (path); i > 0; i--)
|
|
{
|
|
const GskContour *contour = gsk_path_get_contour (path, i - 1);
|
|
|
|
gsk_path_builder_add_contour (self, gsk_contour_reverse (contour));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_cairo_path:
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Adds a Cairo path to the builder.
|
|
*
|
|
* You can use cairo_copy_path() to access the path
|
|
* from a Cairo context.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_cairo_path (GskPathBuilder *self,
|
|
const cairo_path_t *path)
|
|
{
|
|
graphene_point_t current;
|
|
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (path != NULL);
|
|
|
|
current = self->current_point;
|
|
|
|
for (gsize i = 0; i < path->num_data; i += path->data[i].header.length)
|
|
{
|
|
const cairo_path_data_t *data = &path->data[i];
|
|
|
|
switch (data->header.type)
|
|
{
|
|
case CAIRO_PATH_MOVE_TO:
|
|
gsk_path_builder_move_to (self, data[1].point.x, data[1].point.y);
|
|
break;
|
|
|
|
case CAIRO_PATH_LINE_TO:
|
|
gsk_path_builder_line_to (self, data[1].point.x, data[1].point.y);
|
|
break;
|
|
|
|
case CAIRO_PATH_CURVE_TO:
|
|
gsk_path_builder_cubic_to (self,
|
|
data[1].point.x, data[1].point.y,
|
|
data[2].point.x, data[2].point.y,
|
|
data[3].point.x, data[3].point.y);
|
|
break;
|
|
|
|
case CAIRO_PATH_CLOSE_PATH:
|
|
gsk_path_builder_close (self);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached ();
|
|
break;
|
|
}
|
|
}
|
|
|
|
gsk_path_builder_end_current (self);
|
|
self->current_point = current;
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_rect:
|
|
* @self: A `GskPathBuilder`
|
|
* @rect: The rectangle to create a path for
|
|
*
|
|
* Adds @rect as a new contour to the path built by the builder.
|
|
*
|
|
* The path is going around the rectangle in clockwise direction.
|
|
*
|
|
* If the the width or height are 0, the path will be a closed
|
|
* horizontal or vertical line. If both are 0, it'll be a closed dot.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_rect (GskPathBuilder *self,
|
|
const graphene_rect_t *rect)
|
|
{
|
|
graphene_rect_t r;
|
|
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (rect != NULL);
|
|
|
|
graphene_rect_normalize_r (rect, &r);
|
|
gsk_path_builder_add_contour (self, gsk_rect_contour_new (&r));
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_rounded_rect:
|
|
* @self: a #GskPathBuilder
|
|
* @rect: the rounded rect
|
|
*
|
|
* Adds @rect as a new contour to the path built in @self.
|
|
*
|
|
* The path is going around the rectangle in clockwise direction.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_rounded_rect (GskPathBuilder *self,
|
|
const GskRoundedRect *rect)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (rect != NULL);
|
|
|
|
gsk_path_builder_add_contour (self, gsk_rounded_rect_contour_new (rect));
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_circle:
|
|
* @self: a `GskPathBuilder`
|
|
* @center: the center of the circle
|
|
* @radius: the radius of the circle
|
|
*
|
|
* Adds a circle with the @center and @radius.
|
|
*
|
|
* The path is going around the circle in clockwise direction.
|
|
*
|
|
* If @radius is zero, the contour will be a closed point.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_circle (GskPathBuilder *self,
|
|
const graphene_point_t *center,
|
|
float radius)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (center != NULL);
|
|
g_return_if_fail (radius >= 0);
|
|
|
|
gsk_path_builder_add_contour (self, gsk_circle_contour_new (center, radius));
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_move_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x: x coordinate
|
|
* @y: y coordinate
|
|
*
|
|
* Starts a new contour by placing the pen at @x, @y.
|
|
*
|
|
* If this function is called twice in succession, the first
|
|
* call will result in a contour made up of a single point.
|
|
* The second call will start a new contour.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_move_to (GskPathBuilder *self,
|
|
float x,
|
|
float y)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_end_current (self);
|
|
|
|
self->current_point = GRAPHENE_POINT_INIT(x, y);
|
|
|
|
gsk_path_builder_ensure_current (self);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_move_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x: x offset
|
|
* @y: y offset
|
|
*
|
|
* Starts a new contour by placing the pen at @x, @y
|
|
* relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.move_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_move_to (GskPathBuilder *self,
|
|
float x,
|
|
float y)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_move_to (self,
|
|
self->current_point.x + x,
|
|
self->current_point.y + y);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_line_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x: x coordinate
|
|
* @y: y coordinate
|
|
*
|
|
* Draws a line from the current point to @x, @y and makes it
|
|
* the new current point.
|
|
*
|
|
* <picture>
|
|
* <source srcset="line-dark.png" media="(prefers-color-scheme: dark)">
|
|
* <img alt="Line To" src="line-light.png">
|
|
* </picture>
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_line_to (GskPathBuilder *self,
|
|
float x,
|
|
float y)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
/* skip the line if it goes to the same point */
|
|
if (graphene_point_equal (&self->current_point,
|
|
&GRAPHENE_POINT_INIT (x, y)))
|
|
return;
|
|
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_LINE,
|
|
1, (graphene_point_t[1]) {
|
|
GRAPHENE_POINT_INIT (x, y)
|
|
});
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_line_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x: x offset
|
|
* @y: y offset
|
|
*
|
|
* Draws a line from the current point to a point offset from it
|
|
* by @x, @y and makes it the new current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.line_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_line_to (GskPathBuilder *self,
|
|
float x,
|
|
float y)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_line_to (self,
|
|
self->current_point.x + x,
|
|
self->current_point.y + y);
|
|
}
|
|
|
|
static inline void
|
|
closest_point (const graphene_point_t *p,
|
|
const graphene_point_t *a,
|
|
const graphene_point_t *b,
|
|
graphene_point_t *q)
|
|
{
|
|
graphene_vec2_t n;
|
|
graphene_vec2_t ap;
|
|
float t;
|
|
|
|
graphene_vec2_init (&n, b->x - a->x, b->y - a->y);
|
|
graphene_vec2_init (&ap, p->x - a->x, p->y - a->y);
|
|
|
|
t = graphene_vec2_dot (&ap, &n) / graphene_vec2_dot (&n, &n);
|
|
|
|
q->x = a->x + t * (b->x - a->x);
|
|
q->y = a->y + t * (b->y - a->y);
|
|
}
|
|
|
|
static inline gboolean
|
|
collinear (const graphene_point_t *p,
|
|
const graphene_point_t *a,
|
|
const graphene_point_t *b)
|
|
{
|
|
graphene_point_t q;
|
|
|
|
if (graphene_point_equal (a, b))
|
|
return TRUE;
|
|
|
|
closest_point (p, a, b, &q);
|
|
|
|
return graphene_point_near (p, &q, 0.001);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_quad_to:
|
|
* @self: a #GskPathBuilder
|
|
* @x1: x coordinate of control point
|
|
* @y1: y coordinate of control point
|
|
* @x2: x coordinate of the end of the curve
|
|
* @y2: y coordinate of the end of the curve
|
|
*
|
|
* Adds a [quadratic Bézier curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve)
|
|
* from the current point to @x2, @y2 with @x1, @y1 as the control point.
|
|
*
|
|
* After this, @x2, @y2 will be the new current point.
|
|
*
|
|
* <picture>
|
|
* <source srcset="quad-dark.png" media="(prefers-color-scheme: dark)">
|
|
* <img alt="Quad To" src="quad-light.png">
|
|
* </picture>
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_quad_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2)
|
|
{
|
|
graphene_point_t p0 = self->current_point;
|
|
graphene_point_t p1 = GRAPHENE_POINT_INIT (x1, y1);
|
|
graphene_point_t p2 = GRAPHENE_POINT_INIT (x2, y2);
|
|
|
|
g_return_if_fail (self != NULL);
|
|
|
|
if (collinear (&p0, &p1, &p2))
|
|
{
|
|
GskBoundingBox bb;
|
|
|
|
/* We simplify degenerate quads to one or two lines */
|
|
if (!gsk_bounding_box_contains_point (gsk_bounding_box_init (&bb, &p0, &p2), &p1))
|
|
{
|
|
GskCurve c;
|
|
|
|
gsk_curve_init_foreach (&c, GSK_PATH_QUAD,
|
|
(const graphene_point_t []) { p0, p1, p2 },
|
|
3, 0.f);
|
|
gsk_curve_get_tight_bounds (&c, &bb);
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
graphene_point_t q;
|
|
|
|
gsk_bounding_box_get_corner (&bb, i, &q);
|
|
if (graphene_point_equal (&p0, &q) ||
|
|
graphene_point_equal (&p2, &q))
|
|
{
|
|
gsk_bounding_box_get_corner (&bb, (i + 2) % 4, &q);
|
|
gsk_path_builder_line_to (self, q.x, q.y);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
gsk_path_builder_line_to (self, x2, y2);
|
|
|
|
return;
|
|
}
|
|
|
|
self->flags &= ~GSK_PATH_FLAT;
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_QUAD,
|
|
2, (graphene_point_t[2]) { p1, p2 });
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_quad_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x offset of control point
|
|
* @y1: y offset of control point
|
|
* @x2: x offset of the end of the curve
|
|
* @y2: y offset of the end of the curve
|
|
*
|
|
* Adds a [quadratic Bézier curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve)
|
|
* from the current point to @x2, @y2 with @x1, @y1 the control point.
|
|
*
|
|
* All coordinates are given relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.quad_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_quad_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_quad_to (self,
|
|
self->current_point.x + x1,
|
|
self->current_point.y + y1,
|
|
self->current_point.x + x2,
|
|
self->current_point.y + y2);
|
|
}
|
|
|
|
static gboolean
|
|
point_is_between (const graphene_point_t *q,
|
|
const graphene_point_t *p0,
|
|
const graphene_point_t *p1)
|
|
{
|
|
return collinear (p0, p1, q) &&
|
|
fabsf (graphene_point_distance (p0, q, NULL, NULL) + graphene_point_distance (p1, q, NULL, NULL) - graphene_point_distance (p0, p1, NULL, NULL)) < 0.001;
|
|
}
|
|
|
|
static gboolean
|
|
bounding_box_corner_between (const GskBoundingBox *bb,
|
|
const graphene_point_t *p0,
|
|
const graphene_point_t *p1,
|
|
graphene_point_t *p)
|
|
{
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
graphene_point_t q;
|
|
|
|
gsk_bounding_box_get_corner (bb, i, &q);
|
|
|
|
if (point_is_between (&q, p0, p1))
|
|
{
|
|
*p = q;
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/**
|
|
* gsk_path_builder_cubic_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x coordinate of first control point
|
|
* @y1: y coordinate of first control point
|
|
* @x2: x coordinate of second control point
|
|
* @y2: y coordinate of second control point
|
|
* @x3: x coordinate of the end of the curve
|
|
* @y3: y coordinate of the end of the curve
|
|
*
|
|
* Adds a [cubic Bézier curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve)
|
|
* from the current point to @x3, @y3 with @x1, @y1 and @x2, @y2 as the control
|
|
* points.
|
|
*
|
|
* After this, @x3, @y3 will be the new current point.
|
|
*
|
|
* <picture>
|
|
* <source srcset="cubic-dark.png" media="(prefers-color-scheme: dark)">
|
|
* <img alt="Cubic To" src="cubic-light.png">
|
|
* </picture>
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_cubic_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2,
|
|
float x3,
|
|
float y3)
|
|
{
|
|
graphene_point_t p0 = self->current_point;
|
|
graphene_point_t p1 = GRAPHENE_POINT_INIT (x1, y1);
|
|
graphene_point_t p2 = GRAPHENE_POINT_INIT (x2, y2);
|
|
graphene_point_t p3 = GRAPHENE_POINT_INIT (x3, y3);
|
|
graphene_point_t p, q;
|
|
gboolean p01, p12, p23;
|
|
|
|
g_return_if_fail (self != NULL);
|
|
|
|
p01 = graphene_point_equal (&p0, &p1);
|
|
p12 = graphene_point_equal (&p1, &p2);
|
|
p23 = graphene_point_equal (&p2, &p3);
|
|
|
|
if (p01 && p12 && p23)
|
|
return;
|
|
|
|
if ((p01 && p23) || (p12 && (p01 || p23)))
|
|
{
|
|
gsk_path_builder_line_to (self, x3, y3);
|
|
return;
|
|
}
|
|
|
|
if (collinear (&p0, &p1, &p2) &&
|
|
collinear (&p1, &p2, &p3) &&
|
|
(!p12 || collinear (&p0, &p1, &p3)))
|
|
{
|
|
GskBoundingBox bb;
|
|
gboolean p1in, p2in;
|
|
|
|
gsk_bounding_box_init (&bb, &p0, &p3);
|
|
p1in = gsk_bounding_box_contains_point (&bb, &p1);
|
|
p2in = gsk_bounding_box_contains_point (&bb, &p2);
|
|
if (p1in && p2in)
|
|
{
|
|
gsk_path_builder_line_to (self, x3, y3);
|
|
}
|
|
else
|
|
{
|
|
GskCurve c;
|
|
|
|
gsk_curve_init_foreach (&c,
|
|
GSK_PATH_CUBIC,
|
|
(const graphene_point_t[]) { p0, p1, p2, p3 },
|
|
4,
|
|
0.f);
|
|
gsk_curve_get_tight_bounds (&c, &bb);
|
|
if (!p1in)
|
|
{
|
|
/* Find the intersection of bb with p0 - p1.
|
|
* It must be a corner
|
|
*/
|
|
bounding_box_corner_between (&bb, &p0, &p1, &p);
|
|
gsk_path_builder_line_to (self, p.x, p.y);
|
|
}
|
|
if (!p2in)
|
|
{
|
|
/* Find the intersection of bb with p2 - p3. */
|
|
bounding_box_corner_between (&bb, &p3, &p2, &p);
|
|
gsk_path_builder_line_to (self, p.x, p.y);
|
|
}
|
|
gsk_path_builder_line_to (self, x3, y3);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* reduce to a quadratic if possible */
|
|
graphene_point_interpolate (&p0, &p1, 1.5, &p);
|
|
graphene_point_interpolate (&p3, &p2, 1.5, &q);
|
|
if (graphene_point_near (&p, &q, 0.001))
|
|
{
|
|
gsk_path_builder_quad_to (self, p.x, p.y, x3, y3);
|
|
return;
|
|
}
|
|
|
|
self->flags &= ~GSK_PATH_FLAT;
|
|
|
|
/* At this point, we are dealing with a cubic that can't be reduced to
|
|
* lines or quadratics. Check for cusps.
|
|
*/
|
|
{
|
|
GskCurve c, c1, c2, c3, c4;
|
|
float t[2];
|
|
int n;
|
|
|
|
gsk_curve_init_foreach (&c,
|
|
GSK_PATH_CUBIC,
|
|
(const graphene_point_t[]) { p0, p1, p2, p3 },
|
|
4,
|
|
0.f);
|
|
|
|
n = gsk_curve_get_cusps (&c, t);
|
|
if (n == 1)
|
|
{
|
|
gsk_curve_split (&c, t[0], &c1, &c2);
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CUBIC,
|
|
3, &c1.cubic.points[1]);
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CUBIC,
|
|
3, &c2.cubic.points[1]);
|
|
return;
|
|
}
|
|
else if (n == 2)
|
|
{
|
|
if (t[1] < t[0])
|
|
{
|
|
float s = t[0];
|
|
t[0] = t[1];
|
|
t[1] = s;
|
|
}
|
|
|
|
gsk_curve_split (&c, t[0], &c1, &c2);
|
|
gsk_curve_split (&c2, (t[1] - t[0]) / (1 - t[0]), &c3, &c4);
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CUBIC,
|
|
3, &c1.cubic.points[1]);
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CUBIC,
|
|
3, &c3.cubic.points[1]);
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CUBIC,
|
|
3, &c4.cubic.points[1]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CUBIC,
|
|
3, (graphene_point_t[3]) { p1, p2, p3 });
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_cubic_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x offset of first control point
|
|
* @y1: y offset of first control point
|
|
* @x2: x offset of second control point
|
|
* @y2: y offset of second control point
|
|
* @x3: x offset of the end of the curve
|
|
* @y3: y offset of the end of the curve
|
|
*
|
|
* Adds a [cubic Bézier curve](https://en.wikipedia.org/wiki/B%C3%A9zier_curve)
|
|
* from the current point to @x3, @y3 with @x1, @y1 and @x2, @y2 as the control
|
|
* points.
|
|
*
|
|
* All coordinates are given relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.cubic_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_cubic_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2,
|
|
float x3,
|
|
float y3)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_cubic_to (self,
|
|
self->current_point.x + x1,
|
|
self->current_point.y + y1,
|
|
self->current_point.x + x2,
|
|
self->current_point.y + y2,
|
|
self->current_point.x + x3,
|
|
self->current_point.y + y3);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_conic_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x coordinate of control point
|
|
* @y1: y coordinate of control point
|
|
* @x2: x coordinate of the end of the curve
|
|
* @y2: y coordinate of the end of the curve
|
|
* @weight: weight of the control point, must be greater than zero
|
|
*
|
|
* Adds a [conic curve](https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline)
|
|
* from the current point to @x2, @y2 with the given @weight and @x1, @y1 as the
|
|
* control point.
|
|
*
|
|
* The weight determines how strongly the curve is pulled towards the control point.
|
|
* A conic with weight 1 is identical to a quadratic Bézier curve with the same points.
|
|
*
|
|
* Conic curves can be used to draw ellipses and circles. They are also known as
|
|
* rational quadratic Bézier curves.
|
|
*
|
|
* After this, @x2, @y2 will be the new current point.
|
|
*
|
|
* <picture>
|
|
* <source srcset="conic-dark.png" media="(prefers-color-scheme: dark)">
|
|
* <img alt="Conic To" src="conic-light.png">
|
|
* </picture>
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_conic_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2,
|
|
float weight)
|
|
{
|
|
graphene_point_t p0 = self->current_point;
|
|
graphene_point_t p1 = GRAPHENE_POINT_INIT (x1, y1);
|
|
graphene_point_t p2 = GRAPHENE_POINT_INIT (x2, y2);
|
|
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (weight > 0);
|
|
|
|
if (weight == 1)
|
|
{
|
|
gsk_path_builder_quad_to (self, x1, y1, x2, y2);
|
|
return;
|
|
}
|
|
|
|
if (collinear (&p0, &p1, &p2))
|
|
{
|
|
GskBoundingBox bb;
|
|
|
|
/* We simplify degenerate quads to one or two lines
|
|
* (two lines are needed if there's a cusp).
|
|
*/
|
|
if (!gsk_bounding_box_contains_point (gsk_bounding_box_init (&bb, &p0, &p2), &p1))
|
|
{
|
|
GskCurve c;
|
|
|
|
gsk_curve_init_foreach (&c, GSK_PATH_CONIC,
|
|
(const graphene_point_t []) { p0, p1, p2 },
|
|
3, weight);
|
|
gsk_curve_get_tight_bounds (&c, &bb);
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
graphene_point_t q;
|
|
|
|
gsk_bounding_box_get_corner (&bb, i, &q);
|
|
if (graphene_point_equal (&p0, &q) ||
|
|
graphene_point_equal (&p2, &q))
|
|
{
|
|
gsk_bounding_box_get_corner (&bb, (i + 2) % 4, &q);
|
|
gsk_path_builder_line_to (self, q.x, q.y);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
gsk_path_builder_line_to (self, x2, y2);
|
|
|
|
return;
|
|
}
|
|
|
|
self->flags &= ~GSK_PATH_FLAT;
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CONIC,
|
|
3, (graphene_point_t[3]) {
|
|
GRAPHENE_POINT_INIT (x1, y1),
|
|
GRAPHENE_POINT_INIT (weight, 0),
|
|
GRAPHENE_POINT_INIT (x2, y2)
|
|
});
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_conic_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x offset of control point
|
|
* @y1: y offset of control point
|
|
* @x2: x offset of the end of the curve
|
|
* @y2: y offset of the end of the curve
|
|
* @weight: weight of the curve, must be greater than zero
|
|
*
|
|
* Adds a [conic curve](https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline)
|
|
* from the current point to @x2, @y2 with the given @weight and @x1, @y1 as the
|
|
* control point.
|
|
*
|
|
* All coordinates are given relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.conic_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_conic_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2,
|
|
float weight)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (weight > 0);
|
|
|
|
gsk_path_builder_conic_to (self,
|
|
self->current_point.x + x1,
|
|
self->current_point.y + y1,
|
|
self->current_point.x + x2,
|
|
self->current_point.y + y2,
|
|
weight);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_arc_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x coordinate of first control point
|
|
* @y1: y coordinate of first control point
|
|
* @x2: x coordinate of second control point
|
|
* @y2: y coordinate of second control point
|
|
*
|
|
* Adds an elliptical arc from the current point to @x3, @y3
|
|
* with @x1, @y1 determining the tangent directions.
|
|
*
|
|
* After this, @x3, @y3 will be the new current point.
|
|
*
|
|
* Note: Two points and their tangents do not determine
|
|
* a unique ellipse, so GSK just picks one. If you need more
|
|
* precise control, use [method@Gsk.PathBuilder.conic_to]
|
|
* or [method@Gsk.PathBuilder.svg_arc_to].
|
|
*
|
|
* <picture>
|
|
* <source srcset="arc-dark.png" media="(prefers-color-scheme: dark)">
|
|
* <img alt="Arc To" src="arc-light.png">
|
|
* </picture>
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_arc_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_conic_to (self, x1, y1, x2, y2, M_SQRT1_2);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_arc_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: x coordinate of first control point
|
|
* @y1: y coordinate of first control point
|
|
* @x2: x coordinate of second control point
|
|
* @y2: y coordinate of second control point
|
|
*
|
|
* Adds an elliptical arc from the current point to @x3, @y3
|
|
* with @x1, @y1 determining the tangent directions.
|
|
*
|
|
* All coordinates are given relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.arc_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_arc_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
gsk_path_builder_arc_to (self,
|
|
self->current_point.x + x1,
|
|
self->current_point.y + y1,
|
|
self->current_point.x + x2,
|
|
self->current_point.y + y2);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_close:
|
|
* @self: a `GskPathBuilder`
|
|
*
|
|
* Ends the current contour with a line back to the start point.
|
|
*
|
|
* Note that this is different from calling [method@Gsk.PathBuilder.line_to]
|
|
* with the start point in that the contour will be closed. A closed
|
|
* contour behaves differently from an open one. When stroking, its
|
|
* start and end point are considered connected, so they will be
|
|
* joined via the line join, and not ended with line caps.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_close (GskPathBuilder *self)
|
|
{
|
|
g_return_if_fail (self != NULL);
|
|
|
|
if (self->ops->len == 0)
|
|
return;
|
|
|
|
self->flags |= GSK_PATH_CLOSED;
|
|
gsk_path_builder_append_current (self,
|
|
GSK_PATH_CLOSE,
|
|
1, (graphene_point_t[1]) {
|
|
g_array_index (self->points, graphene_point_t, 0)
|
|
});
|
|
|
|
gsk_path_builder_end_current (self);
|
|
}
|
|
|
|
static void
|
|
arc_segment (GskPathBuilder *self,
|
|
double cx,
|
|
double cy,
|
|
double rx,
|
|
double ry,
|
|
double sin_phi,
|
|
double cos_phi,
|
|
double sin_th0,
|
|
double cos_th0,
|
|
double sin_th1,
|
|
double cos_th1,
|
|
double t)
|
|
{
|
|
double x1, y1, x2, y2, x3, y3;
|
|
|
|
x1 = rx * (cos_th0 - t * sin_th0);
|
|
y1 = ry * (sin_th0 + t * cos_th0);
|
|
x3 = rx * cos_th1;
|
|
y3 = ry * sin_th1;
|
|
x2 = x3 + rx * (t * sin_th1);
|
|
y2 = y3 + ry * (-t * cos_th1);
|
|
|
|
gsk_path_builder_cubic_to (self,
|
|
cx + cos_phi * x1 - sin_phi * y1,
|
|
cy + sin_phi * x1 + cos_phi * y1,
|
|
cx + cos_phi * x2 - sin_phi * y2,
|
|
cy + sin_phi * x2 + cos_phi * y2,
|
|
cx + cos_phi * x3 - sin_phi * y3,
|
|
cy + sin_phi * x3 + cos_phi * y3);
|
|
}
|
|
|
|
static inline void
|
|
_sincos (double angle,
|
|
double *y,
|
|
double *x)
|
|
{
|
|
#ifdef HAVE_SINCOS
|
|
sincos (angle, y, x);
|
|
#else
|
|
*x = cos (angle);
|
|
*y = sin (angle);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_svg_arc_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @rx: X radius
|
|
* @ry: Y radius
|
|
* @x_axis_rotation: the rotation of the ellipsis
|
|
* @large_arc: whether to add the large arc
|
|
* @positive_sweep: whether to sweep in the positive direction
|
|
* @x: the X coordinate of the endpoint
|
|
* @y: the Y coordinate of the endpoint
|
|
*
|
|
* Implements arc-to according to the SVG spec.
|
|
*
|
|
* A convenience function that implements the
|
|
* [SVG arc_to](https://www.w3.org/TR/SVG11/paths.html#PathDataEllipticalArcCommands)
|
|
* functionality.
|
|
*
|
|
* After this, @x, @y will be the new current point.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_svg_arc_to (GskPathBuilder *self,
|
|
float rx,
|
|
float ry,
|
|
float x_axis_rotation,
|
|
gboolean large_arc,
|
|
gboolean positive_sweep,
|
|
float x,
|
|
float y)
|
|
{
|
|
graphene_point_t *current;
|
|
double x1, y1, x2, y2;
|
|
double phi, sin_phi, cos_phi;
|
|
double mid_x, mid_y;
|
|
double lambda;
|
|
double d;
|
|
double k;
|
|
double x1_, y1_;
|
|
double cx_, cy_;
|
|
double cx, cy;
|
|
double ux, uy, u_len;
|
|
double cos_theta1, theta1;
|
|
double vx, vy, v_len;
|
|
double dp_uv;
|
|
double cos_delta_theta, delta_theta;
|
|
int i, n_segs;
|
|
double d_theta, theta;
|
|
double sin_th0, cos_th0;
|
|
double sin_th1, cos_th1;
|
|
double th_half;
|
|
double t;
|
|
|
|
g_return_if_fail (self != NULL);
|
|
|
|
if (self->points->len > 0)
|
|
{
|
|
current = &g_array_index (self->points, graphene_point_t, self->points->len - 1);
|
|
x1 = current->x;
|
|
y1 = current->y;
|
|
}
|
|
else
|
|
{
|
|
x1 = 0;
|
|
y1 = 0;
|
|
}
|
|
x2 = x;
|
|
y2 = y;
|
|
|
|
phi = x_axis_rotation * M_PI / 180.0;
|
|
_sincos (phi, &sin_phi, &cos_phi);
|
|
|
|
rx = fabs (rx);
|
|
ry = fabs (ry);
|
|
|
|
mid_x = (x1 - x2) / 2;
|
|
mid_y = (y1 - y2) / 2;
|
|
|
|
x1_ = cos_phi * mid_x + sin_phi * mid_y;
|
|
y1_ = - sin_phi * mid_x + cos_phi * mid_y;
|
|
|
|
lambda = (x1_ / rx) * (x1_ / rx) + (y1_ / ry) * (y1_ / ry);
|
|
if (lambda > 1)
|
|
{
|
|
lambda = sqrt (lambda);
|
|
rx *= lambda;
|
|
ry *= lambda;
|
|
}
|
|
|
|
d = (rx * y1_) * (rx * y1_) + (ry * x1_) * (ry * x1_);
|
|
if (d == 0)
|
|
return;
|
|
|
|
k = sqrt (fabs ((rx * ry) * (rx * ry) / d - 1.0));
|
|
if (positive_sweep == large_arc)
|
|
k = -k;
|
|
|
|
cx_ = k * rx * y1_ / ry;
|
|
cy_ = -k * ry * x1_ / rx;
|
|
|
|
cx = cos_phi * cx_ - sin_phi * cy_ + (x1 + x2) / 2;
|
|
cy = sin_phi * cx_ + cos_phi * cy_ + (y1 + y2) / 2;
|
|
|
|
ux = (x1_ - cx_) / rx;
|
|
uy = (y1_ - cy_) / ry;
|
|
u_len = sqrt (ux * ux + uy * uy);
|
|
if (u_len == 0)
|
|
return;
|
|
|
|
cos_theta1 = CLAMP (ux / u_len, -1, 1);
|
|
theta1 = acos (cos_theta1);
|
|
if (uy < 0)
|
|
theta1 = - theta1;
|
|
|
|
vx = (- x1_ - cx_) / rx;
|
|
vy = (- y1_ - cy_) / ry;
|
|
v_len = sqrt (vx * vx + vy * vy);
|
|
if (v_len == 0)
|
|
return;
|
|
|
|
dp_uv = ux * vx + uy * vy;
|
|
cos_delta_theta = CLAMP (dp_uv / (u_len * v_len), -1, 1);
|
|
delta_theta = acos (cos_delta_theta);
|
|
if (ux * vy - uy * vx < 0)
|
|
delta_theta = - delta_theta;
|
|
if (positive_sweep && delta_theta < 0)
|
|
delta_theta += 2 * M_PI;
|
|
else if (!positive_sweep && delta_theta > 0)
|
|
delta_theta -= 2 * M_PI;
|
|
|
|
n_segs = ceil (fabs (delta_theta / (M_PI_2 + 0.001)));
|
|
d_theta = delta_theta / n_segs;
|
|
theta = theta1;
|
|
_sincos (theta1, &sin_th1, &cos_th1);
|
|
|
|
th_half = d_theta / 2;
|
|
t = (8.0 / 3.0) * sin (th_half / 2) * sin (th_half / 2) / sin (th_half);
|
|
|
|
for (i = 0; i < n_segs; i++)
|
|
{
|
|
theta = theta1;
|
|
theta1 = theta + d_theta;
|
|
sin_th0 = sin_th1;
|
|
cos_th0 = cos_th1;
|
|
_sincos (theta1, &sin_th1, &cos_th1);
|
|
arc_segment (self,
|
|
cx, cy, rx, ry,
|
|
sin_phi, cos_phi,
|
|
sin_th0, cos_th0,
|
|
sin_th1, cos_th1,
|
|
t);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_svg_arc_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @rx: X radius
|
|
* @ry: Y radius
|
|
* @x_axis_rotation: the rotation of the ellipsis
|
|
* @large_arc: whether to add the large arc
|
|
* @positive_sweep: whether to sweep in the positive direction
|
|
* @x: the X coordinate of the endpoint
|
|
* @y: the Y coordinate of the endpoint
|
|
*
|
|
* Implements arc-to according to the SVG spec.
|
|
*
|
|
* All coordinates are given relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.svg_arc_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_svg_arc_to (GskPathBuilder *self,
|
|
float rx,
|
|
float ry,
|
|
float x_axis_rotation,
|
|
gboolean large_arc,
|
|
gboolean positive_sweep,
|
|
float x,
|
|
float y)
|
|
{
|
|
gsk_path_builder_svg_arc_to (self,
|
|
rx, ry,
|
|
x_axis_rotation,
|
|
large_arc,
|
|
positive_sweep,
|
|
self->current_point.x + x,
|
|
self->current_point.y + y);
|
|
}
|
|
|
|
/* Return the angle between t1 and t2 in radians, such that
|
|
* 0 means straight continuation
|
|
* < 0 means right turn
|
|
* > 0 means left turn
|
|
*/
|
|
static float
|
|
angle_between (const graphene_vec2_t *t1,
|
|
const graphene_vec2_t *t2)
|
|
{
|
|
float angle = atan2 (graphene_vec2_get_y (t2), graphene_vec2_get_x (t2))
|
|
- atan2 (graphene_vec2_get_y (t1), graphene_vec2_get_x (t1));
|
|
|
|
if (angle > M_PI)
|
|
angle -= 2 * M_PI;
|
|
if (angle < - M_PI)
|
|
angle += 2 * M_PI;
|
|
|
|
return angle;
|
|
}
|
|
|
|
#define RAD_TO_DEG(r) ((r)*180.f/M_PI)
|
|
#define DEG_TO_RAD(d) ((d)*M_PI/180.f)
|
|
|
|
static float
|
|
angle_between_points (const graphene_point_t *c,
|
|
const graphene_point_t *a,
|
|
const graphene_point_t *b)
|
|
{
|
|
graphene_vec2_t t1, t2;
|
|
|
|
graphene_vec2_init (&t1, a->x - c->x, a->y - c->y);
|
|
graphene_vec2_init (&t2, b->x - c->x, b->y - c->y);
|
|
|
|
return (float) RAD_TO_DEG (angle_between (&t1, &t2));
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_html_arc_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: X coordinate of first control point
|
|
* @y1: Y coordinate of first control point
|
|
* @x2: X coordinate of second control point
|
|
* @y2: Y coordinate of second control point
|
|
* @radius: Radius of the circle
|
|
*
|
|
* Implements arc-to according to the HTML Canvas spec.
|
|
*
|
|
* A convenience function that implements the
|
|
* [HTML arc_to](https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-arcto-dev)
|
|
* functionality.
|
|
*
|
|
* After this, the current point will be the point where
|
|
* the circle with the given radius touches the line from
|
|
* @x1, @y1 to @x2, @y2.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_html_arc_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2,
|
|
float radius)
|
|
{
|
|
float angle, b;
|
|
graphene_vec2_t t;
|
|
graphene_point_t p, q;
|
|
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (radius > 0);
|
|
|
|
angle = angle_between_points (&GRAPHENE_POINT_INIT (x1, y1),
|
|
&self->current_point,
|
|
&GRAPHENE_POINT_INIT (x2, y2));
|
|
|
|
if (fabsf (angle) < 3)
|
|
{
|
|
gsk_path_builder_line_to (self, x2, y2);
|
|
return;
|
|
}
|
|
|
|
b = radius / tanf (fabsf ((float) DEG_TO_RAD (angle / 2)));
|
|
|
|
graphene_vec2_init (&t, self->current_point.x - x1, self->current_point.y - y1);
|
|
graphene_vec2_normalize (&t, &t);
|
|
|
|
p.x = x1 + b * graphene_vec2_get_x (&t);
|
|
p.y = y1 + b * graphene_vec2_get_y (&t);
|
|
|
|
graphene_vec2_init (&t, x2 - x1, y2 - y1);
|
|
graphene_vec2_normalize (&t, &t);
|
|
|
|
q.x = x1 + b * graphene_vec2_get_x (&t);
|
|
q.y = y1 + b * graphene_vec2_get_y (&t);
|
|
|
|
gsk_path_builder_line_to (self, p.x, p.y);
|
|
|
|
gsk_path_builder_svg_arc_to (self, radius, radius, 0, FALSE, angle < 0, q.x, q.y);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_rel_html_arc_to:
|
|
* @self: a `GskPathBuilder`
|
|
* @x1: X coordinate of first control point
|
|
* @y1: Y coordinate of first control point
|
|
* @x2: X coordinate of second control point
|
|
* @y2: Y coordinate of second control point
|
|
* @radius: Radius of the circle
|
|
*
|
|
* Implements arc-to according to the HTML Canvas spec.
|
|
*
|
|
* All coordinates are given relative to the current point.
|
|
*
|
|
* This is the relative version of [method@Gsk.PathBuilder.html_arc_to].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_rel_html_arc_to (GskPathBuilder *self,
|
|
float x1,
|
|
float y1,
|
|
float x2,
|
|
float y2,
|
|
float radius)
|
|
{
|
|
gsk_path_builder_html_arc_to (self,
|
|
self->current_point.x + x1,
|
|
self->current_point.y + y1,
|
|
self->current_point.x + x2,
|
|
self->current_point.y + y2,
|
|
radius);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_layout:
|
|
* @self: a #GskPathBuilder
|
|
* @layout: the pango layout to add
|
|
*
|
|
* Adds the outlines for the glyphs in @layout to the builder.
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_layout (GskPathBuilder *self,
|
|
PangoLayout *layout)
|
|
{
|
|
cairo_surface_t *surface;
|
|
cairo_t *cr;
|
|
cairo_path_t *cairo_path;
|
|
|
|
surface = cairo_recording_surface_create (CAIRO_CONTENT_COLOR_ALPHA, NULL);
|
|
cr = cairo_create (surface);
|
|
|
|
pango_cairo_layout_path (cr, layout);
|
|
cairo_path = cairo_copy_path (cr);
|
|
|
|
gsk_path_builder_add_cairo_path (self, cairo_path);
|
|
|
|
cairo_path_destroy (cairo_path);
|
|
cairo_destroy (cr);
|
|
cairo_surface_destroy (surface);
|
|
}
|
|
|
|
/**
|
|
* gsk_path_builder_add_segment:
|
|
* @self: a `GskPathBuilder`
|
|
* @path: the `GskPath` to take the segment to
|
|
* @start: the point on @path to start at
|
|
* @end: the point on @path to end at
|
|
*
|
|
* Adds to @self the segment of @path from @start to @end.
|
|
*
|
|
* If @start is equal to or after @end, the path will first add the
|
|
* segment from @start to the end of the path, and then add the segment
|
|
* from the beginning to @end. If the path is closed, these segments
|
|
* will be connected.
|
|
*
|
|
* Note that this method always adds a path with the given start point
|
|
* and end point. To add a closed path, use [method@Gsk.PathBuilder.add_path].
|
|
*
|
|
* Since: 4.14
|
|
*/
|
|
void
|
|
gsk_path_builder_add_segment (GskPathBuilder *self,
|
|
GskPath *path,
|
|
const GskPathPoint *start,
|
|
const GskPathPoint *end)
|
|
{
|
|
const GskContour *contour;
|
|
gsize n_contours = gsk_path_get_n_contours (path);
|
|
graphene_point_t current;
|
|
gsize n_ops;
|
|
|
|
g_return_if_fail (self != NULL);
|
|
g_return_if_fail (path != NULL);
|
|
g_return_if_fail (gsk_path_point_valid (start, path));
|
|
g_return_if_fail (gsk_path_point_valid (end, path));
|
|
|
|
current = self->current_point;
|
|
|
|
contour = gsk_path_get_contour (path, start->contour);
|
|
n_ops = gsk_contour_get_n_ops (contour);
|
|
|
|
if (start->contour == end->contour)
|
|
{
|
|
if (gsk_path_point_compare (start, end) < 0)
|
|
{
|
|
gsk_contour_add_segment (contour, self, TRUE, start, end);
|
|
goto out;
|
|
}
|
|
else if (n_contours == 1)
|
|
{
|
|
if (n_ops > 1)
|
|
gsk_contour_add_segment (contour, self, TRUE,
|
|
start,
|
|
&GSK_PATH_POINT_INIT (start->contour, n_ops - 1, 1.f));
|
|
gsk_contour_add_segment (contour, self, n_ops <= 1,
|
|
&GSK_PATH_POINT_INIT (start->contour, 1, 0.f),
|
|
end);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (n_ops > 1)
|
|
gsk_contour_add_segment (contour, self, TRUE,
|
|
start,
|
|
&GSK_PATH_POINT_INIT (start->contour, n_ops - 1, 1.f));
|
|
|
|
for (gsize i = (start->contour + 1) % n_contours; i != end->contour; i = (i + 1) % n_contours)
|
|
gsk_path_builder_add_contour (self, gsk_contour_dup (gsk_path_get_contour (path, i)));
|
|
|
|
contour = gsk_path_get_contour (path, end->contour);
|
|
n_ops = gsk_contour_get_n_ops (contour);
|
|
|
|
if (n_ops > 1)
|
|
gsk_contour_add_segment (contour, self, TRUE,
|
|
&GSK_PATH_POINT_INIT (end->contour, 1, 0.f),
|
|
end);
|
|
|
|
out:
|
|
gsk_path_builder_end_current (self);
|
|
self->current_point = current;
|
|
}
|