mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2024-12-30 15:31:34 +00:00
2480e0d575
... and make the icon rendering code use it. This requires moving even more shadow renering code into GSK, but so be it. At least the "shadows not implemented" warning is now gone!
401 lines
12 KiB
C
401 lines
12 KiB
C
/* GSK - The GIMP Toolkit
|
|
*
|
|
* Copyright (C) 2014 Red Hat
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Written by:
|
|
* Jasper St. Pierre <jstpierre@mecheye.net>
|
|
* Owen Taylor <otaylor@redhat.com>
|
|
*/
|
|
|
|
#include "gskcairoblurprivate.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
/*
|
|
* Gets the size for a single box blur.
|
|
*
|
|
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
|
|
* approximating a Gaussian using box blurs. This yields quite a good
|
|
* approximation for a Gaussian. For more details, see:
|
|
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
|
|
*/
|
|
#define GAUSSIAN_SCALE_FACTOR ((3.0 * sqrt(2 * G_PI) / 4))
|
|
|
|
#define get_box_filter_size(radius) ((int)(GAUSSIAN_SCALE_FACTOR * (radius)))
|
|
|
|
/* Sadly, clang is picky about get_box_filter_size(2) not being a
|
|
* constant expression, thus we have to use precomputed values.
|
|
*/
|
|
#define BOX_FILTER_SIZE_2 3
|
|
#define BOX_FILTER_SIZE_3 5
|
|
#define BOX_FILTER_SIZE_4 7
|
|
#define BOX_FILTER_SIZE_5 9
|
|
#define BOX_FILTER_SIZE_6 11
|
|
#define BOX_FILTER_SIZE_7 13
|
|
#define BOX_FILTER_SIZE_8 15
|
|
#define BOX_FILTER_SIZE_9 16
|
|
#define BOX_FILTER_SIZE_10 18
|
|
|
|
/* This applies a single box blur pass to a horizontal range of pixels;
|
|
* since the box blur has the same weight for all pixels, we can
|
|
* implement an efficient sliding window algorithm where we add
|
|
* in pixels coming into the window from the right and remove
|
|
* them when they leave the windw to the left.
|
|
*
|
|
* d is the filter width; for even d shift indicates how the blurred
|
|
* result is aligned with the original - does ' x ' go to ' yy' (shift=1)
|
|
* or 'yy ' (shift=-1)
|
|
*/
|
|
static void
|
|
blur_xspan (guchar *row,
|
|
guchar *tmp_buffer,
|
|
int row_width,
|
|
int d,
|
|
int shift)
|
|
{
|
|
int offset;
|
|
int sum = 0;
|
|
int i;
|
|
|
|
if (d % 2 == 1)
|
|
offset = d / 2;
|
|
else
|
|
offset = (d - shift) / 2;
|
|
|
|
/* All the conditionals in here look slow, but the branches will
|
|
* be well predicted and there are enough different possibilities
|
|
* that trying to write this as a series of unconditional loops
|
|
* is hard and not an obvious win. The main slow down here seems
|
|
* to be the integer division per pixel; one possible optimization
|
|
* would be to accumulate into two 16-bit integer buffers and
|
|
* only divide down after all three passes. (SSE parallel implementation
|
|
* of the divide step is possible.)
|
|
*/
|
|
|
|
#define BLUR_ROW_KERNEL(D) \
|
|
for (i = -(D) + offset; i < row_width + offset; i++) \
|
|
{ \
|
|
if (i >= 0 && i < row_width) \
|
|
sum += row[i]; \
|
|
\
|
|
if (i >= offset) \
|
|
{ \
|
|
if (i >= (D)) \
|
|
sum -= row[i - (D)]; \
|
|
\
|
|
tmp_buffer[i - offset] = (sum + (D) / 2) / (D); \
|
|
} \
|
|
} \
|
|
break;
|
|
|
|
/* We unroll the values for d for radius 2-10 to avoid a generic
|
|
* divide operation (not radius 1, because its a no-op) */
|
|
switch (d)
|
|
{
|
|
case BOX_FILTER_SIZE_2: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_2);
|
|
case BOX_FILTER_SIZE_3: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_3);
|
|
case BOX_FILTER_SIZE_4: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_4);
|
|
case BOX_FILTER_SIZE_5: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_5);
|
|
case BOX_FILTER_SIZE_6: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_6);
|
|
case BOX_FILTER_SIZE_7: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_7);
|
|
case BOX_FILTER_SIZE_8: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_8);
|
|
case BOX_FILTER_SIZE_9: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_9);
|
|
case BOX_FILTER_SIZE_10: BLUR_ROW_KERNEL (BOX_FILTER_SIZE_10);
|
|
default: BLUR_ROW_KERNEL (d);
|
|
}
|
|
|
|
memcpy (row, tmp_buffer, row_width);
|
|
}
|
|
|
|
static void
|
|
blur_rows (guchar *dst_buffer,
|
|
guchar *tmp_buffer,
|
|
int buffer_width,
|
|
int buffer_height,
|
|
int d)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < buffer_height; i++)
|
|
{
|
|
guchar *row = dst_buffer + i * buffer_width;
|
|
|
|
/* We want to produce a symmetric blur that spreads a pixel
|
|
* equally far to the left and right. If d is odd that happens
|
|
* naturally, but for d even, we approximate by using a blur
|
|
* on either side and then a centered blur of size d + 1.
|
|
* (technique also from the SVG specification)
|
|
*/
|
|
if (d % 2 == 1)
|
|
{
|
|
blur_xspan (row, tmp_buffer, buffer_width, d, 0);
|
|
blur_xspan (row, tmp_buffer, buffer_width, d, 0);
|
|
blur_xspan (row, tmp_buffer, buffer_width, d, 0);
|
|
}
|
|
else
|
|
{
|
|
blur_xspan (row, tmp_buffer, buffer_width, d, 1);
|
|
blur_xspan (row, tmp_buffer, buffer_width, d, -1);
|
|
blur_xspan (row, tmp_buffer, buffer_width, d + 1, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Swaps width and height.
|
|
*/
|
|
static void
|
|
flip_buffer (guchar *dst_buffer,
|
|
guchar *src_buffer,
|
|
int width,
|
|
int height)
|
|
{
|
|
/* Working in blocks increases cache efficiency, compared to reading
|
|
* or writing an entire column at once
|
|
*/
|
|
#define BLOCK_SIZE 16
|
|
|
|
int i0, j0;
|
|
|
|
for (i0 = 0; i0 < width; i0 += BLOCK_SIZE)
|
|
for (j0 = 0; j0 < height; j0 += BLOCK_SIZE)
|
|
{
|
|
int max_j = MIN(j0 + BLOCK_SIZE, height);
|
|
int max_i = MIN(i0 + BLOCK_SIZE, width);
|
|
int i, j;
|
|
|
|
for (i = i0; i < max_i; i++)
|
|
for (j = j0; j < max_j; j++)
|
|
dst_buffer[i * height + j] = src_buffer[j * width + i];
|
|
}
|
|
#undef BLOCK_SIZE
|
|
}
|
|
|
|
static void
|
|
_boxblur (guchar *buffer,
|
|
int width,
|
|
int height,
|
|
int radius,
|
|
GskBlurFlags flags)
|
|
{
|
|
guchar *flipped_buffer;
|
|
int d = get_box_filter_size (radius);
|
|
|
|
flipped_buffer = g_malloc (width * height);
|
|
|
|
if (flags & GSK_BLUR_Y)
|
|
{
|
|
/* Step 1: swap rows and columns */
|
|
flip_buffer (flipped_buffer, buffer, width, height);
|
|
|
|
/* Step 2: blur rows (really columns) */
|
|
blur_rows (flipped_buffer, buffer, height, width, d);
|
|
|
|
/* Step 3: swap rows and columns */
|
|
flip_buffer (buffer, flipped_buffer, height, width);
|
|
}
|
|
|
|
if (flags & GSK_BLUR_X)
|
|
{
|
|
/* Step 4: blur rows */
|
|
blur_rows (buffer, flipped_buffer, width, height, d);
|
|
}
|
|
|
|
g_free (flipped_buffer);
|
|
}
|
|
|
|
/*
|
|
* _gsk_cairo_blur_surface:
|
|
* @surface: a cairo image surface.
|
|
* @radius: the blur radius.
|
|
*
|
|
* Blurs the cairo image surface at the given radius.
|
|
*/
|
|
void
|
|
gsk_cairo_blur_surface (cairo_surface_t* surface,
|
|
double radius_d,
|
|
GskBlurFlags flags)
|
|
{
|
|
int radius = radius_d;
|
|
|
|
g_return_if_fail (surface != NULL);
|
|
g_return_if_fail (cairo_surface_get_type (surface) == CAIRO_SURFACE_TYPE_IMAGE);
|
|
g_return_if_fail (cairo_image_surface_get_format (surface) == CAIRO_FORMAT_A8);
|
|
|
|
/* The code doesn't actually do any blurring for radius 1, as it
|
|
* ends up with box filter size 1 */
|
|
if (radius <= 1)
|
|
return;
|
|
|
|
if ((flags & (GSK_BLUR_X|GSK_BLUR_Y)) == 0)
|
|
return;
|
|
|
|
/* Before we mess with the surface, execute any pending drawing. */
|
|
cairo_surface_flush (surface);
|
|
|
|
_boxblur (cairo_image_surface_get_data (surface),
|
|
cairo_image_surface_get_stride (surface),
|
|
cairo_image_surface_get_height (surface),
|
|
radius, flags);
|
|
|
|
/* Inform cairo we altered the surface contents. */
|
|
cairo_surface_mark_dirty (surface);
|
|
}
|
|
|
|
/*<private>
|
|
* gsk_cairo_blur_compute_pixels:
|
|
* @radius: the radius to compute the pixels for
|
|
*
|
|
* Computes the number of pixels necessary to extend an image in one
|
|
* direction to hold the image with shadow.
|
|
*
|
|
* This is just the number of pixels added by the blur radius, shadow
|
|
* offset and spread are not included.
|
|
*
|
|
* Much of this, the 3 * sqrt(2 * pi) / 4, is the known value for
|
|
* approximating a Gaussian using box blurs. This yields quite a good
|
|
* approximation for a Gaussian. Then we multiply this by 1.5 since our
|
|
* code wants the radius of the entire triple-box-blur kernel instead of
|
|
* the diameter of an individual box blur. For more details, see:
|
|
* http://www.w3.org/TR/SVG11/filters.html#feGaussianBlurElement
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=590039#c19
|
|
*/
|
|
int
|
|
gsk_cairo_blur_compute_pixels (double radius)
|
|
{
|
|
return floor (radius * GAUSSIAN_SCALE_FACTOR * 1.5 + 0.5);
|
|
}
|
|
|
|
static gboolean
|
|
needs_blur (float radius)
|
|
{
|
|
/* The code doesn't actually do any blurring for radius 1, as it
|
|
* ends up with box filter size 1 */
|
|
if (radius <= 1.0)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static const cairo_user_data_key_t original_cr_key;
|
|
|
|
cairo_t *
|
|
gsk_cairo_blur_start_drawing (cairo_t *cr,
|
|
float radius,
|
|
GskBlurFlags blur_flags)
|
|
{
|
|
cairo_rectangle_int_t clip_rect;
|
|
cairo_surface_t *surface;
|
|
cairo_t *blur_cr;
|
|
gdouble clip_radius;
|
|
gdouble x_scale, y_scale;
|
|
gboolean blur_x = (blur_flags & GSK_BLUR_X) != 0;
|
|
gboolean blur_y = (blur_flags & GSK_BLUR_Y) != 0;
|
|
|
|
if (!needs_blur (radius))
|
|
return cr;
|
|
|
|
gdk_cairo_get_clip_rectangle (cr, &clip_rect);
|
|
|
|
clip_radius = gsk_cairo_blur_compute_pixels (radius);
|
|
|
|
x_scale = y_scale = 1;
|
|
cairo_surface_get_device_scale (cairo_get_target (cr), &x_scale, &y_scale);
|
|
|
|
if (blur_flags & GSK_BLUR_REPEAT)
|
|
{
|
|
if (!blur_x)
|
|
clip_rect.width = 1;
|
|
if (!blur_y)
|
|
clip_rect.height = 1;
|
|
}
|
|
|
|
/* Create a larger surface to center the blur. */
|
|
surface = cairo_surface_create_similar_image (cairo_get_target (cr),
|
|
CAIRO_FORMAT_A8,
|
|
x_scale * (clip_rect.width + (blur_x ? 2 * clip_radius : 0)),
|
|
y_scale * (clip_rect.height + (blur_y ? 2 * clip_radius : 0)));
|
|
cairo_surface_set_device_scale (surface, x_scale, y_scale);
|
|
cairo_surface_set_device_offset (surface,
|
|
x_scale * ((blur_x ? clip_radius : 0) - clip_rect.x),
|
|
y_scale * ((blur_y ? clip_radius * y_scale : 0) - clip_rect.y));
|
|
|
|
blur_cr = cairo_create (surface);
|
|
cairo_set_user_data (blur_cr, &original_cr_key, cairo_reference (cr), (cairo_destroy_func_t) cairo_destroy);
|
|
|
|
if (cairo_has_current_point (cr))
|
|
{
|
|
double x, y;
|
|
|
|
cairo_get_current_point (cr, &x, &y);
|
|
cairo_move_to (blur_cr, x, y);
|
|
}
|
|
|
|
return blur_cr;
|
|
}
|
|
|
|
static void
|
|
mask_surface_repeat (cairo_t *cr,
|
|
cairo_surface_t *surface)
|
|
{
|
|
cairo_pattern_t *pattern;
|
|
|
|
pattern = cairo_pattern_create_for_surface (surface);
|
|
cairo_pattern_set_extend (pattern, CAIRO_EXTEND_REPEAT);
|
|
|
|
cairo_mask (cr, pattern);
|
|
|
|
cairo_pattern_destroy (pattern);
|
|
}
|
|
|
|
cairo_t *
|
|
gsk_cairo_blur_finish_drawing (cairo_t *cr,
|
|
float radius,
|
|
const GdkRGBA *color,
|
|
GskBlurFlags blur_flags)
|
|
{
|
|
cairo_t *original_cr;
|
|
cairo_surface_t *surface;
|
|
gdouble x_scale;
|
|
|
|
if (!needs_blur (radius))
|
|
return cr;
|
|
|
|
original_cr = cairo_get_user_data (cr, &original_cr_key);
|
|
|
|
/* Blur the surface. */
|
|
surface = cairo_get_target (cr);
|
|
|
|
x_scale = 1;
|
|
cairo_surface_get_device_scale (cairo_get_target (cr), &x_scale, NULL);
|
|
|
|
gsk_cairo_blur_surface (surface, x_scale * radius, blur_flags);
|
|
|
|
gdk_cairo_set_source_rgba (original_cr, color);
|
|
if (blur_flags & GSK_BLUR_REPEAT)
|
|
mask_surface_repeat (original_cr, surface);
|
|
else
|
|
cairo_mask_surface (original_cr, surface, 0, 0);
|
|
|
|
cairo_destroy (cr);
|
|
|
|
cairo_surface_destroy (surface);
|
|
|
|
return original_cr;
|
|
}
|
|
|