gtk/gsk/gskoffload.c
Matthias Clasen 3d3e935c91 offload: Use gsk_color_node_get_color2
We want the blackest black.
2024-08-05 11:11:15 -04:00

827 lines
26 KiB
C

/* gskoffload.c
*
* Copyright 2023 Red Hat, Inc.
*
* This file is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 2.1 of the License, or (at your option)
* any later version.
*
* This file is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*/
#include "config.h"
#include "gskoffloadprivate.h"
#include "gskrendernode.h"
#include "gskrectprivate.h"
#include "gskroundedrectprivate.h"
#include "gsktransformprivate.h"
#include "gskdebugprivate.h"
#include "gskrendernodeprivate.h"
#include "gdksurfaceprivate.h"
#include "gdkrgbaprivate.h"
#include <graphene.h>
typedef struct
{
GskRoundedRect rect;
guint is_rectilinear : 1;
guint is_fully_contained : 1;
guint is_empty : 1;
guint is_complex : 1;
} Clip;
struct _GskOffload
{
GdkSurface *surface;
GskOffloadInfo *subsurfaces;
gsize n_subsurfaces;
GSList *transforms;
GSList *clips;
Clip *current_clip;
GskOffloadInfo *last_info;
};
static GdkDihedral
find_texture_transform (GskTransform *transform)
{
GdkDihedral dihedral;
float sx, sy, dx, dy;
g_assert (gsk_transform_get_fine_category (transform) >= GSK_FINE_TRANSFORM_CATEGORY_2D_DIHEDRAL);
gsk_transform_to_dihedral (transform, &dihedral, &sx, &sy, &dx, &dy);
return dihedral;
}
static gboolean
color_is_black (const GdkColor *color)
{
return color->red < 255.f / 65535.f &&
color->green < 255.f / 65535.f &&
color->blue < 255.f / 65535.f &&
color->alpha > 65280.f / 65535.f;
}
static GdkTexture *
find_texture_to_attach (GskOffload *self,
const GskRenderNode *subsurface_node,
graphene_rect_t *out_texture_rect,
graphene_rect_t *out_source_rect,
gboolean *has_background,
GdkDihedral *out_texture_transform)
{
GdkSubsurface *subsurface;
const GskRenderNode *node;
gboolean has_clip = FALSE;
graphene_rect_t clip;
GskTransform *transform = NULL;
GdkTexture *ret = NULL;
*has_background = FALSE;
*out_texture_transform = GDK_DIHEDRAL_NORMAL;
subsurface = gsk_subsurface_node_get_subsurface (subsurface_node);
node = subsurface_node;
for (;;)
{
switch ((int) GSK_RENDER_NODE_TYPE (node))
{
case GSK_DEBUG_NODE:
node = gsk_debug_node_get_child (node);
break;
case GSK_SUBSURFACE_NODE:
node = gsk_subsurface_node_get_child (node);
break;
case GSK_CONTAINER_NODE:
if (gsk_container_node_get_n_children (node) == 1)
{
node = gsk_container_node_get_child (node, 0);
break;
}
else if (gsk_container_node_get_n_children (node) == 2)
{
GskRenderNode *child = gsk_container_node_get_child (node, 0);
graphene_rect_t bounds;
gsk_transform_transform_bounds (transform, &child->bounds, &bounds);
if (GSK_RENDER_NODE_TYPE (child) == GSK_COLOR_NODE &&
gsk_rect_equal (&bounds, &subsurface_node->bounds) &&
color_is_black (gsk_color_node_get_color2 (child)))
{
*has_background = TRUE;
node = gsk_container_node_get_child (node, 1);
break;
}
}
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Too much content, container with %d children",
subsurface, gsk_container_node_get_n_children (node));
goto out;
case GSK_TRANSFORM_NODE:
{
GskTransform *t = gsk_transform_node_get_transform (node);
if (gsk_transform_get_fine_category (t) < GSK_FINE_TRANSFORM_CATEGORY_2D_DIHEDRAL)
{
char *s = gsk_transform_to_string (t);
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Transform %s is not dihedral",
subsurface, s);
g_free (s);
goto out;
}
if (has_clip)
{
GskTransform *inv = gsk_transform_invert (gsk_transform_ref (t));
gsk_transform_transform_bounds (inv, &clip, &clip);
gsk_transform_unref (inv);
}
transform = gsk_transform_transform (transform, gsk_transform_ref (t));
node = gsk_transform_node_get_child (node);
}
break;
case GSK_CLIP_NODE:
{
const graphene_rect_t *c = gsk_clip_node_get_clip (node);
if (has_clip)
{
if (!gsk_rect_intersection (c, &clip, &clip))
{
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Empty clip", subsurface);
goto out;
}
}
else
{
gsk_transform_transform_bounds (transform, &node->bounds, out_texture_rect);
clip = *c;
has_clip = TRUE;
}
node = gsk_clip_node_get_child (node);
}
break;
case GSK_TEXTURE_NODE:
{
GdkTexture *texture = gsk_texture_node_get_texture (node);
int width, height;
if (gsk_transform_get_fine_category (transform) < GSK_FINE_TRANSFORM_CATEGORY_2D_DIHEDRAL)
{
char *s = gsk_transform_to_string (transform);
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Transform %s is not dihedral",
subsurface, s);
g_free (s);
goto out;
}
width = gdk_texture_get_width (texture);
height = gdk_texture_get_height (texture);
*out_texture_transform = find_texture_transform (transform);
if (gdk_dihedral_swaps_xy (*out_texture_transform))
{
int tmp = width;
width = height;
height = tmp;
}
if (has_clip)
{
float dx = node->bounds.origin.x;
float dy = node->bounds.origin.y;
float sx = width / node->bounds.size.width;
float sy = height / node->bounds.size.height;
gsk_rect_intersection (&node->bounds, &clip, &clip);
out_source_rect->origin.x = (clip.origin.x - dx) * sx;
out_source_rect->origin.y = (clip.origin.y - dy) * sy;
out_source_rect->size.width = clip.size.width * sx;
out_source_rect->size.height = clip.size.height * sy;
}
else
{
gsk_transform_transform_bounds (transform, &node->bounds, out_texture_rect);
out_source_rect->origin.x = 0;
out_source_rect->origin.y = 0;
out_source_rect->size.width = width;
out_source_rect->size.height = height;
}
ret = texture;
goto out;
}
default:
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Only textures supported (found %s)",
subsurface, g_type_name_from_instance ((GTypeInstance *) node));
goto out;
}
}
out:
g_clear_pointer (&transform, gsk_transform_unref);
return ret;
}
static void
push_transform (GskOffload *self,
GskTransform *transform)
{
if (self->transforms)
{
GskTransform *t = self->transforms->data;
t = gsk_transform_transform (gsk_transform_ref (t), transform);
self->transforms = g_slist_prepend (self->transforms, t);
}
else
self->transforms = g_slist_prepend (NULL, gsk_transform_ref (transform));
}
static void
pop_transform (GskOffload *self)
{
GSList *l = self->transforms;
GskTransform *t = l->data;
g_assert (self->transforms != NULL);
self->transforms = self->transforms->next;
g_slist_free_1 (l);
gsk_transform_unref (t);
}
static inline void
transform_bounds (GskOffload *self,
const graphene_rect_t *bounds,
graphene_rect_t *rect)
{
GskTransform *t = self->transforms ? self->transforms->data : NULL;
gsk_transform_transform_bounds (t, bounds, rect);
}
static inline gboolean
transform_rounded_rect (GskOffload *self,
const GskRoundedRect *rect,
GskRoundedRect *out_rect)
{
GskTransform *t = self->transforms ? self->transforms->data : NULL;
GdkDihedral dihedral;
float sx, sy, dx, dy;
GskRoundedRect tmp;
if (gsk_transform_get_fine_category (t) < GSK_FINE_TRANSFORM_CATEGORY_2D_DIHEDRAL)
return FALSE;
gsk_transform_to_dihedral (t, &dihedral, &sx, &sy, &dx, &dy);
gsk_rounded_rect_dihedral (&tmp, rect, dihedral);
gsk_rounded_rect_scale_affine (out_rect, &tmp, sx, sy, dx, dy);
return TRUE;
}
static void
push_rect_clip (GskOffload *self,
const GskRoundedRect *rect)
{
Clip *clip = g_new0 (Clip, 1);
clip->rect = *rect;
clip->is_rectilinear = gsk_rounded_rect_is_rectilinear (rect);
clip->is_empty = (rect->bounds.size.width == 0 || rect->bounds.size.height == 0);
self->clips = g_slist_prepend (self->clips, clip);
self->current_clip = self->clips->data;
}
static void
push_empty_clip (GskOffload *self)
{
push_rect_clip (self, &GSK_ROUNDED_RECT_INIT (0, 0, 0, 0));
}
static void
push_contained_clip (GskOffload *self)
{
Clip *current_clip = self->clips->data;
Clip *clip = g_new0 (Clip, 1);
clip->rect = current_clip->rect;
clip->is_rectilinear = TRUE;
clip->is_fully_contained = TRUE;
self->clips = g_slist_prepend (self->clips, clip);
self->current_clip = self->clips->data;
}
static void
push_complex_clip (GskOffload *self)
{
Clip *current_clip = self->clips->data;
Clip *clip = g_new0 (Clip, 1);
clip->rect = current_clip->rect;
clip->is_complex = TRUE;
self->clips = g_slist_prepend (self->clips, clip);
self->current_clip = self->clips->data;
}
static void
pop_clip (GskOffload *self)
{
GSList *l = self->clips;
Clip *clip = l->data;
g_assert (self->clips != NULL);
self->clips = self->clips->next;
if (self->clips)
self->current_clip = self->clips->data;
g_slist_free_1 (l);
g_free (clip);
}
static inline void
rounded_rect_get_inner (const GskRoundedRect *rect,
graphene_rect_t *inner)
{
float left = MAX (rect->corner[GSK_CORNER_TOP_LEFT].width, rect->corner[GSK_CORNER_BOTTOM_LEFT].width);
float right = MAX (rect->corner[GSK_CORNER_TOP_RIGHT].width, rect->corner[GSK_CORNER_BOTTOM_RIGHT].width);
float top = MAX (rect->corner[GSK_CORNER_TOP_LEFT].height, rect->corner[GSK_CORNER_TOP_RIGHT].height);
float bottom = MAX (rect->corner[GSK_CORNER_BOTTOM_LEFT].height, rect->corner[GSK_CORNER_BOTTOM_RIGHT].height);
inner->origin.x = rect->bounds.origin.x + left;
inner->size.width = rect->bounds.size.width - (left + right);
inner->origin.y = rect->bounds.origin.y + top;
inner->size.height = rect->bounds.size.height - (top + bottom);
}
static inline gboolean
interval_contains (float p1, float w1,
float p2, float w2)
{
if (p2 < p1)
return FALSE;
if (p2 + w2 > p1 + w1)
return FALSE;
return TRUE;
}
static gboolean
update_clip (GskOffload *self,
const graphene_rect_t *transformed_bounds)
{
gboolean no_clip = FALSE;
gboolean rect_clip = FALSE;
if (self->current_clip->is_fully_contained ||
self->current_clip->is_empty ||
self->current_clip->is_complex)
return FALSE;
if (!gsk_rect_intersects (&self->current_clip->rect.bounds, transformed_bounds))
{
push_empty_clip (self);
return TRUE;
}
if (self->current_clip->is_rectilinear)
{
if (gsk_rect_contains_rect (&self->current_clip->rect.bounds, transformed_bounds))
no_clip = TRUE;
else
rect_clip = TRUE;
}
else if (gsk_rounded_rect_contains_rect (&self->current_clip->rect, transformed_bounds))
{
no_clip = TRUE;
}
else
{
graphene_rect_t inner;
rounded_rect_get_inner (&self->current_clip->rect, &inner);
if (interval_contains (inner.origin.x, inner.size.width,
transformed_bounds->origin.x, transformed_bounds->size.width) ||
interval_contains (inner.origin.y, inner.size.height,
transformed_bounds->origin.y, transformed_bounds->size.height))
rect_clip = TRUE;
}
if (no_clip)
{
/* This node is completely contained inside the clip.
* Record this fact on the clip stack, so we don't do
* more work for child nodes.
*/
push_contained_clip (self);
return TRUE;
}
else if (rect_clip && !self->current_clip->is_rectilinear)
{
graphene_rect_t rect;
/* The clip gets simpler for this node */
gsk_rect_intersection (&self->current_clip->rect.bounds, transformed_bounds, &rect);
push_rect_clip (self, &GSK_ROUNDED_RECT_INIT_FROM_RECT (rect));
return TRUE;
}
return FALSE;
}
static GskOffloadInfo *
find_subsurface_info (GskOffload *self,
GdkSubsurface *subsurface)
{
for (gsize i = 0; i < self->n_subsurfaces; i++)
{
GskOffloadInfo *info = &self->subsurfaces[i];
if (info->subsurface == subsurface)
return info;
}
return NULL;
}
static void
visit_node (GskOffload *self,
GskRenderNode *node)
{
gboolean has_clip;
graphene_rect_t transformed_bounds;
transform_bounds (self, &node->bounds, &transformed_bounds);
for (gsize i = 0; i < self->n_subsurfaces; i++)
{
GskOffloadInfo *info = &self->subsurfaces[i];
if (info->can_raise)
{
if (gsk_rect_intersects (&transformed_bounds, &info->texture_rect) ||
gsk_rect_intersects (&transformed_bounds, &info->background_rect))
{
GskRenderNodeType type = GSK_RENDER_NODE_TYPE (node);
if (type != GSK_CONTAINER_NODE &&
type != GSK_TRANSFORM_NODE &&
type != GSK_CLIP_NODE &&
type != GSK_ROUNDED_CLIP_NODE &&
type != GSK_DEBUG_NODE)
{
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] Lowering because a %s overlaps",
info->subsurface,
g_type_name_from_instance ((GTypeInstance *) node));
info->can_raise = FALSE;
}
}
}
}
has_clip = update_clip (self, &transformed_bounds);
switch (GSK_RENDER_NODE_TYPE (node))
{
case GSK_BORDER_NODE:
case GSK_CONIC_GRADIENT_NODE:
case GSK_LINEAR_GRADIENT_NODE:
case GSK_REPEATING_LINEAR_GRADIENT_NODE:
case GSK_RADIAL_GRADIENT_NODE:
case GSK_REPEATING_RADIAL_GRADIENT_NODE:
case GSK_TEXT_NODE:
case GSK_TEXTURE_NODE:
case GSK_TEXTURE_SCALE_NODE:
case GSK_CAIRO_NODE:
case GSK_COLOR_NODE:
case GSK_INSET_SHADOW_NODE:
case GSK_OUTSET_SHADOW_NODE:
case GSK_GL_SHADER_NODE:
case GSK_BLEND_NODE:
case GSK_BLUR_NODE:
case GSK_COLOR_MATRIX_NODE:
case GSK_OPACITY_NODE:
case GSK_CROSS_FADE_NODE:
case GSK_SHADOW_NODE:
case GSK_REPEAT_NODE:
case GSK_MASK_NODE:
case GSK_FILL_NODE:
case GSK_STROKE_NODE:
break;
case GSK_CLIP_NODE:
{
const graphene_rect_t *clip = gsk_clip_node_get_clip (node);
graphene_rect_t transformed_clip;
GskRoundedRect intersection;
transform_bounds (self, clip, &transformed_clip);
if (self->current_clip->is_rectilinear)
{
memset (&intersection.corner, 0, sizeof intersection.corner);
gsk_rect_intersection (&transformed_clip,
&self->current_clip->rect.bounds,
&intersection.bounds);
push_rect_clip (self, &intersection);
visit_node (self, gsk_clip_node_get_child (node));
pop_clip (self);
}
else
{
GskRoundedRectIntersection result;
result = gsk_rounded_rect_intersect_with_rect (&self->current_clip->rect,
&transformed_clip,
&intersection);
if (result == GSK_INTERSECTION_EMPTY)
push_empty_clip (self);
else if (result == GSK_INTERSECTION_NONEMPTY)
push_rect_clip (self, &intersection);
else
push_complex_clip (self);
visit_node (self, gsk_clip_node_get_child (node));
pop_clip (self);
}
}
break;
case GSK_ROUNDED_CLIP_NODE:
{
const GskRoundedRect *clip = gsk_rounded_clip_node_get_clip (node);
GskRoundedRect transformed_clip;
if (!transform_rounded_rect (self, clip, &transformed_clip))
{
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"🗙 Non-dihedral transform, giving up");
}
else if (self->current_clip->is_rectilinear)
{
GskRoundedRect intersection;
GskRoundedRectIntersection result;
result = gsk_rounded_rect_intersect_with_rect (&transformed_clip,
&self->current_clip->rect.bounds,
&intersection);
if (result == GSK_INTERSECTION_EMPTY)
push_empty_clip (self);
else if (result == GSK_INTERSECTION_NONEMPTY)
push_rect_clip (self, &intersection);
else
goto complex_clip;
visit_node (self, gsk_rounded_clip_node_get_child (node));
pop_clip (self);
}
else
{
complex_clip:
if (gsk_rounded_rect_contains_rect (&self->current_clip->rect, &transformed_clip.bounds))
push_rect_clip (self, &transformed_clip);
else
push_complex_clip (self);
visit_node (self, gsk_rounded_clip_node_get_child (node));
pop_clip (self);
}
}
break;
case GSK_TRANSFORM_NODE:
push_transform (self, gsk_transform_node_get_transform (node));
visit_node (self, gsk_transform_node_get_child (node));
pop_transform (self);
break;
case GSK_CONTAINER_NODE:
for (gsize i = 0; i < gsk_container_node_get_n_children (node); i++)
visit_node (self, gsk_container_node_get_child (node, i));
break;
case GSK_DEBUG_NODE:
visit_node (self, gsk_debug_node_get_child (node));
break;
case GSK_SUBSURFACE_NODE:
{
GdkSubsurface *subsurface = gsk_subsurface_node_get_subsurface (node);
GskTransform *transform;
GskOffloadInfo *info = find_subsurface_info (self, subsurface);
transform = self->transforms ? (GskTransform *) self->transforms->data : NULL;
if (info == NULL)
{
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Unknown subsurface",
subsurface);
}
else if (!self->current_clip->is_fully_contained)
{
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Clipped",
subsurface);
}
else if (gsk_transform_get_fine_category (transform) < GSK_FINE_TRANSFORM_CATEGORY_2D_DIHEDRAL)
{
GDK_DISPLAY_DEBUG (gdk_surface_get_display (self->surface), OFFLOAD,
"[%p] 🗙 Non-dihedral transform",
subsurface);
}
else
{
gboolean has_background;
float sx, sy, dx, dy;
GdkDihedral context_transform;
GdkDihedral inner_transform;
gsk_transform_to_dihedral (transform, &context_transform, &sx, &sy, &dx, &dy);
info->texture = find_texture_to_attach (self, node, &info->texture_rect, &info->source_rect, &has_background, &inner_transform);
if (info->texture)
{
info->transform = gdk_dihedral_combine (context_transform, inner_transform);
info->can_offload = TRUE;
info->can_raise = TRUE;
transform_bounds (self, &info->texture_rect, &info->texture_rect);
info->has_background = has_background;
transform_bounds (self, &node->bounds, &info->background_rect);
info->place_above = self->last_info ? self->last_info->subsurface : NULL;
self->last_info = info;
}
}
}
break;
case GSK_NOT_A_RENDER_NODE:
default:
g_assert_not_reached ();
break;
}
if (has_clip)
pop_clip (self);
}
GskOffload *
gsk_offload_new (GdkSurface *surface,
GskRenderNode *root,
cairo_region_t *diff)
{
GskOffload *self;
self = g_new0 (GskOffload, 1);
self->surface = surface;
self->transforms = NULL;
self->clips = NULL;
self->last_info = NULL;
self->n_subsurfaces = gdk_surface_get_n_subsurfaces (self->surface);
self->subsurfaces = g_new0 (GskOffloadInfo, self->n_subsurfaces);
for (gsize i = 0; i < self->n_subsurfaces; i++)
{
GskOffloadInfo *info = &self->subsurfaces[i];
graphene_rect_t rect;
info->subsurface = gdk_surface_get_subsurface (self->surface, i);
info->was_offloaded = gdk_subsurface_get_texture (info->subsurface) != NULL;
info->was_above = gdk_subsurface_is_above_parent (info->subsurface);
info->had_background = gdk_subsurface_get_background_rect (info->subsurface, &rect);
}
if (self->n_subsurfaces > 0)
{
push_rect_clip (self, &GSK_ROUNDED_RECT_INIT (0, 0,
gdk_surface_get_width (surface),
gdk_surface_get_height (surface)));
visit_node (self, root);
pop_clip (self);
}
for (gsize i = 0; i < self->n_subsurfaces; i++)
{
GskOffloadInfo *info = &self->subsurfaces[i];
graphene_rect_t old_bounds;
graphene_rect_t bounds;
gdk_subsurface_get_bounds (info->subsurface, &old_bounds);
if (info->can_offload)
{
if (info->can_raise)
info->is_offloaded = gdk_subsurface_attach (info->subsurface,
info->texture,
&info->source_rect,
&info->texture_rect,
info->transform,
info->has_background ? &info->background_rect : NULL,
TRUE, NULL);
else
info->is_offloaded = gdk_subsurface_attach (info->subsurface,
info->texture,
&info->source_rect,
&info->texture_rect,
info->transform,
info->has_background ? &info->background_rect : NULL,
info->place_above != NULL,
info->place_above);
}
else
{
info->is_offloaded = FALSE;
if (info->was_offloaded)
gdk_subsurface_detach (info->subsurface);
}
info->is_above = info->is_offloaded && gdk_subsurface_is_above_parent (info->subsurface);
gdk_subsurface_get_bounds (info->subsurface, &bounds);
if (info->is_offloaded != info->was_offloaded ||
info->is_above != info->was_above ||
(info->is_offloaded && !gsk_rect_equal (&bounds, &old_bounds)))
{
/* We changed things, need to invalidate everything */
cairo_rectangle_int_t rect;
if (info->is_offloaded)
{
gsk_rect_to_cairo_grow (&bounds, &rect);
cairo_region_union_rectangle (diff, &rect);
}
if (info->was_offloaded)
{
gsk_rect_to_cairo_grow (&old_bounds, &rect);
cairo_region_union_rectangle (diff, &rect);
}
}
}
return self;
}
void
gsk_offload_free (GskOffload *self)
{
g_free (self->subsurfaces);
g_free (self);
}
GskOffloadInfo *
gsk_offload_get_subsurface_info (GskOffload *self,
GdkSubsurface *subsurface)
{
return find_subsurface_info (self, subsurface);
}