mirror of
https://gitlab.gnome.org/GNOME/gtk.git
synced 2025-01-04 01:31:13 +00:00
9f2ca8d851
Drop the g_type_class_add_private() function, and use the macros instead. https://bugzilla.gnome.org/show_bug.cgi?id=702996
602 lines
19 KiB
C
602 lines
19 KiB
C
/* GDK - The GIMP Drawing Kit
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GTK+ Team and others 1997-2010. See the AUTHORS
|
|
* file for a list of people on the GTK+ Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GTK+ at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "gdkframeclockprivate.h"
|
|
#include "gdkinternals.h"
|
|
|
|
/**
|
|
* SECTION:gdkframeclock
|
|
* @Short_description: Frame clock syncs painting to a window or display
|
|
* @Title: Frame clock
|
|
*
|
|
* A #GdkFrameClock tells the application when to update and repaint a
|
|
* window. This may be synced to the vertical refresh rate of the
|
|
* monitor, for example. Even when the frame clock uses a simple timer
|
|
* rather than a hardware-based vertical sync, the frame clock helps
|
|
* because it ensures everything paints at the same time (reducing the
|
|
* total number of frames). The frame clock can also automatically
|
|
* stop painting when it knows the frames will not be visible, or
|
|
* scale back animation framerates.
|
|
*
|
|
* #GdkFrameClock is designed to be compatible with an OpenGL-based
|
|
* implementation or with mozRequestAnimationFrame in Firefox,
|
|
* for example.
|
|
*
|
|
* A frame clock is idle until someone requests a frame with
|
|
* gdk_frame_clock_request_phase(). At some later point that makes
|
|
* sense for the synchronization being implemented, the clock will
|
|
* process a frame and emit signals for each phase that has been
|
|
* requested. (See the signals of the #GdkFrameClock class for
|
|
* documentation of the phases. %GDK_FRAME_CLOCK_PHASE_UPDATE and the
|
|
* #GdkFrameClock::update signal are most interesting for application
|
|
* writers, and are used to update the animations, using the frame time
|
|
* given by gdk_frame_clock_get_frame_time().
|
|
*
|
|
* The frame time is reported in microseconds and generally in the same
|
|
* timescale as g_get_monotonic_time(), however, it is not the same
|
|
* as g_get_monotonic_time(). The frame time does not advance during
|
|
* the time a frame is being painted, and outside of a frame, an attempt
|
|
* is made so that all calls to gdk_frame_clock_get_frame_time() that
|
|
* are called at a "similar" time get the same value. This means that
|
|
* if different animations are timed by looking at the difference in
|
|
* time between an initial value from gdk_frame_clock_get_frame_time()
|
|
* and the value inside the #GdkFrameClock::update signal of the clock,
|
|
* they will stay exactly synchronized.
|
|
*/
|
|
|
|
enum {
|
|
FLUSH_EVENTS,
|
|
BEFORE_PAINT,
|
|
UPDATE,
|
|
LAYOUT,
|
|
PAINT,
|
|
AFTER_PAINT,
|
|
RESUME_EVENTS,
|
|
LAST_SIGNAL
|
|
};
|
|
|
|
static guint signals[LAST_SIGNAL];
|
|
|
|
#define FRAME_HISTORY_MAX_LENGTH 16
|
|
|
|
struct _GdkFrameClockPrivate
|
|
{
|
|
gint64 frame_counter;
|
|
gint n_timings;
|
|
gint current;
|
|
GdkFrameTimings *timings[FRAME_HISTORY_MAX_LENGTH];
|
|
};
|
|
|
|
G_DEFINE_ABSTRACT_TYPE_WITH_PRIVATE (GdkFrameClock, gdk_frame_clock, G_TYPE_OBJECT)
|
|
|
|
static void
|
|
gdk_frame_clock_finalize (GObject *object)
|
|
{
|
|
GdkFrameClockPrivate *priv = GDK_FRAME_CLOCK (object)->priv;
|
|
int i;
|
|
|
|
for (i = 0; i < FRAME_HISTORY_MAX_LENGTH; i++)
|
|
if (priv->timings[i] != 0)
|
|
gdk_frame_timings_unref (priv->timings[i]);
|
|
|
|
G_OBJECT_CLASS (gdk_frame_clock_parent_class)->finalize (object);
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_class_init (GdkFrameClockClass *klass)
|
|
{
|
|
GObjectClass *gobject_class = (GObjectClass*) klass;
|
|
|
|
gobject_class->finalize = gdk_frame_clock_finalize;
|
|
|
|
/**
|
|
* GdkFrameClock::flush-events:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal is used to flush pending motion events that
|
|
* are being batched up and compressed together. Applications
|
|
* should not handle this signal.
|
|
*/
|
|
signals[FLUSH_EVENTS] =
|
|
g_signal_new (g_intern_static_string ("flush-events"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
|
|
/**
|
|
* GdkFrameClock::before-paint:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal begins processing of the frame. Applications
|
|
* should generally not handle this signal.
|
|
*/
|
|
signals[BEFORE_PAINT] =
|
|
g_signal_new (g_intern_static_string ("before-paint"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
|
|
/**
|
|
* GdkFrameClock::update:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal is emitted as the first step of toolkit and
|
|
* application processing of the frame. Animations should
|
|
* be updated using gdk_frame_clock_get_frame_time().
|
|
* Applications can connect directly to this signal, or
|
|
* use gtk_widget_add_tick_callback() as a more convenient
|
|
* interface.
|
|
*/
|
|
signals[UPDATE] =
|
|
g_signal_new (g_intern_static_string ("update"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
|
|
/**
|
|
* GdkFrameClock::layout:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal is emitted as the second step of toolkit and
|
|
* application processing of the frame. Any work to update
|
|
* sizes and positions of application elements should be
|
|
* performed. GTK+ normally handles this internally.
|
|
*/
|
|
signals[LAYOUT] =
|
|
g_signal_new (g_intern_static_string ("layout"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
|
|
/**
|
|
* GdkFrameClock::paint:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal is emitted as the third step of toolkit and
|
|
* application processing of the frame. The frame is
|
|
* repainted. GDK normally handles this internally and
|
|
* produces expose events, which are turned into GTK+
|
|
* #GtkWidget::draw signals.
|
|
*/
|
|
signals[PAINT] =
|
|
g_signal_new (g_intern_static_string ("paint"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
|
|
/**
|
|
* GdkFrameClock::after-paint:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal ends processing of the frame. Applications
|
|
* should generally not handle this signal.
|
|
*/
|
|
signals[AFTER_PAINT] =
|
|
g_signal_new (g_intern_static_string ("after-paint"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
|
|
/**
|
|
* GdkFrameClock::resume-events:
|
|
* @clock: the frame clock emitting the signal
|
|
*
|
|
* This signal is emitted after processing of the frame is
|
|
* finished, and is handled internally by GTK+ to resume normal
|
|
* event processing. Applications should not handle this signal.
|
|
*/
|
|
signals[RESUME_EVENTS] =
|
|
g_signal_new (g_intern_static_string ("resume-events"),
|
|
GDK_TYPE_FRAME_CLOCK,
|
|
G_SIGNAL_RUN_LAST,
|
|
0,
|
|
NULL, NULL,
|
|
g_cclosure_marshal_VOID__VOID,
|
|
G_TYPE_NONE, 0);
|
|
}
|
|
|
|
static void
|
|
gdk_frame_clock_init (GdkFrameClock *clock)
|
|
{
|
|
GdkFrameClockPrivate *priv;
|
|
|
|
clock->priv = priv = gdk_frame_clock_get_instance_private (clock);
|
|
|
|
priv->frame_counter = -1;
|
|
priv->current = FRAME_HISTORY_MAX_LENGTH - 1;
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_get_frame_time:
|
|
* @frame_clock: a #GdkFrameClock
|
|
*
|
|
* Gets the time that should currently be used for animations. Inside
|
|
* the processing of a frame, it's the time used to compute the
|
|
* animation position of everything in a frame. Outside of a frame, it's
|
|
* the time of the conceptual "previous frame," which may be either
|
|
* the actual previous frame time, or if that's too old, an updated
|
|
* time.
|
|
*
|
|
* Since: 3.8
|
|
* Return value: a timestamp in microseconds, in the timescale of
|
|
* of g_get_monotonic_time().
|
|
*/
|
|
gint64
|
|
gdk_frame_clock_get_frame_time (GdkFrameClock *frame_clock)
|
|
{
|
|
g_return_val_if_fail (GDK_IS_FRAME_CLOCK (frame_clock), 0);
|
|
|
|
return GDK_FRAME_CLOCK_GET_CLASS (frame_clock)->get_frame_time (frame_clock);
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_request_phase:
|
|
* @frame_clock: a #GdkFrameClock
|
|
* @phase: the phase that is requested
|
|
*
|
|
* Asks the frame clock to run a particular phase. The signal
|
|
* corresponding the requested phase will be emitted the next
|
|
* time the frame clock processes. Multiple calls to
|
|
* gdk_frame_clock_request_phase() will be combined together
|
|
* and only one frame processed. If you are displaying animated
|
|
* content and want to continually request the
|
|
* %GDK_FRAME_CLOCK_PHASE_UPDATE phase for a period of time,
|
|
* you should use gdk_frame_clock_begin_updating() instead, since
|
|
* this allows GTK+ to adjust system parameters to get maximally
|
|
* smooth animations.
|
|
*
|
|
* Since: 3.8
|
|
*/
|
|
void
|
|
gdk_frame_clock_request_phase (GdkFrameClock *frame_clock,
|
|
GdkFrameClockPhase phase)
|
|
{
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (frame_clock));
|
|
|
|
GDK_FRAME_CLOCK_GET_CLASS (frame_clock)->request_phase (frame_clock, phase);
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_begin_updating:
|
|
* @frame_clock: a #GdkFrameClock
|
|
*
|
|
* Starts updates for an animation. Until a matching call to
|
|
* gdk_frame_clock_end_updating() is made, the frame clock will continually
|
|
* request a new frame with the %GDK_FRAME_CLOCK_PHASE_UPDATE phase.
|
|
* This function may be called multiple times and frames will be
|
|
* requested until gdk_frame_clock_end_updating() is called the same
|
|
* number of times.
|
|
*
|
|
* Since: 3.8
|
|
*/
|
|
void
|
|
gdk_frame_clock_begin_updating (GdkFrameClock *frame_clock)
|
|
{
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (frame_clock));
|
|
|
|
GDK_FRAME_CLOCK_GET_CLASS (frame_clock)->begin_updating (frame_clock);
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_end_updating:
|
|
* @frame_clock: a #GdkFrameClock
|
|
*
|
|
* Stops updates for an animation. See the documentation for
|
|
* gdk_frame_clock_begin_updating().
|
|
*
|
|
* Since: 3.8
|
|
*/
|
|
void
|
|
gdk_frame_clock_end_updating (GdkFrameClock *frame_clock)
|
|
{
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (frame_clock));
|
|
|
|
GDK_FRAME_CLOCK_GET_CLASS (frame_clock)->end_updating (frame_clock);
|
|
}
|
|
|
|
void
|
|
_gdk_frame_clock_freeze (GdkFrameClock *clock)
|
|
{
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (clock));
|
|
|
|
GDK_FRAME_CLOCK_GET_CLASS (clock)->freeze (clock);
|
|
}
|
|
|
|
|
|
void
|
|
_gdk_frame_clock_thaw (GdkFrameClock *clock)
|
|
{
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (clock));
|
|
|
|
GDK_FRAME_CLOCK_GET_CLASS (clock)->thaw (clock);
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_get_frame_counter:
|
|
* @frame_clock: a #GdkFrameClock
|
|
*
|
|
* A #GdkFrameClock maintains a 64-bit counter that increments for
|
|
* each frame drawn.
|
|
*
|
|
* Returns: inside frame processing, the value of the frame counter
|
|
* for the current frame. Outside of frame processing, the frame
|
|
* counter for the last frame.
|
|
* Since: 3.8
|
|
*/
|
|
gint64
|
|
gdk_frame_clock_get_frame_counter (GdkFrameClock *frame_clock)
|
|
{
|
|
GdkFrameClockPrivate *priv;
|
|
|
|
g_return_val_if_fail (GDK_IS_FRAME_CLOCK (frame_clock), 0);
|
|
|
|
priv = frame_clock->priv;
|
|
|
|
return priv->frame_counter;
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_get_history_start:
|
|
* @frame_clock: a #GdkFrameClock
|
|
*
|
|
* #GdkFrameClock internally keeps a history of #GdkFrameTiming
|
|
* objects for recent frames that can be retrieved with
|
|
* gdk_frame_clock_get_timings(). The set of stored frames
|
|
* is the set from the counter values given by
|
|
* gdk_frame_clock_get_history_start() and
|
|
* gdk_frame_clock_get_frame_counter(), inclusive.
|
|
*
|
|
* Return value: the frame counter value for the oldest frame
|
|
* that is available in the internal frame history of the
|
|
* #GdkFrameClock.
|
|
* Since: 3.8
|
|
*/
|
|
gint64
|
|
gdk_frame_clock_get_history_start (GdkFrameClock *frame_clock)
|
|
{
|
|
GdkFrameClockPrivate *priv;
|
|
|
|
g_return_val_if_fail (GDK_IS_FRAME_CLOCK (frame_clock), 0);
|
|
|
|
priv = frame_clock->priv;
|
|
|
|
return priv->frame_counter + 1 - priv->n_timings;
|
|
}
|
|
|
|
void
|
|
_gdk_frame_clock_begin_frame (GdkFrameClock *frame_clock)
|
|
{
|
|
GdkFrameClockPrivate *priv;
|
|
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (frame_clock));
|
|
|
|
priv = frame_clock->priv;
|
|
|
|
priv->frame_counter++;
|
|
priv->current = (priv->current + 1) % FRAME_HISTORY_MAX_LENGTH;
|
|
|
|
if (priv->n_timings < FRAME_HISTORY_MAX_LENGTH)
|
|
priv->n_timings++;
|
|
else
|
|
{
|
|
gdk_frame_timings_unref(priv->timings[priv->current]);
|
|
}
|
|
|
|
priv->timings[priv->current] = _gdk_frame_timings_new (priv->frame_counter);
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_get_timings:
|
|
* @frame_clock: a #GdkFrameClock
|
|
* @frame_counter: the frame counter value identifying the frame to
|
|
* be received.
|
|
*
|
|
* Retrieves a #GdkFrameTimings object holding timing information
|
|
* for the current frame or a recent frame. The #GdkFrameTimings
|
|
* object may not yet be complete: see gdk_frame_timings_get_complete().
|
|
*
|
|
* Return value: the #GdkFrameTimings object for the specified
|
|
* frame, or %NULL if it is not available. See
|
|
* gdk_frame_clock_get_history_start().
|
|
* Since: 3.8
|
|
*/
|
|
GdkFrameTimings *
|
|
gdk_frame_clock_get_timings (GdkFrameClock *frame_clock,
|
|
gint64 frame_counter)
|
|
{
|
|
GdkFrameClockPrivate *priv;
|
|
gint pos;
|
|
|
|
g_return_val_if_fail (GDK_IS_FRAME_CLOCK (frame_clock), NULL);
|
|
|
|
priv = frame_clock->priv;
|
|
|
|
if (frame_counter > priv->frame_counter)
|
|
return NULL;
|
|
|
|
if (frame_counter <= priv->frame_counter - priv->n_timings)
|
|
return NULL;
|
|
|
|
pos = (priv->current - (priv->frame_counter - frame_counter) + FRAME_HISTORY_MAX_LENGTH) % FRAME_HISTORY_MAX_LENGTH;
|
|
|
|
return priv->timings[pos];
|
|
}
|
|
|
|
/**
|
|
* gdk_frame_clock_get_current_timings:
|
|
* @frame_clock: a #GdkFrameClock
|
|
*
|
|
* Gets the frame timings for the current frame.
|
|
*
|
|
* Returns: the #GdkFrameTimings for the frame currently being
|
|
* processed, or even no frame is being processed, for the
|
|
* previous frame. Before any frames have been procesed,
|
|
* returns %NULL.
|
|
* Since: 3.8
|
|
*/
|
|
GdkFrameTimings *
|
|
gdk_frame_clock_get_current_timings (GdkFrameClock *frame_clock)
|
|
{
|
|
GdkFrameClockPrivate *priv;
|
|
|
|
g_return_val_if_fail (GDK_IS_FRAME_CLOCK (frame_clock), 0);
|
|
|
|
priv = frame_clock->priv;
|
|
|
|
return gdk_frame_clock_get_timings (frame_clock, priv->frame_counter);
|
|
}
|
|
|
|
|
|
#ifdef G_ENABLE_DEBUG
|
|
void
|
|
_gdk_frame_clock_debug_print_timings (GdkFrameClock *clock,
|
|
GdkFrameTimings *timings)
|
|
{
|
|
gint64 previous_frame_time = 0;
|
|
GdkFrameTimings *previous_timings = gdk_frame_clock_get_timings (clock,
|
|
timings->frame_counter - 1);
|
|
|
|
if (previous_timings != NULL)
|
|
previous_frame_time = previous_timings->frame_time;
|
|
|
|
g_print ("%5" G_GINT64_FORMAT ":", timings->frame_counter);
|
|
if (previous_frame_time != 0)
|
|
{
|
|
g_print (" interval=%-4.1f", (timings->frame_time - previous_frame_time) / 1000.);
|
|
g_print (timings->slept_before ? " (sleep)" : " ");
|
|
}
|
|
if (timings->layout_start_time != 0)
|
|
g_print (" layout_start=%-4.1f", (timings->layout_start_time - timings->frame_time) / 1000.);
|
|
if (timings->paint_start_time != 0)
|
|
g_print (" paint_start=%-4.1f", (timings->paint_start_time - timings->frame_time) / 1000.);
|
|
if (timings->frame_end_time != 0)
|
|
g_print (" frame_end=%-4.1f", (timings->frame_end_time - timings->frame_time) / 1000.);
|
|
if (timings->presentation_time != 0)
|
|
g_print (" present=%-4.1f", (timings->presentation_time - timings->frame_time) / 1000.);
|
|
if (timings->predicted_presentation_time != 0)
|
|
g_print (" predicted=%-4.1f", (timings->predicted_presentation_time - timings->frame_time) / 1000.);
|
|
if (timings->refresh_interval != 0)
|
|
g_print (" refresh_interval=%-4.1f", timings->refresh_interval / 1000.);
|
|
g_print ("\n");
|
|
}
|
|
#endif /* G_ENABLE_DEBUG */
|
|
|
|
#define DEFAULT_REFRESH_INTERVAL 16667 /* 16.7ms (1/60th second) */
|
|
#define MAX_HISTORY_AGE 150000 /* 150ms */
|
|
|
|
/**
|
|
* gdk_frame_clock_get_refresh_info:
|
|
* @frame_clock: a #GdkFrameClock
|
|
* @base_time: base time for determining a presentaton time
|
|
* @refresh_interval_return: a location to store the determined refresh
|
|
* interval, or %NULL. A default refresh interval of 1/60th of
|
|
* a second will be stored if no history is present.
|
|
* @presentation_time_return: a location to store the next
|
|
* candidate presentation time after the given base time.
|
|
* 0 will be will be stored if no history is present.
|
|
*
|
|
* Using the frame history stored in the frame clock, finds the last
|
|
* known presentation time and refresh interval, and assuming that
|
|
* presentation times are separated by the refresh interval,
|
|
* predicts a presentation time that is a multiple of the refresh
|
|
* interval after the last presentation time, and later than @base_time.
|
|
*
|
|
* Since: 3.8
|
|
*/
|
|
void
|
|
gdk_frame_clock_get_refresh_info (GdkFrameClock *frame_clock,
|
|
gint64 base_time,
|
|
gint64 *refresh_interval_return,
|
|
gint64 *presentation_time_return)
|
|
{
|
|
gint64 frame_counter;
|
|
|
|
g_return_if_fail (GDK_IS_FRAME_CLOCK (frame_clock));
|
|
|
|
frame_counter = gdk_frame_clock_get_frame_counter (frame_clock);
|
|
|
|
if (presentation_time_return)
|
|
*presentation_time_return = 0;
|
|
if (refresh_interval_return)
|
|
*refresh_interval_return = DEFAULT_REFRESH_INTERVAL;
|
|
|
|
while (TRUE)
|
|
{
|
|
GdkFrameTimings *timings = gdk_frame_clock_get_timings (frame_clock, frame_counter);
|
|
gint64 presentation_time;
|
|
gint64 refresh_interval;
|
|
|
|
if (timings == NULL)
|
|
return;
|
|
|
|
refresh_interval = timings->refresh_interval;
|
|
presentation_time = timings->presentation_time;
|
|
|
|
if (presentation_time != 0)
|
|
{
|
|
if (presentation_time > base_time - MAX_HISTORY_AGE &&
|
|
presentation_time_return)
|
|
{
|
|
if (refresh_interval == 0)
|
|
refresh_interval = DEFAULT_REFRESH_INTERVAL;
|
|
|
|
if (refresh_interval_return)
|
|
*refresh_interval_return = refresh_interval;
|
|
|
|
while (presentation_time < base_time)
|
|
presentation_time += refresh_interval;
|
|
|
|
if (presentation_time_return)
|
|
*presentation_time_return = presentation_time;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
frame_counter--;
|
|
}
|
|
}
|