gtk2/gtk/roaring.c

11454 lines
459 KiB
C
Raw Normal View History

/* auto-generated on Fri 26 Jun 2020 06:06:51 AM CEST. Do not edit! */
#include "roaring.h"
/* used for http://dmalloc.com/ Dmalloc - Debug Malloc Library */
#ifdef DMALLOC
#include "dmalloc.h"
#endif
/* begin file src/array_util.c */
#include <assert.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef USESSE4
// used by intersect_vector16
ALIGNED(0x1000)
static const uint8_t shuffle_mask16[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
6, 7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 6, 7, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 6, 7, 8, 9, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 6, 7, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
0xFF, 0xFF, 0xFF, 0xFF, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 6, 7, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 10, 11, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
6, 7, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 0xFF, 0xFF, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 6, 7, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
6, 7, 8, 9, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 10, 11,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 10, 11,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
6, 7, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 10, 11,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 8, 9, 10, 11,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 8, 9, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 8, 9,
10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
8, 9, 10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 0xFF, 0xFF,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 12, 13, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
6, 7, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 8, 9, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 8, 9, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7, 8, 9, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7,
8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7, 8, 9, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
6, 7, 8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 12, 13, 14, 15, 0xFF, 0xFF, 10, 11, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
4, 5, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 10, 11, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 6, 7, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 6, 7,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 6, 7, 10, 11,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 6, 7,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 4, 5, 6, 7, 10, 11,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 8, 9, 10, 11, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 8, 9,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 4, 5, 8, 9, 10, 11, 12, 13,
14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5,
8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF,
2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3, 4, 5, 8, 9,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 2, 3, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 2, 3,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
0xFF, 0xFF, 0xFF, 0xFF, 0, 1, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 0xFF, 0xFF, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0xFF, 0xFF,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15};
/**
* From Schlegel et al., Fast Sorted-Set Intersection using SIMD Instructions
* Optimized by D. Lemire on May 3rd 2013
*/
int32_t intersect_vector16(const uint16_t *__restrict__ A, size_t s_a,
const uint16_t *__restrict__ B, size_t s_b,
uint16_t *C) {
size_t count = 0;
size_t i_a = 0, i_b = 0;
const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
const size_t st_a = (s_a / vectorlength) * vectorlength;
const size_t st_b = (s_b / vectorlength) * vectorlength;
__m128i v_a, v_b;
if ((i_a < st_a) && (i_b < st_b)) {
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
while ((A[i_a] == 0) || (B[i_b] == 0)) {
const __m128i res_v = _mm_cmpestrm(
v_b, vectorlength, v_a, vectorlength,
_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
const int r = _mm_extract_epi32(res_v, 0);
__m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 + r);
__m128i p = _mm_shuffle_epi8(v_a, sm16);
_mm_storeu_si128((__m128i *)&C[count], p); // can overflow
count += _mm_popcnt_u32(r);
const uint16_t a_max = A[i_a + vectorlength - 1];
const uint16_t b_max = B[i_b + vectorlength - 1];
if (a_max <= b_max) {
i_a += vectorlength;
if (i_a == st_a) break;
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
}
if (b_max <= a_max) {
i_b += vectorlength;
if (i_b == st_b) break;
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
}
}
if ((i_a < st_a) && (i_b < st_b))
while (true) {
const __m128i res_v = _mm_cmpistrm(
v_b, v_a,
_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
const int r = _mm_extract_epi32(res_v, 0);
__m128i sm16 =
_mm_load_si128((const __m128i *)shuffle_mask16 + r);
__m128i p = _mm_shuffle_epi8(v_a, sm16);
_mm_storeu_si128((__m128i *)&C[count], p); // can overflow
count += _mm_popcnt_u32(r);
const uint16_t a_max = A[i_a + vectorlength - 1];
const uint16_t b_max = B[i_b + vectorlength - 1];
if (a_max <= b_max) {
i_a += vectorlength;
if (i_a == st_a) break;
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
}
if (b_max <= a_max) {
i_b += vectorlength;
if (i_b == st_b) break;
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
}
}
}
// intersect the tail using scalar intersection
while (i_a < s_a && i_b < s_b) {
uint16_t a = A[i_a];
uint16_t b = B[i_b];
if (a < b) {
i_a++;
} else if (b < a) {
i_b++;
} else {
C[count] = a; //==b;
count++;
i_a++;
i_b++;
}
}
return (int32_t)count;
}
int32_t intersect_vector16_cardinality(const uint16_t *__restrict__ A,
size_t s_a,
const uint16_t *__restrict__ B,
size_t s_b) {
size_t count = 0;
size_t i_a = 0, i_b = 0;
const int vectorlength = sizeof(__m128i) / sizeof(uint16_t);
const size_t st_a = (s_a / vectorlength) * vectorlength;
const size_t st_b = (s_b / vectorlength) * vectorlength;
__m128i v_a, v_b;
if ((i_a < st_a) && (i_b < st_b)) {
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
while ((A[i_a] == 0) || (B[i_b] == 0)) {
const __m128i res_v = _mm_cmpestrm(
v_b, vectorlength, v_a, vectorlength,
_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
const int r = _mm_extract_epi32(res_v, 0);
count += _mm_popcnt_u32(r);
const uint16_t a_max = A[i_a + vectorlength - 1];
const uint16_t b_max = B[i_b + vectorlength - 1];
if (a_max <= b_max) {
i_a += vectorlength;
if (i_a == st_a) break;
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
}
if (b_max <= a_max) {
i_b += vectorlength;
if (i_b == st_b) break;
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
}
}
if ((i_a < st_a) && (i_b < st_b))
while (true) {
const __m128i res_v = _mm_cmpistrm(
v_b, v_a,
_SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK);
const int r = _mm_extract_epi32(res_v, 0);
count += _mm_popcnt_u32(r);
const uint16_t a_max = A[i_a + vectorlength - 1];
const uint16_t b_max = B[i_b + vectorlength - 1];
if (a_max <= b_max) {
i_a += vectorlength;
if (i_a == st_a) break;
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
}
if (b_max <= a_max) {
i_b += vectorlength;
if (i_b == st_b) break;
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
}
}
}
// intersect the tail using scalar intersection
while (i_a < s_a && i_b < s_b) {
uint16_t a = A[i_a];
uint16_t b = B[i_b];
if (a < b) {
i_a++;
} else if (b < a) {
i_b++;
} else {
count++;
i_a++;
i_b++;
}
}
return (int32_t)count;
}
/////////
// Warning:
// This function may not be safe if A == C or B == C.
/////////
int32_t difference_vector16(const uint16_t *__restrict__ A, size_t s_a,
const uint16_t *__restrict__ B, size_t s_b,
uint16_t *C) {
// we handle the degenerate case
if (s_a == 0) return 0;
if (s_b == 0) {
if (A != C) memcpy(C, A, sizeof(uint16_t) * s_a);
return (int32_t)s_a;
}
// handle the leading zeroes, it is messy but it allows us to use the fast
// _mm_cmpistrm instrinsic safely
int32_t count = 0;
if ((A[0] == 0) || (B[0] == 0)) {
if ((A[0] == 0) && (B[0] == 0)) {
A++;
s_a--;
B++;
s_b--;
} else if (A[0] == 0) {
C[count++] = 0;
A++;
s_a--;
} else {
B++;
s_b--;
}
}
// at this point, we have two non-empty arrays, made of non-zero
// increasing values.
size_t i_a = 0, i_b = 0;
const size_t vectorlength = sizeof(__m128i) / sizeof(uint16_t);
const size_t st_a = (s_a / vectorlength) * vectorlength;
const size_t st_b = (s_b / vectorlength) * vectorlength;
if ((i_a < st_a) && (i_b < st_b)) { // this is the vectorized code path
__m128i v_a, v_b; //, v_bmax;
// we load a vector from A and a vector from B
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
// we have a runningmask which indicates which values from A have been
// spotted in B, these don't get written out.
__m128i runningmask_a_found_in_b = _mm_setzero_si128();
/****
* start of the main vectorized loop
*****/
while (true) {
// afoundinb will contain a mask indicate for each entry in A
// whether it is seen
// in B
const __m128i a_found_in_b =
_mm_cmpistrm(v_b, v_a, _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY |
_SIDD_BIT_MASK);
runningmask_a_found_in_b =
_mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
// we always compare the last values of A and B
const uint16_t a_max = A[i_a + vectorlength - 1];
const uint16_t b_max = B[i_b + vectorlength - 1];
if (a_max <= b_max) {
// Ok. In this code path, we are ready to write our v_a
// because there is no need to read more from B, they will
// all be large values.
const int bitmask_belongs_to_difference =
_mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
/*** next few lines are probably expensive *****/
__m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 +
bitmask_belongs_to_difference);
__m128i p = _mm_shuffle_epi8(v_a, sm16);
_mm_storeu_si128((__m128i *)&C[count], p); // can overflow
count += _mm_popcnt_u32(bitmask_belongs_to_difference);
// we advance a
i_a += vectorlength;
if (i_a == st_a) // no more
break;
runningmask_a_found_in_b = _mm_setzero_si128();
v_a = _mm_lddqu_si128((__m128i *)&A[i_a]);
}
if (b_max <= a_max) {
// in this code path, the current v_b has become useless
i_b += vectorlength;
if (i_b == st_b) break;
v_b = _mm_lddqu_si128((__m128i *)&B[i_b]);
}
}
// at this point, either we have i_a == st_a, which is the end of the
// vectorized processing,
// or we have i_b == st_b, and we are not done processing the vector...
// so we need to finish it off.
if (i_a < st_a) { // we have unfinished business...
uint16_t buffer[8]; // buffer to do a masked load
memset(buffer, 0, 8 * sizeof(uint16_t));
memcpy(buffer, B + i_b, (s_b - i_b) * sizeof(uint16_t));
v_b = _mm_lddqu_si128((__m128i *)buffer);
const __m128i a_found_in_b =
_mm_cmpistrm(v_b, v_a, _SIDD_UWORD_OPS | _SIDD_CMP_EQUAL_ANY |
_SIDD_BIT_MASK);
runningmask_a_found_in_b =
_mm_or_si128(runningmask_a_found_in_b, a_found_in_b);
const int bitmask_belongs_to_difference =
_mm_extract_epi32(runningmask_a_found_in_b, 0) ^ 0xFF;
__m128i sm16 = _mm_load_si128((const __m128i *)shuffle_mask16 +
bitmask_belongs_to_difference);
__m128i p = _mm_shuffle_epi8(v_a, sm16);
_mm_storeu_si128((__m128i *)&C[count], p); // can overflow
count += _mm_popcnt_u32(bitmask_belongs_to_difference);
i_a += vectorlength;
}
// at this point we should have i_a == st_a and i_b == st_b
}
// do the tail using scalar code
while (i_a < s_a && i_b < s_b) {
uint16_t a = A[i_a];
uint16_t b = B[i_b];
if (b < a) {
i_b++;
} else if (a < b) {
C[count] = a;
count++;
i_a++;
} else { //==
i_a++;
i_b++;
}
}
if (i_a < s_a) {
if(C == A) {
assert((size_t)count <= i_a);
if((size_t)count < i_a) {
memmove(C + count, A + i_a, sizeof(uint16_t) * (s_a - i_a));
}
} else {
for(size_t i = 0; i < (s_a - i_a); i++) {
C[count + i] = A[i + i_a];
}
}
count += (int32_t)(s_a - i_a);
}
return count;
}
#endif // USESSE4
#ifdef USE_OLD_SKEW_INTERSECT
// TODO: given enough experience with the new skew intersect, drop the old one from the code base.
/* Computes the intersection between one small and one large set of uint16_t.
* Stores the result into buffer and return the number of elements. */
int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
const uint16_t *large, size_t size_l,
uint16_t *buffer) {
size_t pos = 0, idx_l = 0, idx_s = 0;
if (0 == size_s) {
return 0;
}
uint16_t val_l = large[idx_l], val_s = small[idx_s];
while (true) {
if (val_l < val_s) {
idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
if (idx_l == size_l) break;
val_l = large[idx_l];
} else if (val_s < val_l) {
idx_s++;
if (idx_s == size_s) break;
val_s = small[idx_s];
} else {
buffer[pos++] = val_s;
idx_s++;
if (idx_s == size_s) break;
val_s = small[idx_s];
idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
if (idx_l == size_l) break;
val_l = large[idx_l];
}
}
return (int32_t)pos;
}
#else // USE_OLD_SKEW_INTERSECT
/**
* Branchless binary search going after 4 values at once.
* Assumes that array is sorted.
* You have that array[*index1] >= target1, array[*index12] >= target2, ...
* except when *index1 = n, in which case you know that all values in array are
* smaller than target1, and so forth.
* It has logarithmic complexity.
*/
static void binarySearch4(const uint16_t *array, int32_t n, uint16_t target1,
uint16_t target2, uint16_t target3, uint16_t target4,
int32_t *index1, int32_t *index2, int32_t *index3,
int32_t *index4) {
const uint16_t *base1 = array;
const uint16_t *base2 = array;
const uint16_t *base3 = array;
const uint16_t *base4 = array;
if (n == 0)
return;
while (n > 1) {
int32_t half = n >> 1;
base1 = (base1[half] < target1) ? &base1[half] : base1;
base2 = (base2[half] < target2) ? &base2[half] : base2;
base3 = (base3[half] < target3) ? &base3[half] : base3;
base4 = (base4[half] < target4) ? &base4[half] : base4;
n -= half;
}
*index1 = (int32_t)((*base1 < target1) + base1 - array);
*index2 = (int32_t)((*base2 < target2) + base2 - array);
*index3 = (int32_t)((*base3 < target3) + base3 - array);
*index4 = (int32_t)((*base4 < target4) + base4 - array);
}
/**
* Branchless binary search going after 2 values at once.
* Assumes that array is sorted.
* You have that array[*index1] >= target1, array[*index12] >= target2.
* except when *index1 = n, in which case you know that all values in array are
* smaller than target1, and so forth.
* It has logarithmic complexity.
*/
static void binarySearch2(const uint16_t *array, int32_t n, uint16_t target1,
uint16_t target2, int32_t *index1, int32_t *index2) {
const uint16_t *base1 = array;
const uint16_t *base2 = array;
if (n == 0)
return;
while (n > 1) {
int32_t half = n >> 1;
base1 = (base1[half] < target1) ? &base1[half] : base1;
base2 = (base2[half] < target2) ? &base2[half] : base2;
n -= half;
}
*index1 = (int32_t)((*base1 < target1) + base1 - array);
*index2 = (int32_t)((*base2 < target2) + base2 - array);
}
/* Computes the intersection between one small and one large set of uint16_t.
* Stores the result into buffer and return the number of elements.
* Processes the small set in blocks of 4 values calling binarySearch4
* and binarySearch2. This approach can be slightly superior to a conventional
* galloping search in some instances.
*/
int32_t intersect_skewed_uint16(const uint16_t *small, size_t size_s,
const uint16_t *large, size_t size_l,
uint16_t *buffer) {
size_t pos = 0, idx_l = 0, idx_s = 0;
if (0 == size_s) {
return 0;
}
int32_t index1 = 0, index2 = 0, index3 = 0, index4 = 0;
while ((idx_s + 4 <= size_s) && (idx_l < size_l)) {
uint16_t target1 = small[idx_s];
uint16_t target2 = small[idx_s + 1];
uint16_t target3 = small[idx_s + 2];
uint16_t target4 = small[idx_s + 3];
binarySearch4(large + idx_l, (int32_t)(size_l - idx_l), target1, target2, target3,
target4, &index1, &index2, &index3, &index4);
if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
buffer[pos++] = target1;
}
if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
buffer[pos++] = target2;
}
if ((index3 + idx_l < size_l) && (large[idx_l + index3] == target3)) {
buffer[pos++] = target3;
}
if ((index4 + idx_l < size_l) && (large[idx_l + index4] == target4)) {
buffer[pos++] = target4;
}
idx_s += 4;
idx_l += index4;
}
if ((idx_s + 2 <= size_s) && (idx_l < size_l)) {
uint16_t target1 = small[idx_s];
uint16_t target2 = small[idx_s + 1];
binarySearch2(large + idx_l, (int32_t)(size_l - idx_l), target1, target2, &index1,
&index2);
if ((index1 + idx_l < size_l) && (large[idx_l + index1] == target1)) {
buffer[pos++] = target1;
}
if ((index2 + idx_l < size_l) && (large[idx_l + index2] == target2)) {
buffer[pos++] = target2;
}
idx_s += 2;
idx_l += index2;
}
if ((idx_s < size_s) && (idx_l < size_l)) {
uint16_t val_s = small[idx_s];
int32_t index = binarySearch(large + idx_l, (int32_t)(size_l - idx_l), val_s);
if (index >= 0)
buffer[pos++] = val_s;
}
return (int32_t)pos;
}
#endif //USE_OLD_SKEW_INTERSECT
// TODO: this could be accelerated, possibly, by using binarySearch4 as above.
int32_t intersect_skewed_uint16_cardinality(const uint16_t *small,
size_t size_s,
const uint16_t *large,
size_t size_l) {
size_t pos = 0, idx_l = 0, idx_s = 0;
if (0 == size_s) {
return 0;
}
uint16_t val_l = large[idx_l], val_s = small[idx_s];
while (true) {
if (val_l < val_s) {
idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
if (idx_l == size_l) break;
val_l = large[idx_l];
} else if (val_s < val_l) {
idx_s++;
if (idx_s == size_s) break;
val_s = small[idx_s];
} else {
pos++;
idx_s++;
if (idx_s == size_s) break;
val_s = small[idx_s];
idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
if (idx_l == size_l) break;
val_l = large[idx_l];
}
}
return (int32_t)pos;
}
bool intersect_skewed_uint16_nonempty(const uint16_t *small, size_t size_s,
const uint16_t *large, size_t size_l) {
size_t idx_l = 0, idx_s = 0;
if (0 == size_s) {
return false;
}
uint16_t val_l = large[idx_l], val_s = small[idx_s];
while (true) {
if (val_l < val_s) {
idx_l = advanceUntil(large, (int32_t)idx_l, (int32_t)size_l, val_s);
if (idx_l == size_l) break;
val_l = large[idx_l];
} else if (val_s < val_l) {
idx_s++;
if (idx_s == size_s) break;
val_s = small[idx_s];
} else {
return true;
}
}
return false;
}
/**
* Generic intersection function.
*/
int32_t intersect_uint16(const uint16_t *A, const size_t lenA,
const uint16_t *B, const size_t lenB, uint16_t *out) {
const uint16_t *initout = out;
if (lenA == 0 || lenB == 0) return 0;
const uint16_t *endA = A + lenA;
const uint16_t *endB = B + lenB;
while (1) {
while (*A < *B) {
SKIP_FIRST_COMPARE:
if (++A == endA) return (int32_t)(out - initout);
}
while (*A > *B) {
if (++B == endB) return (int32_t)(out - initout);
}
if (*A == *B) {
*out++ = *A;
if (++A == endA || ++B == endB) return (int32_t)(out - initout);
} else {
goto SKIP_FIRST_COMPARE;
}
}
return (int32_t)(out - initout); // NOTREACHED
}
int32_t intersect_uint16_cardinality(const uint16_t *A, const size_t lenA,
const uint16_t *B, const size_t lenB) {
int32_t answer = 0;
if (lenA == 0 || lenB == 0) return 0;
const uint16_t *endA = A + lenA;
const uint16_t *endB = B + lenB;
while (1) {
while (*A < *B) {
SKIP_FIRST_COMPARE:
if (++A == endA) return answer;
}
while (*A > *B) {
if (++B == endB) return answer;
}
if (*A == *B) {
++answer;
if (++A == endA || ++B == endB) return answer;
} else {
goto SKIP_FIRST_COMPARE;
}
}
return answer; // NOTREACHED
}
bool intersect_uint16_nonempty(const uint16_t *A, const size_t lenA,
const uint16_t *B, const size_t lenB) {
if (lenA == 0 || lenB == 0) return 0;
const uint16_t *endA = A + lenA;
const uint16_t *endB = B + lenB;
while (1) {
while (*A < *B) {
SKIP_FIRST_COMPARE:
if (++A == endA) return false;
}
while (*A > *B) {
if (++B == endB) return false;
}
if (*A == *B) {
return true;
} else {
goto SKIP_FIRST_COMPARE;
}
}
return false; // NOTREACHED
}
/**
* Generic intersection function.
*/
size_t intersection_uint32(const uint32_t *A, const size_t lenA,
const uint32_t *B, const size_t lenB,
uint32_t *out) {
const uint32_t *initout = out;
if (lenA == 0 || lenB == 0) return 0;
const uint32_t *endA = A + lenA;
const uint32_t *endB = B + lenB;
while (1) {
while (*A < *B) {
SKIP_FIRST_COMPARE:
if (++A == endA) return (out - initout);
}
while (*A > *B) {
if (++B == endB) return (out - initout);
}
if (*A == *B) {
*out++ = *A;
if (++A == endA || ++B == endB) return (out - initout);
} else {
goto SKIP_FIRST_COMPARE;
}
}
return (out - initout); // NOTREACHED
}
size_t intersection_uint32_card(const uint32_t *A, const size_t lenA,
const uint32_t *B, const size_t lenB) {
if (lenA == 0 || lenB == 0) return 0;
size_t card = 0;
const uint32_t *endA = A + lenA;
const uint32_t *endB = B + lenB;
while (1) {
while (*A < *B) {
SKIP_FIRST_COMPARE:
if (++A == endA) return card;
}
while (*A > *B) {
if (++B == endB) return card;
}
if (*A == *B) {
card++;
if (++A == endA || ++B == endB) return card;
} else {
goto SKIP_FIRST_COMPARE;
}
}
return card; // NOTREACHED
}
// can one vectorize the computation of the union? (Update: Yes! See
// union_vector16).
size_t union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2,
size_t size_2, uint16_t *buffer) {
size_t pos = 0, idx_1 = 0, idx_2 = 0;
if (0 == size_2) {
memmove(buffer, set_1, size_1 * sizeof(uint16_t));
return size_1;
}
if (0 == size_1) {
memmove(buffer, set_2, size_2 * sizeof(uint16_t));
return size_2;
}
uint16_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
while (true) {
if (val_1 < val_2) {
buffer[pos++] = val_1;
++idx_1;
if (idx_1 >= size_1) break;
val_1 = set_1[idx_1];
} else if (val_2 < val_1) {
buffer[pos++] = val_2;
++idx_2;
if (idx_2 >= size_2) break;
val_2 = set_2[idx_2];
} else {
buffer[pos++] = val_1;
++idx_1;
++idx_2;
if (idx_1 >= size_1 || idx_2 >= size_2) break;
val_1 = set_1[idx_1];
val_2 = set_2[idx_2];
}
}
if (idx_1 < size_1) {
const size_t n_elems = size_1 - idx_1;
memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint16_t));
pos += n_elems;
} else if (idx_2 < size_2) {
const size_t n_elems = size_2 - idx_2;
memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint16_t));
pos += n_elems;
}
return pos;
}
int difference_uint16(const uint16_t *a1, int length1, const uint16_t *a2,
int length2, uint16_t *a_out) {
int out_card = 0;
int k1 = 0, k2 = 0;
if (length1 == 0) return 0;
if (length2 == 0) {
if (a1 != a_out) memcpy(a_out, a1, sizeof(uint16_t) * length1);
return length1;
}
uint16_t s1 = a1[k1];
uint16_t s2 = a2[k2];
while (true) {
if (s1 < s2) {
a_out[out_card++] = s1;
++k1;
if (k1 >= length1) {
break;
}
s1 = a1[k1];
} else if (s1 == s2) {
++k1;
++k2;
if (k1 >= length1) {
break;
}
if (k2 >= length2) {
memmove(a_out + out_card, a1 + k1,
sizeof(uint16_t) * (length1 - k1));
return out_card + length1 - k1;
}
s1 = a1[k1];
s2 = a2[k2];
} else { // if (val1>val2)
++k2;
if (k2 >= length2) {
memmove(a_out + out_card, a1 + k1,
sizeof(uint16_t) * (length1 - k1));
return out_card + length1 - k1;
}
s2 = a2[k2];
}
}
return out_card;
}
int32_t xor_uint16(const uint16_t *array_1, int32_t card_1,
const uint16_t *array_2, int32_t card_2, uint16_t *out) {
int32_t pos1 = 0, pos2 = 0, pos_out = 0;
while (pos1 < card_1 && pos2 < card_2) {
const uint16_t v1 = array_1[pos1];
const uint16_t v2 = array_2[pos2];
if (v1 == v2) {
++pos1;
++pos2;
continue;
}
if (v1 < v2) {
out[pos_out++] = v1;
++pos1;
} else {
out[pos_out++] = v2;
++pos2;
}
}
if (pos1 < card_1) {
const size_t n_elems = card_1 - pos1;
memcpy(out + pos_out, array_1 + pos1, n_elems * sizeof(uint16_t));
pos_out += (int32_t)n_elems;
} else if (pos2 < card_2) {
const size_t n_elems = card_2 - pos2;
memcpy(out + pos_out, array_2 + pos2, n_elems * sizeof(uint16_t));
pos_out += (int32_t)n_elems;
}
return pos_out;
}
#ifdef USESSE4
/***
* start of the SIMD 16-bit union code
*
*/
// Assuming that vInput1 and vInput2 are sorted, produces a sorted output going
// from vecMin all the way to vecMax
// developed originally for merge sort using SIMD instructions.
// Standard merge. See, e.g., Inoue and Taura, SIMD- and Cache-Friendly
// Algorithm for Sorting an Array of Structures
static inline void sse_merge(const __m128i *vInput1,
const __m128i *vInput2, // input 1 & 2
__m128i *vecMin, __m128i *vecMax) { // output
__m128i vecTmp;
vecTmp = _mm_min_epu16(*vInput1, *vInput2);
*vecMax = _mm_max_epu16(*vInput1, *vInput2);
vecTmp = _mm_alignr_epi8(vecTmp, vecTmp, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
vecTmp = _mm_alignr_epi8(*vecMin, *vecMin, 2);
*vecMin = _mm_min_epu16(vecTmp, *vecMax);
*vecMax = _mm_max_epu16(vecTmp, *vecMax);
*vecMin = _mm_alignr_epi8(*vecMin, *vecMin, 2);
}
// used by store_unique, generated by simdunion.py
static uint8_t uniqshuf[] = {
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
0xc, 0xd, 0xe, 0xf, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xc, 0xd, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9,
0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9,
0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x8, 0x9, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xe, 0xf, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xe, 0xf,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xe, 0xf, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xa, 0xb, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xa, 0xb,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xa, 0xb, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xa, 0xb,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xa, 0xb,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xa, 0xb, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x6, 0x7, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xc, 0xd,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xc, 0xd, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xc, 0xd, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9,
0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xa, 0xb,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9,
0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9,
0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x8, 0x9, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7, 0xa, 0xb, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xa, 0xb,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0xa, 0xb, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xa, 0xb,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xa, 0xb, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x6, 0x7,
0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x6, 0x7, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x8, 0x9,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5,
0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x8, 0x9, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x8, 0x9, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5,
0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0x6, 0x7,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x6, 0x7, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x2, 0x3,
0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x2, 0x3, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0x4, 0x5, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x4, 0x5, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x0, 0x1, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0x2, 0x3, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x1, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF};
// write vector new, while omitting repeated values assuming that previously
// written vector was "old"
static inline int store_unique(__m128i old, __m128i newval, uint16_t *output) {
__m128i vecTmp = _mm_alignr_epi8(newval, old, 16 - 2);
// lots of high latency instructions follow (optimize?)
int M = _mm_movemask_epi8(
_mm_packs_epi16(_mm_cmpeq_epi16(vecTmp, newval), _mm_setzero_si128()));
int numberofnewvalues = 8 - _mm_popcnt_u32(M);
__m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
__m128i val = _mm_shuffle_epi8(newval, key);
_mm_storeu_si128((__m128i *)output, val);
return numberofnewvalues;
}
// working in-place, this function overwrites the repeated values
// could be avoided?
static inline uint32_t unique(uint16_t *out, uint32_t len) {
uint32_t pos = 1;
for (uint32_t i = 1; i < len; ++i) {
if (out[i] != out[i - 1]) {
out[pos++] = out[i];
}
}
return pos;
}
// use with qsort, could be avoided
static int uint16_compare(const void *a, const void *b) {
return (*(uint16_t *)a - *(uint16_t *)b);
}
// a one-pass SSE union algorithm
// This function may not be safe if array1 == output or array2 == output.
uint32_t union_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
const uint16_t *__restrict__ array2, uint32_t length2,
uint16_t *__restrict__ output) {
if ((length1 < 8) || (length2 < 8)) {
return (uint32_t)union_uint16(array1, length1, array2, length2, output);
}
__m128i vA, vB, V, vecMin, vecMax;
__m128i laststore;
uint16_t *initoutput = output;
uint32_t len1 = length1 / 8;
uint32_t len2 = length2 / 8;
uint32_t pos1 = 0;
uint32_t pos2 = 0;
// we start the machine
vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
pos1++;
vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
pos2++;
sse_merge(&vA, &vB, &vecMin, &vecMax);
laststore = _mm_set1_epi16(-1);
output += store_unique(laststore, vecMin, output);
laststore = vecMin;
if ((pos1 < len1) && (pos2 < len2)) {
uint16_t curA, curB;
curA = array1[8 * pos1];
curB = array2[8 * pos2];
while (true) {
if (curA <= curB) {
V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
pos1++;
if (pos1 < len1) {
curA = array1[8 * pos1];
} else {
break;
}
} else {
V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
pos2++;
if (pos2 < len2) {
curB = array2[8 * pos2];
} else {
break;
}
}
sse_merge(&V, &vecMax, &vecMin, &vecMax);
output += store_unique(laststore, vecMin, output);
laststore = vecMin;
}
sse_merge(&V, &vecMax, &vecMin, &vecMax);
output += store_unique(laststore, vecMin, output);
laststore = vecMin;
}
// we finish the rest off using a scalar algorithm
// could be improved?
//
// copy the small end on a tmp buffer
uint32_t len = (uint32_t)(output - initoutput);
uint16_t buffer[16];
uint32_t leftoversize = store_unique(laststore, vecMax, buffer);
if (pos1 == len1) {
memcpy(buffer + leftoversize, array1 + 8 * pos1,
(length1 - 8 * len1) * sizeof(uint16_t));
leftoversize += length1 - 8 * len1;
qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
leftoversize = unique(buffer, leftoversize);
len += (uint32_t)union_uint16(buffer, leftoversize, array2 + 8 * pos2,
length2 - 8 * pos2, output);
} else {
memcpy(buffer + leftoversize, array2 + 8 * pos2,
(length2 - 8 * len2) * sizeof(uint16_t));
leftoversize += length2 - 8 * len2;
qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
leftoversize = unique(buffer, leftoversize);
len += (uint32_t)union_uint16(buffer, leftoversize, array1 + 8 * pos1,
length1 - 8 * pos1, output);
}
return len;
}
/**
* End of the SIMD 16-bit union code
*
*/
/**
* Start of SIMD 16-bit XOR code
*/
// write vector new, while omitting repeated values assuming that previously
// written vector was "old"
static inline int store_unique_xor(__m128i old, __m128i newval,
uint16_t *output) {
__m128i vecTmp1 = _mm_alignr_epi8(newval, old, 16 - 4);
__m128i vecTmp2 = _mm_alignr_epi8(newval, old, 16 - 2);
__m128i equalleft = _mm_cmpeq_epi16(vecTmp2, vecTmp1);
__m128i equalright = _mm_cmpeq_epi16(vecTmp2, newval);
__m128i equalleftoright = _mm_or_si128(equalleft, equalright);
int M = _mm_movemask_epi8(
_mm_packs_epi16(equalleftoright, _mm_setzero_si128()));
int numberofnewvalues = 8 - _mm_popcnt_u32(M);
__m128i key = _mm_lddqu_si128((const __m128i *)uniqshuf + M);
__m128i val = _mm_shuffle_epi8(vecTmp2, key);
_mm_storeu_si128((__m128i *)output, val);
return numberofnewvalues;
}
// working in-place, this function overwrites the repeated values
// could be avoided? Warning: assumes len > 0
static inline uint32_t unique_xor(uint16_t *out, uint32_t len) {
uint32_t pos = 1;
for (uint32_t i = 1; i < len; ++i) {
if (out[i] != out[i - 1]) {
out[pos++] = out[i];
} else
pos--; // if it is identical to previous, delete it
}
return pos;
}
// a one-pass SSE xor algorithm
uint32_t xor_vector16(const uint16_t *__restrict__ array1, uint32_t length1,
const uint16_t *__restrict__ array2, uint32_t length2,
uint16_t *__restrict__ output) {
if ((length1 < 8) || (length2 < 8)) {
return xor_uint16(array1, length1, array2, length2, output);
}
__m128i vA, vB, V, vecMin, vecMax;
__m128i laststore;
uint16_t *initoutput = output;
uint32_t len1 = length1 / 8;
uint32_t len2 = length2 / 8;
uint32_t pos1 = 0;
uint32_t pos2 = 0;
// we start the machine
vA = _mm_lddqu_si128((const __m128i *)array1 + pos1);
pos1++;
vB = _mm_lddqu_si128((const __m128i *)array2 + pos2);
pos2++;
sse_merge(&vA, &vB, &vecMin, &vecMax);
laststore = _mm_set1_epi16(-1);
uint16_t buffer[17];
output += store_unique_xor(laststore, vecMin, output);
laststore = vecMin;
if ((pos1 < len1) && (pos2 < len2)) {
uint16_t curA, curB;
curA = array1[8 * pos1];
curB = array2[8 * pos2];
while (true) {
if (curA <= curB) {
V = _mm_lddqu_si128((const __m128i *)array1 + pos1);
pos1++;
if (pos1 < len1) {
curA = array1[8 * pos1];
} else {
break;
}
} else {
V = _mm_lddqu_si128((const __m128i *)array2 + pos2);
pos2++;
if (pos2 < len2) {
curB = array2[8 * pos2];
} else {
break;
}
}
sse_merge(&V, &vecMax, &vecMin, &vecMax);
// conditionally stores the last value of laststore as well as all
// but the
// last value of vecMin
output += store_unique_xor(laststore, vecMin, output);
laststore = vecMin;
}
sse_merge(&V, &vecMax, &vecMin, &vecMax);
// conditionally stores the last value of laststore as well as all but
// the
// last value of vecMin
output += store_unique_xor(laststore, vecMin, output);
laststore = vecMin;
}
uint32_t len = (uint32_t)(output - initoutput);
// we finish the rest off using a scalar algorithm
// could be improved?
// conditionally stores the last value of laststore as well as all but the
// last value of vecMax,
// we store to "buffer"
int leftoversize = store_unique_xor(laststore, vecMax, buffer);
uint16_t vec7 = _mm_extract_epi16(vecMax, 7);
uint16_t vec6 = _mm_extract_epi16(vecMax, 6);
if (vec7 != vec6) buffer[leftoversize++] = vec7;
if (pos1 == len1) {
memcpy(buffer + leftoversize, array1 + 8 * pos1,
(length1 - 8 * len1) * sizeof(uint16_t));
leftoversize += length1 - 8 * len1;
if (leftoversize == 0) { // trivial case
memcpy(output, array2 + 8 * pos2,
(length2 - 8 * pos2) * sizeof(uint16_t));
len += (length2 - 8 * pos2);
} else {
qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
leftoversize = unique_xor(buffer, leftoversize);
len += xor_uint16(buffer, leftoversize, array2 + 8 * pos2,
length2 - 8 * pos2, output);
}
} else {
memcpy(buffer + leftoversize, array2 + 8 * pos2,
(length2 - 8 * len2) * sizeof(uint16_t));
leftoversize += length2 - 8 * len2;
if (leftoversize == 0) { // trivial case
memcpy(output, array1 + 8 * pos1,
(length1 - 8 * pos1) * sizeof(uint16_t));
len += (length1 - 8 * pos1);
} else {
qsort(buffer, leftoversize, sizeof(uint16_t), uint16_compare);
leftoversize = unique_xor(buffer, leftoversize);
len += xor_uint16(buffer, leftoversize, array1 + 8 * pos1,
length1 - 8 * pos1, output);
}
}
return len;
}
/**
* End of SIMD 16-bit XOR code
*/
#endif // USESSE4
size_t union_uint32(const uint32_t *set_1, size_t size_1, const uint32_t *set_2,
size_t size_2, uint32_t *buffer) {
size_t pos = 0, idx_1 = 0, idx_2 = 0;
if (0 == size_2) {
memmove(buffer, set_1, size_1 * sizeof(uint32_t));
return size_1;
}
if (0 == size_1) {
memmove(buffer, set_2, size_2 * sizeof(uint32_t));
return size_2;
}
uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
while (true) {
if (val_1 < val_2) {
buffer[pos++] = val_1;
++idx_1;
if (idx_1 >= size_1) break;
val_1 = set_1[idx_1];
} else if (val_2 < val_1) {
buffer[pos++] = val_2;
++idx_2;
if (idx_2 >= size_2) break;
val_2 = set_2[idx_2];
} else {
buffer[pos++] = val_1;
++idx_1;
++idx_2;
if (idx_1 >= size_1 || idx_2 >= size_2) break;
val_1 = set_1[idx_1];
val_2 = set_2[idx_2];
}
}
if (idx_1 < size_1) {
const size_t n_elems = size_1 - idx_1;
memmove(buffer + pos, set_1 + idx_1, n_elems * sizeof(uint32_t));
pos += n_elems;
} else if (idx_2 < size_2) {
const size_t n_elems = size_2 - idx_2;
memmove(buffer + pos, set_2 + idx_2, n_elems * sizeof(uint32_t));
pos += n_elems;
}
return pos;
}
size_t union_uint32_card(const uint32_t *set_1, size_t size_1,
const uint32_t *set_2, size_t size_2) {
size_t pos = 0, idx_1 = 0, idx_2 = 0;
if (0 == size_2) {
return size_1;
}
if (0 == size_1) {
return size_2;
}
uint32_t val_1 = set_1[idx_1], val_2 = set_2[idx_2];
while (true) {
if (val_1 < val_2) {
++idx_1;
++pos;
if (idx_1 >= size_1) break;
val_1 = set_1[idx_1];
} else if (val_2 < val_1) {
++idx_2;
++pos;
if (idx_2 >= size_2) break;
val_2 = set_2[idx_2];
} else {
++idx_1;
++idx_2;
++pos;
if (idx_1 >= size_1 || idx_2 >= size_2) break;
val_1 = set_1[idx_1];
val_2 = set_2[idx_2];
}
}
if (idx_1 < size_1) {
const size_t n_elems = size_1 - idx_1;
pos += n_elems;
} else if (idx_2 < size_2) {
const size_t n_elems = size_2 - idx_2;
pos += n_elems;
}
return pos;
}
size_t fast_union_uint16(const uint16_t *set_1, size_t size_1, const uint16_t *set_2,
size_t size_2, uint16_t *buffer) {
#ifdef ROARING_VECTOR_OPERATIONS_ENABLED
// compute union with smallest array first
if (size_1 < size_2) {
return union_vector16(set_1, (uint32_t)size_1,
set_2, (uint32_t)size_2, buffer);
} else {
return union_vector16(set_2, (uint32_t)size_2,
set_1, (uint32_t)size_1, buffer);
}
#else
// compute union with smallest array first
if (size_1 < size_2) {
return union_uint16(
set_1, size_1, set_2, size_2, buffer);
} else {
return union_uint16(
set_2, size_2, set_1, size_1, buffer);
}
#endif
}
bool memequals(const void *s1, const void *s2, size_t n) {
if (n == 0) {
return true;
}
#ifdef USEAVX
const uint8_t *ptr1 = (const uint8_t *)s1;
const uint8_t *ptr2 = (const uint8_t *)s2;
const uint8_t *end1 = ptr1 + n;
const uint8_t *end8 = ptr1 + n/8*8;
const uint8_t *end32 = ptr1 + n/32*32;
while (ptr1 < end32) {
__m256i r1 = _mm256_loadu_si256((const __m256i*)ptr1);
__m256i r2 = _mm256_loadu_si256((const __m256i*)ptr2);
int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
if ((uint32_t)mask != UINT32_MAX) {
return false;
}
ptr1 += 32;
ptr2 += 32;
}
while (ptr1 < end8) {
uint64_t v1 = *((const uint64_t*)ptr1);
uint64_t v2 = *((const uint64_t*)ptr2);
if (v1 != v2) {
return false;
}
ptr1 += 8;
ptr2 += 8;
}
while (ptr1 < end1) {
if (*ptr1 != *ptr2) {
return false;
}
ptr1++;
ptr2++;
}
return true;
#else
return memcmp(s1, s2, n) == 0;
#endif
}
/* end file src/array_util.c */
/* begin file src/bitset_util.c */
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef IS_X64
static uint8_t lengthTable[256] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4,
2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4,
2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5,
3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,
4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
#endif
#ifdef USEAVX
ALIGNED(32)
static uint32_t vecDecodeTable[256][8] = {
{0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
{1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
{2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
{1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
{3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
{1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
{2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
{1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
{4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
{1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
{2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
{1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
{3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
{1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
{2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
{1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
{5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
{1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
{2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
{1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
{3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
{1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
{2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
{1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
{4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
{1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
{2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
{1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
{3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
{1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
{2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
{1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
{6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
{1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
{2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
{1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
{3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
{1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
{2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
{1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
{4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
{1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
{2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
{1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
{3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
{1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
{2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
{1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
{5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
{1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
{2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
{1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
{3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
{1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
{2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
{1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
{4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
{1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
{2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
{1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
{3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
{1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
{2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
{1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
{7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
{1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
{2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
{1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
{3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
{1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
{2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
{1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
{4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
{1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
{2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
{1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
{3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
{1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
{2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
{1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
{5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
{1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
{2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
{1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
{3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
{1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
{2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
{1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
{4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
{1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
{2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
{1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
{3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
{1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
{2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
{1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
{6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
{1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
{2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
{1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
{3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
{1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
{2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
{1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
{4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
{1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
{2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
{1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
{3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
{1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
{2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
{1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
{5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
{1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
{2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
{1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
{3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
{1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
{2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
{1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
{4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
{1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
{2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
{1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
{3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
{1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
{2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
{1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
{8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
{1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
{2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
{1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
{3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
{1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
{2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
{1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
{4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
{1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
{2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
{1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
{3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
{1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
{2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
{1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
{5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
{1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
{2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
{1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
{3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
{1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
{2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
{1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
{4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
{1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
{2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
{1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
{3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
{1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
{2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
{1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
{6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
{1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
{2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
{1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
{3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
{1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
{2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
{1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
{4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
{1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
{2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
{1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
{3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
{1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
{2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
{1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
{5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
{1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
{2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
{1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
{3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
{1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
{2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
{1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
{4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
{1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
{2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
{1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
{3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
{1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
{2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
{1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
{7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
{1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
{2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
{1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
{3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
{1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
{2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
{1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
{4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
{1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
{2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
{1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
{3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
{1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
{2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
{1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
{5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
{1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
{2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
{1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
{3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
{1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
{2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
{1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
{4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
{1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
{2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
{1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
{3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
{1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
{2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
{1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
{6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
{1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
{2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
{1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
{3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
{1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
{2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
{1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
{4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
{1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
{2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
{1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
{3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
{1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
{2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
{1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
{5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
{1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
{2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
{1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
{3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
{1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
{2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
{1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
{4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
{1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
{2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
{1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
{3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
{1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
{2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
{1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */
};
#endif // #ifdef USEAVX
#ifdef IS_X64
// same as vecDecodeTable but in 16 bits
ALIGNED(32)
static uint16_t vecDecodeTable_uint16[256][8] = {
{0, 0, 0, 0, 0, 0, 0, 0}, /* 0x00 (00000000) */
{1, 0, 0, 0, 0, 0, 0, 0}, /* 0x01 (00000001) */
{2, 0, 0, 0, 0, 0, 0, 0}, /* 0x02 (00000010) */
{1, 2, 0, 0, 0, 0, 0, 0}, /* 0x03 (00000011) */
{3, 0, 0, 0, 0, 0, 0, 0}, /* 0x04 (00000100) */
{1, 3, 0, 0, 0, 0, 0, 0}, /* 0x05 (00000101) */
{2, 3, 0, 0, 0, 0, 0, 0}, /* 0x06 (00000110) */
{1, 2, 3, 0, 0, 0, 0, 0}, /* 0x07 (00000111) */
{4, 0, 0, 0, 0, 0, 0, 0}, /* 0x08 (00001000) */
{1, 4, 0, 0, 0, 0, 0, 0}, /* 0x09 (00001001) */
{2, 4, 0, 0, 0, 0, 0, 0}, /* 0x0A (00001010) */
{1, 2, 4, 0, 0, 0, 0, 0}, /* 0x0B (00001011) */
{3, 4, 0, 0, 0, 0, 0, 0}, /* 0x0C (00001100) */
{1, 3, 4, 0, 0, 0, 0, 0}, /* 0x0D (00001101) */
{2, 3, 4, 0, 0, 0, 0, 0}, /* 0x0E (00001110) */
{1, 2, 3, 4, 0, 0, 0, 0}, /* 0x0F (00001111) */
{5, 0, 0, 0, 0, 0, 0, 0}, /* 0x10 (00010000) */
{1, 5, 0, 0, 0, 0, 0, 0}, /* 0x11 (00010001) */
{2, 5, 0, 0, 0, 0, 0, 0}, /* 0x12 (00010010) */
{1, 2, 5, 0, 0, 0, 0, 0}, /* 0x13 (00010011) */
{3, 5, 0, 0, 0, 0, 0, 0}, /* 0x14 (00010100) */
{1, 3, 5, 0, 0, 0, 0, 0}, /* 0x15 (00010101) */
{2, 3, 5, 0, 0, 0, 0, 0}, /* 0x16 (00010110) */
{1, 2, 3, 5, 0, 0, 0, 0}, /* 0x17 (00010111) */
{4, 5, 0, 0, 0, 0, 0, 0}, /* 0x18 (00011000) */
{1, 4, 5, 0, 0, 0, 0, 0}, /* 0x19 (00011001) */
{2, 4, 5, 0, 0, 0, 0, 0}, /* 0x1A (00011010) */
{1, 2, 4, 5, 0, 0, 0, 0}, /* 0x1B (00011011) */
{3, 4, 5, 0, 0, 0, 0, 0}, /* 0x1C (00011100) */
{1, 3, 4, 5, 0, 0, 0, 0}, /* 0x1D (00011101) */
{2, 3, 4, 5, 0, 0, 0, 0}, /* 0x1E (00011110) */
{1, 2, 3, 4, 5, 0, 0, 0}, /* 0x1F (00011111) */
{6, 0, 0, 0, 0, 0, 0, 0}, /* 0x20 (00100000) */
{1, 6, 0, 0, 0, 0, 0, 0}, /* 0x21 (00100001) */
{2, 6, 0, 0, 0, 0, 0, 0}, /* 0x22 (00100010) */
{1, 2, 6, 0, 0, 0, 0, 0}, /* 0x23 (00100011) */
{3, 6, 0, 0, 0, 0, 0, 0}, /* 0x24 (00100100) */
{1, 3, 6, 0, 0, 0, 0, 0}, /* 0x25 (00100101) */
{2, 3, 6, 0, 0, 0, 0, 0}, /* 0x26 (00100110) */
{1, 2, 3, 6, 0, 0, 0, 0}, /* 0x27 (00100111) */
{4, 6, 0, 0, 0, 0, 0, 0}, /* 0x28 (00101000) */
{1, 4, 6, 0, 0, 0, 0, 0}, /* 0x29 (00101001) */
{2, 4, 6, 0, 0, 0, 0, 0}, /* 0x2A (00101010) */
{1, 2, 4, 6, 0, 0, 0, 0}, /* 0x2B (00101011) */
{3, 4, 6, 0, 0, 0, 0, 0}, /* 0x2C (00101100) */
{1, 3, 4, 6, 0, 0, 0, 0}, /* 0x2D (00101101) */
{2, 3, 4, 6, 0, 0, 0, 0}, /* 0x2E (00101110) */
{1, 2, 3, 4, 6, 0, 0, 0}, /* 0x2F (00101111) */
{5, 6, 0, 0, 0, 0, 0, 0}, /* 0x30 (00110000) */
{1, 5, 6, 0, 0, 0, 0, 0}, /* 0x31 (00110001) */
{2, 5, 6, 0, 0, 0, 0, 0}, /* 0x32 (00110010) */
{1, 2, 5, 6, 0, 0, 0, 0}, /* 0x33 (00110011) */
{3, 5, 6, 0, 0, 0, 0, 0}, /* 0x34 (00110100) */
{1, 3, 5, 6, 0, 0, 0, 0}, /* 0x35 (00110101) */
{2, 3, 5, 6, 0, 0, 0, 0}, /* 0x36 (00110110) */
{1, 2, 3, 5, 6, 0, 0, 0}, /* 0x37 (00110111) */
{4, 5, 6, 0, 0, 0, 0, 0}, /* 0x38 (00111000) */
{1, 4, 5, 6, 0, 0, 0, 0}, /* 0x39 (00111001) */
{2, 4, 5, 6, 0, 0, 0, 0}, /* 0x3A (00111010) */
{1, 2, 4, 5, 6, 0, 0, 0}, /* 0x3B (00111011) */
{3, 4, 5, 6, 0, 0, 0, 0}, /* 0x3C (00111100) */
{1, 3, 4, 5, 6, 0, 0, 0}, /* 0x3D (00111101) */
{2, 3, 4, 5, 6, 0, 0, 0}, /* 0x3E (00111110) */
{1, 2, 3, 4, 5, 6, 0, 0}, /* 0x3F (00111111) */
{7, 0, 0, 0, 0, 0, 0, 0}, /* 0x40 (01000000) */
{1, 7, 0, 0, 0, 0, 0, 0}, /* 0x41 (01000001) */
{2, 7, 0, 0, 0, 0, 0, 0}, /* 0x42 (01000010) */
{1, 2, 7, 0, 0, 0, 0, 0}, /* 0x43 (01000011) */
{3, 7, 0, 0, 0, 0, 0, 0}, /* 0x44 (01000100) */
{1, 3, 7, 0, 0, 0, 0, 0}, /* 0x45 (01000101) */
{2, 3, 7, 0, 0, 0, 0, 0}, /* 0x46 (01000110) */
{1, 2, 3, 7, 0, 0, 0, 0}, /* 0x47 (01000111) */
{4, 7, 0, 0, 0, 0, 0, 0}, /* 0x48 (01001000) */
{1, 4, 7, 0, 0, 0, 0, 0}, /* 0x49 (01001001) */
{2, 4, 7, 0, 0, 0, 0, 0}, /* 0x4A (01001010) */
{1, 2, 4, 7, 0, 0, 0, 0}, /* 0x4B (01001011) */
{3, 4, 7, 0, 0, 0, 0, 0}, /* 0x4C (01001100) */
{1, 3, 4, 7, 0, 0, 0, 0}, /* 0x4D (01001101) */
{2, 3, 4, 7, 0, 0, 0, 0}, /* 0x4E (01001110) */
{1, 2, 3, 4, 7, 0, 0, 0}, /* 0x4F (01001111) */
{5, 7, 0, 0, 0, 0, 0, 0}, /* 0x50 (01010000) */
{1, 5, 7, 0, 0, 0, 0, 0}, /* 0x51 (01010001) */
{2, 5, 7, 0, 0, 0, 0, 0}, /* 0x52 (01010010) */
{1, 2, 5, 7, 0, 0, 0, 0}, /* 0x53 (01010011) */
{3, 5, 7, 0, 0, 0, 0, 0}, /* 0x54 (01010100) */
{1, 3, 5, 7, 0, 0, 0, 0}, /* 0x55 (01010101) */
{2, 3, 5, 7, 0, 0, 0, 0}, /* 0x56 (01010110) */
{1, 2, 3, 5, 7, 0, 0, 0}, /* 0x57 (01010111) */
{4, 5, 7, 0, 0, 0, 0, 0}, /* 0x58 (01011000) */
{1, 4, 5, 7, 0, 0, 0, 0}, /* 0x59 (01011001) */
{2, 4, 5, 7, 0, 0, 0, 0}, /* 0x5A (01011010) */
{1, 2, 4, 5, 7, 0, 0, 0}, /* 0x5B (01011011) */
{3, 4, 5, 7, 0, 0, 0, 0}, /* 0x5C (01011100) */
{1, 3, 4, 5, 7, 0, 0, 0}, /* 0x5D (01011101) */
{2, 3, 4, 5, 7, 0, 0, 0}, /* 0x5E (01011110) */
{1, 2, 3, 4, 5, 7, 0, 0}, /* 0x5F (01011111) */
{6, 7, 0, 0, 0, 0, 0, 0}, /* 0x60 (01100000) */
{1, 6, 7, 0, 0, 0, 0, 0}, /* 0x61 (01100001) */
{2, 6, 7, 0, 0, 0, 0, 0}, /* 0x62 (01100010) */
{1, 2, 6, 7, 0, 0, 0, 0}, /* 0x63 (01100011) */
{3, 6, 7, 0, 0, 0, 0, 0}, /* 0x64 (01100100) */
{1, 3, 6, 7, 0, 0, 0, 0}, /* 0x65 (01100101) */
{2, 3, 6, 7, 0, 0, 0, 0}, /* 0x66 (01100110) */
{1, 2, 3, 6, 7, 0, 0, 0}, /* 0x67 (01100111) */
{4, 6, 7, 0, 0, 0, 0, 0}, /* 0x68 (01101000) */
{1, 4, 6, 7, 0, 0, 0, 0}, /* 0x69 (01101001) */
{2, 4, 6, 7, 0, 0, 0, 0}, /* 0x6A (01101010) */
{1, 2, 4, 6, 7, 0, 0, 0}, /* 0x6B (01101011) */
{3, 4, 6, 7, 0, 0, 0, 0}, /* 0x6C (01101100) */
{1, 3, 4, 6, 7, 0, 0, 0}, /* 0x6D (01101101) */
{2, 3, 4, 6, 7, 0, 0, 0}, /* 0x6E (01101110) */
{1, 2, 3, 4, 6, 7, 0, 0}, /* 0x6F (01101111) */
{5, 6, 7, 0, 0, 0, 0, 0}, /* 0x70 (01110000) */
{1, 5, 6, 7, 0, 0, 0, 0}, /* 0x71 (01110001) */
{2, 5, 6, 7, 0, 0, 0, 0}, /* 0x72 (01110010) */
{1, 2, 5, 6, 7, 0, 0, 0}, /* 0x73 (01110011) */
{3, 5, 6, 7, 0, 0, 0, 0}, /* 0x74 (01110100) */
{1, 3, 5, 6, 7, 0, 0, 0}, /* 0x75 (01110101) */
{2, 3, 5, 6, 7, 0, 0, 0}, /* 0x76 (01110110) */
{1, 2, 3, 5, 6, 7, 0, 0}, /* 0x77 (01110111) */
{4, 5, 6, 7, 0, 0, 0, 0}, /* 0x78 (01111000) */
{1, 4, 5, 6, 7, 0, 0, 0}, /* 0x79 (01111001) */
{2, 4, 5, 6, 7, 0, 0, 0}, /* 0x7A (01111010) */
{1, 2, 4, 5, 6, 7, 0, 0}, /* 0x7B (01111011) */
{3, 4, 5, 6, 7, 0, 0, 0}, /* 0x7C (01111100) */
{1, 3, 4, 5, 6, 7, 0, 0}, /* 0x7D (01111101) */
{2, 3, 4, 5, 6, 7, 0, 0}, /* 0x7E (01111110) */
{1, 2, 3, 4, 5, 6, 7, 0}, /* 0x7F (01111111) */
{8, 0, 0, 0, 0, 0, 0, 0}, /* 0x80 (10000000) */
{1, 8, 0, 0, 0, 0, 0, 0}, /* 0x81 (10000001) */
{2, 8, 0, 0, 0, 0, 0, 0}, /* 0x82 (10000010) */
{1, 2, 8, 0, 0, 0, 0, 0}, /* 0x83 (10000011) */
{3, 8, 0, 0, 0, 0, 0, 0}, /* 0x84 (10000100) */
{1, 3, 8, 0, 0, 0, 0, 0}, /* 0x85 (10000101) */
{2, 3, 8, 0, 0, 0, 0, 0}, /* 0x86 (10000110) */
{1, 2, 3, 8, 0, 0, 0, 0}, /* 0x87 (10000111) */
{4, 8, 0, 0, 0, 0, 0, 0}, /* 0x88 (10001000) */
{1, 4, 8, 0, 0, 0, 0, 0}, /* 0x89 (10001001) */
{2, 4, 8, 0, 0, 0, 0, 0}, /* 0x8A (10001010) */
{1, 2, 4, 8, 0, 0, 0, 0}, /* 0x8B (10001011) */
{3, 4, 8, 0, 0, 0, 0, 0}, /* 0x8C (10001100) */
{1, 3, 4, 8, 0, 0, 0, 0}, /* 0x8D (10001101) */
{2, 3, 4, 8, 0, 0, 0, 0}, /* 0x8E (10001110) */
{1, 2, 3, 4, 8, 0, 0, 0}, /* 0x8F (10001111) */
{5, 8, 0, 0, 0, 0, 0, 0}, /* 0x90 (10010000) */
{1, 5, 8, 0, 0, 0, 0, 0}, /* 0x91 (10010001) */
{2, 5, 8, 0, 0, 0, 0, 0}, /* 0x92 (10010010) */
{1, 2, 5, 8, 0, 0, 0, 0}, /* 0x93 (10010011) */
{3, 5, 8, 0, 0, 0, 0, 0}, /* 0x94 (10010100) */
{1, 3, 5, 8, 0, 0, 0, 0}, /* 0x95 (10010101) */
{2, 3, 5, 8, 0, 0, 0, 0}, /* 0x96 (10010110) */
{1, 2, 3, 5, 8, 0, 0, 0}, /* 0x97 (10010111) */
{4, 5, 8, 0, 0, 0, 0, 0}, /* 0x98 (10011000) */
{1, 4, 5, 8, 0, 0, 0, 0}, /* 0x99 (10011001) */
{2, 4, 5, 8, 0, 0, 0, 0}, /* 0x9A (10011010) */
{1, 2, 4, 5, 8, 0, 0, 0}, /* 0x9B (10011011) */
{3, 4, 5, 8, 0, 0, 0, 0}, /* 0x9C (10011100) */
{1, 3, 4, 5, 8, 0, 0, 0}, /* 0x9D (10011101) */
{2, 3, 4, 5, 8, 0, 0, 0}, /* 0x9E (10011110) */
{1, 2, 3, 4, 5, 8, 0, 0}, /* 0x9F (10011111) */
{6, 8, 0, 0, 0, 0, 0, 0}, /* 0xA0 (10100000) */
{1, 6, 8, 0, 0, 0, 0, 0}, /* 0xA1 (10100001) */
{2, 6, 8, 0, 0, 0, 0, 0}, /* 0xA2 (10100010) */
{1, 2, 6, 8, 0, 0, 0, 0}, /* 0xA3 (10100011) */
{3, 6, 8, 0, 0, 0, 0, 0}, /* 0xA4 (10100100) */
{1, 3, 6, 8, 0, 0, 0, 0}, /* 0xA5 (10100101) */
{2, 3, 6, 8, 0, 0, 0, 0}, /* 0xA6 (10100110) */
{1, 2, 3, 6, 8, 0, 0, 0}, /* 0xA7 (10100111) */
{4, 6, 8, 0, 0, 0, 0, 0}, /* 0xA8 (10101000) */
{1, 4, 6, 8, 0, 0, 0, 0}, /* 0xA9 (10101001) */
{2, 4, 6, 8, 0, 0, 0, 0}, /* 0xAA (10101010) */
{1, 2, 4, 6, 8, 0, 0, 0}, /* 0xAB (10101011) */
{3, 4, 6, 8, 0, 0, 0, 0}, /* 0xAC (10101100) */
{1, 3, 4, 6, 8, 0, 0, 0}, /* 0xAD (10101101) */
{2, 3, 4, 6, 8, 0, 0, 0}, /* 0xAE (10101110) */
{1, 2, 3, 4, 6, 8, 0, 0}, /* 0xAF (10101111) */
{5, 6, 8, 0, 0, 0, 0, 0}, /* 0xB0 (10110000) */
{1, 5, 6, 8, 0, 0, 0, 0}, /* 0xB1 (10110001) */
{2, 5, 6, 8, 0, 0, 0, 0}, /* 0xB2 (10110010) */
{1, 2, 5, 6, 8, 0, 0, 0}, /* 0xB3 (10110011) */
{3, 5, 6, 8, 0, 0, 0, 0}, /* 0xB4 (10110100) */
{1, 3, 5, 6, 8, 0, 0, 0}, /* 0xB5 (10110101) */
{2, 3, 5, 6, 8, 0, 0, 0}, /* 0xB6 (10110110) */
{1, 2, 3, 5, 6, 8, 0, 0}, /* 0xB7 (10110111) */
{4, 5, 6, 8, 0, 0, 0, 0}, /* 0xB8 (10111000) */
{1, 4, 5, 6, 8, 0, 0, 0}, /* 0xB9 (10111001) */
{2, 4, 5, 6, 8, 0, 0, 0}, /* 0xBA (10111010) */
{1, 2, 4, 5, 6, 8, 0, 0}, /* 0xBB (10111011) */
{3, 4, 5, 6, 8, 0, 0, 0}, /* 0xBC (10111100) */
{1, 3, 4, 5, 6, 8, 0, 0}, /* 0xBD (10111101) */
{2, 3, 4, 5, 6, 8, 0, 0}, /* 0xBE (10111110) */
{1, 2, 3, 4, 5, 6, 8, 0}, /* 0xBF (10111111) */
{7, 8, 0, 0, 0, 0, 0, 0}, /* 0xC0 (11000000) */
{1, 7, 8, 0, 0, 0, 0, 0}, /* 0xC1 (11000001) */
{2, 7, 8, 0, 0, 0, 0, 0}, /* 0xC2 (11000010) */
{1, 2, 7, 8, 0, 0, 0, 0}, /* 0xC3 (11000011) */
{3, 7, 8, 0, 0, 0, 0, 0}, /* 0xC4 (11000100) */
{1, 3, 7, 8, 0, 0, 0, 0}, /* 0xC5 (11000101) */
{2, 3, 7, 8, 0, 0, 0, 0}, /* 0xC6 (11000110) */
{1, 2, 3, 7, 8, 0, 0, 0}, /* 0xC7 (11000111) */
{4, 7, 8, 0, 0, 0, 0, 0}, /* 0xC8 (11001000) */
{1, 4, 7, 8, 0, 0, 0, 0}, /* 0xC9 (11001001) */
{2, 4, 7, 8, 0, 0, 0, 0}, /* 0xCA (11001010) */
{1, 2, 4, 7, 8, 0, 0, 0}, /* 0xCB (11001011) */
{3, 4, 7, 8, 0, 0, 0, 0}, /* 0xCC (11001100) */
{1, 3, 4, 7, 8, 0, 0, 0}, /* 0xCD (11001101) */
{2, 3, 4, 7, 8, 0, 0, 0}, /* 0xCE (11001110) */
{1, 2, 3, 4, 7, 8, 0, 0}, /* 0xCF (11001111) */
{5, 7, 8, 0, 0, 0, 0, 0}, /* 0xD0 (11010000) */
{1, 5, 7, 8, 0, 0, 0, 0}, /* 0xD1 (11010001) */
{2, 5, 7, 8, 0, 0, 0, 0}, /* 0xD2 (11010010) */
{1, 2, 5, 7, 8, 0, 0, 0}, /* 0xD3 (11010011) */
{3, 5, 7, 8, 0, 0, 0, 0}, /* 0xD4 (11010100) */
{1, 3, 5, 7, 8, 0, 0, 0}, /* 0xD5 (11010101) */
{2, 3, 5, 7, 8, 0, 0, 0}, /* 0xD6 (11010110) */
{1, 2, 3, 5, 7, 8, 0, 0}, /* 0xD7 (11010111) */
{4, 5, 7, 8, 0, 0, 0, 0}, /* 0xD8 (11011000) */
{1, 4, 5, 7, 8, 0, 0, 0}, /* 0xD9 (11011001) */
{2, 4, 5, 7, 8, 0, 0, 0}, /* 0xDA (11011010) */
{1, 2, 4, 5, 7, 8, 0, 0}, /* 0xDB (11011011) */
{3, 4, 5, 7, 8, 0, 0, 0}, /* 0xDC (11011100) */
{1, 3, 4, 5, 7, 8, 0, 0}, /* 0xDD (11011101) */
{2, 3, 4, 5, 7, 8, 0, 0}, /* 0xDE (11011110) */
{1, 2, 3, 4, 5, 7, 8, 0}, /* 0xDF (11011111) */
{6, 7, 8, 0, 0, 0, 0, 0}, /* 0xE0 (11100000) */
{1, 6, 7, 8, 0, 0, 0, 0}, /* 0xE1 (11100001) */
{2, 6, 7, 8, 0, 0, 0, 0}, /* 0xE2 (11100010) */
{1, 2, 6, 7, 8, 0, 0, 0}, /* 0xE3 (11100011) */
{3, 6, 7, 8, 0, 0, 0, 0}, /* 0xE4 (11100100) */
{1, 3, 6, 7, 8, 0, 0, 0}, /* 0xE5 (11100101) */
{2, 3, 6, 7, 8, 0, 0, 0}, /* 0xE6 (11100110) */
{1, 2, 3, 6, 7, 8, 0, 0}, /* 0xE7 (11100111) */
{4, 6, 7, 8, 0, 0, 0, 0}, /* 0xE8 (11101000) */
{1, 4, 6, 7, 8, 0, 0, 0}, /* 0xE9 (11101001) */
{2, 4, 6, 7, 8, 0, 0, 0}, /* 0xEA (11101010) */
{1, 2, 4, 6, 7, 8, 0, 0}, /* 0xEB (11101011) */
{3, 4, 6, 7, 8, 0, 0, 0}, /* 0xEC (11101100) */
{1, 3, 4, 6, 7, 8, 0, 0}, /* 0xED (11101101) */
{2, 3, 4, 6, 7, 8, 0, 0}, /* 0xEE (11101110) */
{1, 2, 3, 4, 6, 7, 8, 0}, /* 0xEF (11101111) */
{5, 6, 7, 8, 0, 0, 0, 0}, /* 0xF0 (11110000) */
{1, 5, 6, 7, 8, 0, 0, 0}, /* 0xF1 (11110001) */
{2, 5, 6, 7, 8, 0, 0, 0}, /* 0xF2 (11110010) */
{1, 2, 5, 6, 7, 8, 0, 0}, /* 0xF3 (11110011) */
{3, 5, 6, 7, 8, 0, 0, 0}, /* 0xF4 (11110100) */
{1, 3, 5, 6, 7, 8, 0, 0}, /* 0xF5 (11110101) */
{2, 3, 5, 6, 7, 8, 0, 0}, /* 0xF6 (11110110) */
{1, 2, 3, 5, 6, 7, 8, 0}, /* 0xF7 (11110111) */
{4, 5, 6, 7, 8, 0, 0, 0}, /* 0xF8 (11111000) */
{1, 4, 5, 6, 7, 8, 0, 0}, /* 0xF9 (11111001) */
{2, 4, 5, 6, 7, 8, 0, 0}, /* 0xFA (11111010) */
{1, 2, 4, 5, 6, 7, 8, 0}, /* 0xFB (11111011) */
{3, 4, 5, 6, 7, 8, 0, 0}, /* 0xFC (11111100) */
{1, 3, 4, 5, 6, 7, 8, 0}, /* 0xFD (11111101) */
{2, 3, 4, 5, 6, 7, 8, 0}, /* 0xFE (11111110) */
{1, 2, 3, 4, 5, 6, 7, 8} /* 0xFF (11111111) */
};
#endif
#ifdef USEAVX
size_t bitset_extract_setbits_avx2(uint64_t *array, size_t length, void *vout,
size_t outcapacity, uint32_t base) {
uint32_t *out = (uint32_t *)vout;
uint32_t *initout = out;
__m256i baseVec = _mm256_set1_epi32(base - 1);
__m256i incVec = _mm256_set1_epi32(64);
__m256i add8 = _mm256_set1_epi32(8);
uint32_t *safeout = out + outcapacity;
size_t i = 0;
for (; (i < length) && (out + 64 <= safeout); ++i) {
uint64_t w = array[i];
if (w == 0) {
baseVec = _mm256_add_epi32(baseVec, incVec);
} else {
for (int k = 0; k < 4; ++k) {
uint8_t byteA = (uint8_t)w;
uint8_t byteB = (uint8_t)(w >> 8);
w >>= 16;
__m256i vecA =
_mm256_load_si256((const __m256i *)vecDecodeTable[byteA]);
__m256i vecB =
_mm256_load_si256((const __m256i *)vecDecodeTable[byteB]);
uint8_t advanceA = lengthTable[byteA];
uint8_t advanceB = lengthTable[byteB];
vecA = _mm256_add_epi32(baseVec, vecA);
baseVec = _mm256_add_epi32(baseVec, add8);
vecB = _mm256_add_epi32(baseVec, vecB);
baseVec = _mm256_add_epi32(baseVec, add8);
_mm256_storeu_si256((__m256i *)out, vecA);
out += advanceA;
_mm256_storeu_si256((__m256i *)out, vecB);
out += advanceB;
}
}
}
base += i * 64;
for (; (i < length) && (out < safeout); ++i) {
uint64_t w = array[i];
while ((w != 0) && (out < safeout)) {
uint64_t t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems to fail)
int r = __builtin_ctzll(w); // on x64, should compile to TZCNT
uint32_t val = r + base;
memcpy(out, &val,
sizeof(uint32_t)); // should be compiled as a MOV on x64
out++;
w ^= t;
}
base += 64;
}
return out - initout;
}
#endif // USEAVX
size_t bitset_extract_setbits(uint64_t *bitset, size_t length, void *vout,
uint32_t base) {
int outpos = 0;
uint32_t *out = (uint32_t *)vout;
for (size_t i = 0; i < length; ++i) {
uint64_t w = bitset[i];
while (w != 0) {
uint64_t t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems to fail)
int r = __builtin_ctzll(w); // on x64, should compile to TZCNT
uint32_t val = r + base;
memcpy(out + outpos, &val,
sizeof(uint32_t)); // should be compiled as a MOV on x64
outpos++;
w ^= t;
}
base += 64;
}
return outpos;
}
size_t bitset_extract_intersection_setbits_uint16(const uint64_t * __restrict__ bitset1,
const uint64_t * __restrict__ bitset2,
size_t length, uint16_t *out,
uint16_t base) {
int outpos = 0;
for (size_t i = 0; i < length; ++i) {
uint64_t w = bitset1[i] & bitset2[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
out[outpos++] = r + base;
w ^= t;
}
base += 64;
}
return outpos;
}
#ifdef IS_X64
/*
* Given a bitset containing "length" 64-bit words, write out the position
* of all the set bits to "out" as 16-bit integers, values start at "base" (can
*be set to zero).
*
* The "out" pointer should be sufficient to store the actual number of bits
*set.
*
* Returns how many values were actually decoded.
*
* This function uses SSE decoding.
*/
size_t bitset_extract_setbits_sse_uint16(const uint64_t *bitset, size_t length,
uint16_t *out, size_t outcapacity,
uint16_t base) {
uint16_t *initout = out;
__m128i baseVec = _mm_set1_epi16(base - 1);
__m128i incVec = _mm_set1_epi16(64);
__m128i add8 = _mm_set1_epi16(8);
uint16_t *safeout = out + outcapacity;
const int numberofbytes = 2; // process two bytes at a time
size_t i = 0;
for (; (i < length) && (out + numberofbytes * 8 <= safeout); ++i) {
uint64_t w = bitset[i];
if (w == 0) {
baseVec = _mm_add_epi16(baseVec, incVec);
} else {
for (int k = 0; k < 4; ++k) {
uint8_t byteA = (uint8_t)w;
uint8_t byteB = (uint8_t)(w >> 8);
w >>= 16;
__m128i vecA = _mm_load_si128(
(const __m128i *)vecDecodeTable_uint16[byteA]);
__m128i vecB = _mm_load_si128(
(const __m128i *)vecDecodeTable_uint16[byteB]);
uint8_t advanceA = lengthTable[byteA];
uint8_t advanceB = lengthTable[byteB];
vecA = _mm_add_epi16(baseVec, vecA);
baseVec = _mm_add_epi16(baseVec, add8);
vecB = _mm_add_epi16(baseVec, vecB);
baseVec = _mm_add_epi16(baseVec, add8);
_mm_storeu_si128((__m128i *)out, vecA);
out += advanceA;
_mm_storeu_si128((__m128i *)out, vecB);
out += advanceB;
}
}
}
base += (uint16_t)(i * 64);
for (; (i < length) && (out < safeout); ++i) {
uint64_t w = bitset[i];
while ((w != 0) && (out < safeout)) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
*out = r + base;
out++;
w ^= t;
}
base += 64;
}
return out - initout;
}
#endif
/*
* Given a bitset containing "length" 64-bit words, write out the position
* of all the set bits to "out", values start at "base" (can be set to zero).
*
* The "out" pointer should be sufficient to store the actual number of bits
*set.
*
* Returns how many values were actually decoded.
*/
size_t bitset_extract_setbits_uint16(const uint64_t *bitset, size_t length,
uint16_t *out, uint16_t base) {
int outpos = 0;
for (size_t i = 0; i < length; ++i) {
uint64_t w = bitset[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
out[outpos++] = r + base;
w ^= t;
}
base += 64;
}
return outpos;
}
#if defined(ASMBITMANIPOPTIMIZATION)
uint64_t bitset_set_list_withcard(void *bitset, uint64_t card,
const uint16_t *list, uint64_t length) {
uint64_t offset, load, pos;
uint64_t shift = 6;
const uint16_t *end = list + length;
if (!length) return card;
// TODO: could unroll for performance, see bitset_set_list
// bts is not available as an intrinsic in GCC
__asm volatile(
"1:\n"
"movzwq (%[list]), %[pos]\n"
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"bts %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)\n"
"sbb $-1, %[card]\n"
"add $2, %[list]\n"
"cmp %[list], %[end]\n"
"jnz 1b"
: [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
[pos] "=&r"(pos), [offset] "=&r"(offset)
: [end] "r"(end), [bitset] "r"(bitset), [shift] "r"(shift));
return card;
}
void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length) {
uint64_t pos;
const uint16_t *end = list + length;
uint64_t shift = 6;
uint64_t offset;
uint64_t load;
for (; list + 3 < end; list += 4) {
pos = list[0];
__asm volatile(
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"bts %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)"
: [load] "=&r"(load), [offset] "=&r"(offset)
: [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
pos = list[1];
__asm volatile(
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"bts %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)"
: [load] "=&r"(load), [offset] "=&r"(offset)
: [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
pos = list[2];
__asm volatile(
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"bts %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)"
: [load] "=&r"(load), [offset] "=&r"(offset)
: [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
pos = list[3];
__asm volatile(
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"bts %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)"
: [load] "=&r"(load), [offset] "=&r"(offset)
: [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
}
while (list != end) {
pos = list[0];
__asm volatile(
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"bts %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)"
: [load] "=&r"(load), [offset] "=&r"(offset)
: [bitset] "r"(bitset), [shift] "r"(shift), [pos] "r"(pos));
list++;
}
}
uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list,
uint64_t length) {
uint64_t offset, load, pos;
uint64_t shift = 6;
const uint16_t *end = list + length;
if (!length) return card;
// btr is not available as an intrinsic in GCC
__asm volatile(
"1:\n"
"movzwq (%[list]), %[pos]\n"
"shrx %[shift], %[pos], %[offset]\n"
"mov (%[bitset],%[offset],8), %[load]\n"
"btr %[pos], %[load]\n"
"mov %[load], (%[bitset],%[offset],8)\n"
"sbb $0, %[card]\n"
"add $2, %[list]\n"
"cmp %[list], %[end]\n"
"jnz 1b"
: [card] "+&r"(card), [list] "+&r"(list), [load] "=&r"(load),
[pos] "=&r"(pos), [offset] "=&r"(offset)
: [end] "r"(end), [bitset] "r"(bitset), [shift] "r"(shift)
:
/* clobbers */ "memory");
return card;
}
#else
uint64_t bitset_clear_list(void *bitset, uint64_t card, const uint16_t *list,
uint64_t length) {
uint64_t offset, load, newload, pos, index;
const uint16_t *end = list + length;
while (list != end) {
pos = *(const uint16_t *)list;
offset = pos >> 6;
index = pos % 64;
load = ((uint64_t *)bitset)[offset];
newload = load & ~(UINT64_C(1) << index);
card -= (load ^ newload) >> index;
((uint64_t *)bitset)[offset] = newload;
list++;
}
return card;
}
uint64_t bitset_set_list_withcard(void *bitset, uint64_t card,
const uint16_t *list, uint64_t length) {
uint64_t offset, load, newload, pos, index;
const uint16_t *end = list + length;
while (list != end) {
pos = *(const uint16_t *)list;
offset = pos >> 6;
index = pos % 64;
load = ((uint64_t *)bitset)[offset];
newload = load | (UINT64_C(1) << index);
card += (load ^ newload) >> index;
((uint64_t *)bitset)[offset] = newload;
list++;
}
return card;
}
void bitset_set_list(void *bitset, const uint16_t *list, uint64_t length) {
uint64_t offset, load, newload, pos, index;
const uint16_t *end = list + length;
while (list != end) {
pos = *(const uint16_t *)list;
offset = pos >> 6;
index = pos % 64;
load = ((uint64_t *)bitset)[offset];
newload = load | (UINT64_C(1) << index);
((uint64_t *)bitset)[offset] = newload;
list++;
}
}
#endif
/* flip specified bits */
/* TODO: consider whether worthwhile to make an asm version */
uint64_t bitset_flip_list_withcard(void *bitset, uint64_t card,
const uint16_t *list, uint64_t length) {
uint64_t offset, load, newload, pos, index;
const uint16_t *end = list + length;
while (list != end) {
pos = *(const uint16_t *)list;
offset = pos >> 6;
index = pos % 64;
load = ((uint64_t *)bitset)[offset];
newload = load ^ (UINT64_C(1) << index);
// todo: is a branch here all that bad?
card +=
(1 - 2 * (((UINT64_C(1) << index) & load) >> index)); // +1 or -1
((uint64_t *)bitset)[offset] = newload;
list++;
}
return card;
}
void bitset_flip_list(void *bitset, const uint16_t *list, uint64_t length) {
uint64_t offset, load, newload, pos, index;
const uint16_t *end = list + length;
while (list != end) {
pos = *(const uint16_t *)list;
offset = pos >> 6;
index = pos % 64;
load = ((uint64_t *)bitset)[offset];
newload = load ^ (UINT64_C(1) << index);
((uint64_t *)bitset)[offset] = newload;
list++;
}
}
/* end file src/bitset_util.c */
/* begin file src/containers/array.c */
/*
* array.c
*
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
/* Create a new array with capacity size. Return NULL in case of failure. */
array_container_t *array_container_create_given_capacity(int32_t size) {
array_container_t *container;
container = (array_container_t *)malloc(sizeof(array_container_t));
assert (container);
if( size <= 0 ) { // we don't want to rely on malloc(0)
container->array = NULL;
} else {
container->array = (uint16_t *)malloc(sizeof(uint16_t) * size);
assert (container->array);
}
container->capacity = size;
container->cardinality = 0;
return container;
}
/* Create a new array. Return NULL in case of failure. */
array_container_t *array_container_create(void) {
return array_container_create_given_capacity(ARRAY_DEFAULT_INIT_SIZE);
}
/* Create a new array containing all values in [min,max). */
array_container_t * array_container_create_range(uint32_t min, uint32_t max) {
array_container_t * answer = array_container_create_given_capacity(max - min + 1);
if(answer == NULL) return answer;
answer->cardinality = 0;
for(uint32_t k = min; k < max; k++) {
answer->array[answer->cardinality++] = k;
}
return answer;
}
/* Duplicate container */
array_container_t *array_container_clone(const array_container_t *src) {
array_container_t *newcontainer =
array_container_create_given_capacity(src->capacity);
if (newcontainer == NULL) return NULL;
newcontainer->cardinality = src->cardinality;
memcpy(newcontainer->array, src->array,
src->cardinality * sizeof(uint16_t));
return newcontainer;
}
int array_container_shrink_to_fit(array_container_t *src) {
if (src->cardinality == src->capacity) return 0; // nothing to do
int savings = src->capacity - src->cardinality;
src->capacity = src->cardinality;
if( src->capacity == 0) { // we do not want to rely on realloc for zero allocs
free(src->array);
src->array = NULL;
} else {
uint16_t *oldarray = src->array;
src->array =
(uint16_t *)realloc(oldarray, src->capacity * sizeof(uint16_t));
if (src->array == NULL) free(oldarray); // should never happen?
}
return savings;
}
/* Free memory. */
void array_container_free(array_container_t *arr) {
if(arr->array != NULL) {// Jon Strabala reports that some tools complain otherwise
free(arr->array);
arr->array = NULL; // pedantic
}
free(arr);
}
static inline int32_t grow_capacity(int32_t capacity) {
return (capacity <= 0) ? ARRAY_DEFAULT_INIT_SIZE
: capacity < 64 ? capacity * 2
: capacity < 1024 ? capacity * 3 / 2
: capacity * 5 / 4;
}
static inline int32_t clamp(int32_t val, int32_t min, int32_t max) {
return ((val < min) ? min : (val > max) ? max : val);
}
void array_container_grow(array_container_t *container, int32_t min,
bool preserve) {
int32_t max = (min <= DEFAULT_MAX_SIZE ? DEFAULT_MAX_SIZE : 65536);
int32_t new_capacity = clamp(grow_capacity(container->capacity), min, max);
container->capacity = new_capacity;
uint16_t *array = container->array;
if (preserve) {
container->array =
(uint16_t *)realloc(array, new_capacity * sizeof(uint16_t));
if (container->array == NULL) free(array);
} else {
// Jon Strabala reports that some tools complain otherwise
if (array != NULL) {
free(array);
}
container->array = (uint16_t *)malloc(new_capacity * sizeof(uint16_t));
}
// handle the case where realloc fails
if (container->array == NULL) {
fprintf(stderr, "could not allocate memory\n");
}
assert(container->array != NULL);
}
/* Copy one container into another. We assume that they are distinct. */
void array_container_copy(const array_container_t *src,
array_container_t *dst) {
const int32_t cardinality = src->cardinality;
if (cardinality > dst->capacity) {
array_container_grow(dst, cardinality, false);
}
dst->cardinality = cardinality;
memcpy(dst->array, src->array, cardinality * sizeof(uint16_t));
}
void array_container_add_from_range(array_container_t *arr, uint32_t min,
uint32_t max, uint16_t step) {
for (uint32_t value = min; value < max; value += step) {
array_container_append(arr, value);
}
}
/* Computes the union of array1 and array2 and write the result to arrayout.
* It is assumed that arrayout is distinct from both array1 and array2.
*/
void array_container_union(const array_container_t *array_1,
const array_container_t *array_2,
array_container_t *out) {
const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
const int32_t max_cardinality = card_1 + card_2;
if (out->capacity < max_cardinality) {
array_container_grow(out, max_cardinality, false);
}
out->cardinality = (int32_t)fast_union_uint16(array_1->array, card_1,
array_2->array, card_2, out->array);
}
/* Computes the difference of array1 and array2 and write the result
* to array out.
* Array out does not need to be distinct from array_1
*/
void array_container_andnot(const array_container_t *array_1,
const array_container_t *array_2,
array_container_t *out) {
if (out->capacity < array_1->cardinality)
array_container_grow(out, array_1->cardinality, false);
#ifdef ROARING_VECTOR_OPERATIONS_ENABLED
if((out != array_1) && (out != array_2)) {
out->cardinality =
difference_vector16(array_1->array, array_1->cardinality,
array_2->array, array_2->cardinality, out->array);
} else {
out->cardinality =
difference_uint16(array_1->array, array_1->cardinality, array_2->array,
array_2->cardinality, out->array);
}
#else
out->cardinality =
difference_uint16(array_1->array, array_1->cardinality, array_2->array,
array_2->cardinality, out->array);
#endif
}
/* Computes the symmetric difference of array1 and array2 and write the
* result
* to arrayout.
* It is assumed that arrayout is distinct from both array1 and array2.
*/
void array_container_xor(const array_container_t *array_1,
const array_container_t *array_2,
array_container_t *out) {
const int32_t card_1 = array_1->cardinality, card_2 = array_2->cardinality;
const int32_t max_cardinality = card_1 + card_2;
if (out->capacity < max_cardinality) {
array_container_grow(out, max_cardinality, false);
}
#ifdef ROARING_VECTOR_OPERATIONS_ENABLED
out->cardinality =
xor_vector16(array_1->array, array_1->cardinality, array_2->array,
array_2->cardinality, out->array);
#else
out->cardinality =
xor_uint16(array_1->array, array_1->cardinality, array_2->array,
array_2->cardinality, out->array);
#endif
}
static inline int32_t minimum_int32(int32_t a, int32_t b) {
return (a < b) ? a : b;
}
/* computes the intersection of array1 and array2 and write the result to
* arrayout.
* It is assumed that arrayout is distinct from both array1 and array2.
* */
void array_container_intersection(const array_container_t *array1,
const array_container_t *array2,
array_container_t *out) {
int32_t card_1 = array1->cardinality, card_2 = array2->cardinality,
min_card = minimum_int32(card_1, card_2);
const int threshold = 64; // subject to tuning
#ifdef USEAVX
if (out->capacity < min_card) {
array_container_grow(out, min_card + sizeof(__m128i) / sizeof(uint16_t),
false);
}
#else
if (out->capacity < min_card) {
array_container_grow(out, min_card, false);
}
#endif
if (card_1 * threshold < card_2) {
out->cardinality = intersect_skewed_uint16(
array1->array, card_1, array2->array, card_2, out->array);
} else if (card_2 * threshold < card_1) {
out->cardinality = intersect_skewed_uint16(
array2->array, card_2, array1->array, card_1, out->array);
} else {
#ifdef USEAVX
out->cardinality = intersect_vector16(
array1->array, card_1, array2->array, card_2, out->array);
#else
out->cardinality = intersect_uint16(array1->array, card_1,
array2->array, card_2, out->array);
#endif
}
}
/* computes the size of the intersection of array1 and array2
* */
int array_container_intersection_cardinality(const array_container_t *array1,
const array_container_t *array2) {
int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
const int threshold = 64; // subject to tuning
if (card_1 * threshold < card_2) {
return intersect_skewed_uint16_cardinality(array1->array, card_1,
array2->array, card_2);
} else if (card_2 * threshold < card_1) {
return intersect_skewed_uint16_cardinality(array2->array, card_2,
array1->array, card_1);
} else {
#ifdef USEAVX
return intersect_vector16_cardinality(array1->array, card_1,
array2->array, card_2);
#else
return intersect_uint16_cardinality(array1->array, card_1,
array2->array, card_2);
#endif
}
}
bool array_container_intersect(const array_container_t *array1,
const array_container_t *array2) {
int32_t card_1 = array1->cardinality, card_2 = array2->cardinality;
const int threshold = 64; // subject to tuning
if (card_1 * threshold < card_2) {
return intersect_skewed_uint16_nonempty(
array1->array, card_1, array2->array, card_2);
} else if (card_2 * threshold < card_1) {
return intersect_skewed_uint16_nonempty(
array2->array, card_2, array1->array, card_1);
} else {
// we do not bother vectorizing
return intersect_uint16_nonempty(array1->array, card_1,
array2->array, card_2);
}
}
/* computes the intersection of array1 and array2 and write the result to
* array1.
* */
void array_container_intersection_inplace(array_container_t *src_1,
const array_container_t *src_2) {
// todo: can any of this be vectorized?
int32_t card_1 = src_1->cardinality, card_2 = src_2->cardinality;
const int threshold = 64; // subject to tuning
if (card_1 * threshold < card_2) {
src_1->cardinality = intersect_skewed_uint16(
src_1->array, card_1, src_2->array, card_2, src_1->array);
} else if (card_2 * threshold < card_1) {
src_1->cardinality = intersect_skewed_uint16(
src_2->array, card_2, src_1->array, card_1, src_1->array);
} else {
src_1->cardinality = intersect_uint16(
src_1->array, card_1, src_2->array, card_2, src_1->array);
}
}
int array_container_to_uint32_array(void *vout, const array_container_t *cont,
uint32_t base) {
int outpos = 0;
uint32_t *out = (uint32_t *)vout;
for (int i = 0; i < cont->cardinality; ++i) {
const uint32_t val = base + cont->array[i];
memcpy(out + outpos, &val,
sizeof(uint32_t)); // should be compiled as a MOV on x64
outpos++;
}
return outpos;
}
void array_container_printf(const array_container_t *v) {
if (v->cardinality == 0) {
printf("{}");
return;
}
printf("{");
printf("%d", v->array[0]);
for (int i = 1; i < v->cardinality; ++i) {
printf(",%d", v->array[i]);
}
printf("}");
}
void array_container_printf_as_uint32_array(const array_container_t *v,
uint32_t base) {
if (v->cardinality == 0) {
return;
}
printf("%u", v->array[0] + base);
for (int i = 1; i < v->cardinality; ++i) {
printf(",%u", v->array[i] + base);
}
}
/* Compute the number of runs */
int32_t array_container_number_of_runs(const array_container_t *a) {
// Can SIMD work here?
int32_t nr_runs = 0;
int32_t prev = -2;
for (const uint16_t *p = a->array; p != a->array + a->cardinality; ++p) {
if (*p != prev + 1) nr_runs++;
prev = *p;
}
return nr_runs;
}
int32_t array_container_serialize(const array_container_t *container, char *buf) {
int32_t l, off;
uint16_t cardinality = (uint16_t)container->cardinality;
memcpy(buf, &cardinality, off = sizeof(cardinality));
l = sizeof(uint16_t) * container->cardinality;
if (l) memcpy(&buf[off], container->array, l);
return (off + l);
}
/**
* Writes the underlying array to buf, outputs how many bytes were written.
* The number of bytes written should be
* array_container_size_in_bytes(container).
*
*/
int32_t array_container_write(const array_container_t *container, char *buf) {
memcpy(buf, container->array, container->cardinality * sizeof(uint16_t));
return array_container_size_in_bytes(container);
}
bool array_container_is_subset(const array_container_t *container1,
const array_container_t *container2) {
if (container1->cardinality > container2->cardinality) {
return false;
}
int i1 = 0, i2 = 0;
while (i1 < container1->cardinality && i2 < container2->cardinality) {
if (container1->array[i1] == container2->array[i2]) {
i1++;
i2++;
} else if (container1->array[i1] > container2->array[i2]) {
i2++;
} else { // container1->array[i1] < container2->array[i2]
return false;
}
}
if (i1 == container1->cardinality) {
return true;
} else {
return false;
}
}
int32_t array_container_read(int32_t cardinality, array_container_t *container,
const char *buf) {
if (container->capacity < cardinality) {
array_container_grow(container, cardinality, false);
}
container->cardinality = cardinality;
memcpy(container->array, buf, container->cardinality * sizeof(uint16_t));
return array_container_size_in_bytes(container);
}
uint32_t array_container_serialization_len(const array_container_t *container) {
return (sizeof(uint16_t) /* container->cardinality converted to 16 bit */ +
(sizeof(uint16_t) * container->cardinality));
}
void *array_container_deserialize(const char *buf, size_t buf_len) {
array_container_t *ptr;
if (buf_len < 2) /* capacity converted to 16 bit */
return (NULL);
else
buf_len -= 2;
if ((ptr = (array_container_t *)malloc(sizeof(array_container_t))) !=
NULL) {
size_t len;
int32_t off;
uint16_t cardinality;
memcpy(&cardinality, buf, off = sizeof(cardinality));
ptr->capacity = ptr->cardinality = (uint32_t)cardinality;
len = sizeof(uint16_t) * ptr->cardinality;
if (len != buf_len) {
free(ptr);
return (NULL);
}
if ((ptr->array = (uint16_t *)malloc(sizeof(uint16_t) *
ptr->capacity)) == NULL) {
free(ptr);
return (NULL);
}
if (len) memcpy(ptr->array, &buf[off], len);
/* Check if returned values are monotonically increasing */
for (int32_t i = 0, j = 0; i < ptr->cardinality; i++) {
if (ptr->array[i] < j) {
free(ptr->array);
free(ptr);
return (NULL);
} else
j = ptr->array[i];
}
}
return (ptr);
}
bool array_container_iterate(const array_container_t *cont, uint32_t base,
roaring_iterator iterator, void *ptr) {
for (int i = 0; i < cont->cardinality; i++)
if (!iterator(cont->array[i] + base, ptr)) return false;
return true;
}
bool array_container_iterate64(const array_container_t *cont, uint32_t base,
roaring_iterator64 iterator, uint64_t high_bits,
void *ptr) {
for (int i = 0; i < cont->cardinality; i++)
if (!iterator(high_bits | (uint64_t)(cont->array[i] + base), ptr))
return false;
return true;
}
/* end file src/containers/array.c */
/* begin file src/containers/bitset.c */
/*
* bitset.c
*
*/
#ifndef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200809L
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void bitset_container_clear(bitset_container_t *bitset) {
memset(bitset->array, 0, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
bitset->cardinality = 0;
}
void bitset_container_set_all(bitset_container_t *bitset) {
memset(bitset->array, INT64_C(-1),
sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
bitset->cardinality = (1 << 16);
}
/* Create a new bitset. Return NULL in case of failure. */
bitset_container_t *bitset_container_create(void) {
bitset_container_t *bitset =
(bitset_container_t *)malloc(sizeof(bitset_container_t));
if (!bitset) {
return NULL;
}
// sizeof(__m256i) == 32
bitset->array = (uint64_t *)roaring_bitmap_aligned_malloc(
32, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
if (!bitset->array) {
free(bitset);
return NULL;
}
bitset_container_clear(bitset);
return bitset;
}
/* Copy one container into another. We assume that they are distinct. */
void bitset_container_copy(const bitset_container_t *source,
bitset_container_t *dest) {
dest->cardinality = source->cardinality;
memcpy(dest->array, source->array,
sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
}
void bitset_container_add_from_range(bitset_container_t *bitset, uint32_t min,
uint32_t max, uint16_t step) {
if (step == 0) return; // refuse to crash
if ((64 % step) == 0) { // step divides 64
uint64_t mask = 0; // construct the repeated mask
for (uint32_t value = (min % step); value < 64; value += step) {
mask |= ((uint64_t)1 << value);
}
uint32_t firstword = min / 64;
uint32_t endword = (max - 1) / 64;
bitset->cardinality = (max - min + step - 1) / step;
if (firstword == endword) {
bitset->array[firstword] |=
mask & (((~UINT64_C(0)) << (min % 64)) &
((~UINT64_C(0)) >> ((~max + 1) % 64)));
return;
}
bitset->array[firstword] = mask & ((~UINT64_C(0)) << (min % 64));
for (uint32_t i = firstword + 1; i < endword; i++)
bitset->array[i] = mask;
bitset->array[endword] = mask & ((~UINT64_C(0)) >> ((~max + 1) % 64));
} else {
for (uint32_t value = min; value < max; value += step) {
bitset_container_add(bitset, value);
}
}
}
/* Free memory. */
void bitset_container_free(bitset_container_t *bitset) {
if(bitset->array != NULL) {// Jon Strabala reports that some tools complain otherwise
roaring_bitmap_aligned_free(bitset->array);
bitset->array = NULL; // pedantic
}
free(bitset);
}
/* duplicate container. */
bitset_container_t *bitset_container_clone(const bitset_container_t *src) {
bitset_container_t *bitset =
(bitset_container_t *)malloc(sizeof(bitset_container_t));
assert(bitset);
// sizeof(__m256i) == 32
bitset->array = (uint64_t *)roaring_bitmap_aligned_malloc(
32, sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
assert(bitset->array);
bitset->cardinality = src->cardinality;
memcpy(bitset->array, src->array,
sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
return bitset;
}
void bitset_container_set_range(bitset_container_t *bitset, uint32_t begin,
uint32_t end) {
bitset_set_range(bitset->array, begin, end);
bitset->cardinality =
bitset_container_compute_cardinality(bitset); // could be smarter
}
bool bitset_container_intersect(const bitset_container_t *src_1,
const bitset_container_t *src_2) {
// could vectorize, but this is probably already quite fast in practice
const uint64_t * __restrict__ array_1 = src_1->array;
const uint64_t * __restrict__ array_2 = src_2->array;
for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i ++) {
if((array_1[i] & array_2[i]) != 0) return true;
}
return false;
}
#ifdef USEAVX
#ifndef WORDS_IN_AVX2_REG
#define WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
#endif
/* Get the number of bits set (force computation) */
int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
return (int) avx2_harley_seal_popcount256(
(const __m256i *)bitset->array,
BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));
}
#elif defined(USENEON)
int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
uint16x8_t n0 = vdupq_n_u16(0);
uint16x8_t n1 = vdupq_n_u16(0);
uint16x8_t n2 = vdupq_n_u16(0);
uint16x8_t n3 = vdupq_n_u16(0);
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) {
uint64x2_t c0 = vld1q_u64(&bitset->array[i + 0]);
n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0))));
uint64x2_t c1 = vld1q_u64(&bitset->array[i + 2]);
n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1))));
uint64x2_t c2 = vld1q_u64(&bitset->array[i + 4]);
n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2))));
uint64x2_t c3 = vld1q_u64(&bitset->array[i + 6]);
n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3))));
}
uint64x2_t n = vdupq_n_u64(0);
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0)));
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1)));
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2)));
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3)));
return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1);
}
#else
/* Get the number of bits set (force computation) */
int bitset_container_compute_cardinality(const bitset_container_t *bitset) {
const uint64_t *array = bitset->array;
int32_t sum = 0;
for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 4) {
sum += hamming(array[i]);
sum += hamming(array[i + 1]);
sum += hamming(array[i + 2]);
sum += hamming(array[i + 3]);
}
return sum;
}
#endif
#ifdef USEAVX
#define BITSET_CONTAINER_FN_REPEAT 8
#ifndef WORDS_IN_AVX2_REG
#define WORDS_IN_AVX2_REG sizeof(__m256i) / sizeof(uint64_t)
#endif
#define LOOP_SIZE \
BITSET_CONTAINER_SIZE_IN_WORDS / \
((WORDS_IN_AVX2_REG)*BITSET_CONTAINER_FN_REPEAT)
/* Computes a binary operation (eg union) on bitset1 and bitset2 and write the
result to bitsetout */
// clang-format off
#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \
int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
const bitset_container_t *src_2, \
bitset_container_t *dst) { \
const uint8_t * __restrict__ array_1 = (const uint8_t *)src_1->array; \
const uint8_t * __restrict__ array_2 = (const uint8_t *)src_2->array; \
/* not using the blocking optimization for some reason*/ \
uint8_t *out = (uint8_t*)dst->array; \
const int innerloop = 8; \
for (size_t i = 0; \
i < BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG); \
i+=innerloop) {\
__m256i A1, A2, AO; \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)out, AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 32)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 32)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+32), AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 64)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 64)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+64), AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 96)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 96)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+96), AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 128)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 128)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+128), AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 160)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 160)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+160), AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 192)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 192)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+192), AO); \
A1 = _mm256_lddqu_si256((const __m256i *)(array_1 + 224)); \
A2 = _mm256_lddqu_si256((const __m256i *)(array_2 + 224)); \
AO = avx_intrinsic(A2, A1); \
_mm256_storeu_si256((__m256i *)(out+224), AO); \
out+=256; \
array_1 += 256; \
array_2 += 256; \
} \
dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
return dst->cardinality; \
} \
/* next, a version that updates cardinality*/ \
int bitset_container_##opname(const bitset_container_t *src_1, \
const bitset_container_t *src_2, \
bitset_container_t *dst) { \
const __m256i * __restrict__ array_1 = (const __m256i *) src_1->array; \
const __m256i * __restrict__ array_2 = (const __m256i *) src_2->array; \
__m256i *out = (__m256i *) dst->array; \
dst->cardinality = (int32_t)avx2_harley_seal_popcount256andstore_##opname(array_2,\
array_1, out,BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));\
return dst->cardinality; \
} \
/* next, a version that just computes the cardinality*/ \
int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
const bitset_container_t *src_2) { \
const __m256i * __restrict__ data1 = (const __m256i *) src_1->array; \
const __m256i * __restrict__ data2 = (const __m256i *) src_2->array; \
return (int)avx2_harley_seal_popcount256_##opname(data2, \
data1, BITSET_CONTAINER_SIZE_IN_WORDS / (WORDS_IN_AVX2_REG));\
}
#elif defined(USENEON)
#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \
int bitset_container_##opname(const bitset_container_t *src_1, \
const bitset_container_t *src_2, \
bitset_container_t *dst) { \
const uint64_t * __restrict__ array_1 = src_1->array; \
const uint64_t * __restrict__ array_2 = src_2->array; \
uint64_t *out = dst->array; \
uint16x8_t n0 = vdupq_n_u16(0); \
uint16x8_t n1 = vdupq_n_u16(0); \
uint16x8_t n2 = vdupq_n_u16(0); \
uint16x8_t n3 = vdupq_n_u16(0); \
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
uint64x2_t c0 = neon_intrinsic(vld1q_u64(&array_1[i + 0]), \
vld1q_u64(&array_2[i + 0])); \
n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \
vst1q_u64(&out[i + 0], c0); \
uint64x2_t c1 = neon_intrinsic(vld1q_u64(&array_1[i + 2]), \
vld1q_u64(&array_2[i + 2])); \
n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \
vst1q_u64(&out[i + 2], c1); \
uint64x2_t c2 = neon_intrinsic(vld1q_u64(&array_1[i + 4]), \
vld1q_u64(&array_2[i + 4])); \
n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \
vst1q_u64(&out[i + 4], c2); \
uint64x2_t c3 = neon_intrinsic(vld1q_u64(&array_1[i + 6]), \
vld1q_u64(&array_2[i + 6])); \
n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \
vst1q_u64(&out[i + 6], c3); \
} \
uint64x2_t n = vdupq_n_u64(0); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \
dst->cardinality = vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \
return dst->cardinality; \
} \
int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
const bitset_container_t *src_2, \
bitset_container_t *dst) { \
const uint64_t * __restrict__ array_1 = src_1->array; \
const uint64_t * __restrict__ array_2 = src_2->array; \
uint64_t *out = dst->array; \
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
vst1q_u64(&out[i + 0], neon_intrinsic(vld1q_u64(&array_1[i + 0]), \
vld1q_u64(&array_2[i + 0]))); \
vst1q_u64(&out[i + 2], neon_intrinsic(vld1q_u64(&array_1[i + 2]), \
vld1q_u64(&array_2[i + 2]))); \
vst1q_u64(&out[i + 4], neon_intrinsic(vld1q_u64(&array_1[i + 4]), \
vld1q_u64(&array_2[i + 4]))); \
vst1q_u64(&out[i + 6], neon_intrinsic(vld1q_u64(&array_1[i + 6]), \
vld1q_u64(&array_2[i + 6]))); \
} \
dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
return dst->cardinality; \
} \
int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
const bitset_container_t *src_2) { \
const uint64_t * __restrict__ array_1 = src_1->array; \
const uint64_t * __restrict__ array_2 = src_2->array; \
uint16x8_t n0 = vdupq_n_u16(0); \
uint16x8_t n1 = vdupq_n_u16(0); \
uint16x8_t n2 = vdupq_n_u16(0); \
uint16x8_t n3 = vdupq_n_u16(0); \
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 8) { \
uint64x2_t c0 = neon_intrinsic(vld1q_u64(&array_1[i + 0]), \
vld1q_u64(&array_2[i + 0])); \
n0 = vaddq_u16(n0, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c0)))); \
uint64x2_t c1 = neon_intrinsic(vld1q_u64(&array_1[i + 2]), \
vld1q_u64(&array_2[i + 2])); \
n1 = vaddq_u16(n1, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c1)))); \
uint64x2_t c2 = neon_intrinsic(vld1q_u64(&array_1[i + 4]), \
vld1q_u64(&array_2[i + 4])); \
n2 = vaddq_u16(n2, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c2)))); \
uint64x2_t c3 = neon_intrinsic(vld1q_u64(&array_1[i + 6]), \
vld1q_u64(&array_2[i + 6])); \
n3 = vaddq_u16(n3, vpaddlq_u8(vcntq_u8(vreinterpretq_u8_u64(c3)))); \
} \
uint64x2_t n = vdupq_n_u64(0); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n0))); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n1))); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n2))); \
n = vaddq_u64(n, vpaddlq_u32(vpaddlq_u16(n3))); \
return vgetq_lane_u64(n, 0) + vgetq_lane_u64(n, 1); \
}
#else /* not USEAVX */
#define BITSET_CONTAINER_FN(opname, opsymbol, avx_intrinsic, neon_intrinsic) \
int bitset_container_##opname(const bitset_container_t *src_1, \
const bitset_container_t *src_2, \
bitset_container_t *dst) { \
const uint64_t * __restrict__ array_1 = src_1->array; \
const uint64_t * __restrict__ array_2 = src_2->array; \
uint64_t *out = dst->array; \
int32_t sum = 0; \
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \
const uint64_t word_1 = (array_1[i])opsymbol(array_2[i]), \
word_2 = (array_1[i + 1])opsymbol(array_2[i + 1]); \
out[i] = word_1; \
out[i + 1] = word_2; \
sum += hamming(word_1); \
sum += hamming(word_2); \
} \
dst->cardinality = sum; \
return dst->cardinality; \
} \
int bitset_container_##opname##_nocard(const bitset_container_t *src_1, \
const bitset_container_t *src_2, \
bitset_container_t *dst) { \
const uint64_t * __restrict__ array_1 = src_1->array; \
const uint64_t * __restrict__ array_2 = src_2->array; \
uint64_t *out = dst->array; \
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i++) { \
out[i] = (array_1[i])opsymbol(array_2[i]); \
} \
dst->cardinality = BITSET_UNKNOWN_CARDINALITY; \
return dst->cardinality; \
} \
int bitset_container_##opname##_justcard(const bitset_container_t *src_1, \
const bitset_container_t *src_2) { \
const uint64_t * __restrict__ array_1 = src_1->array; \
const uint64_t * __restrict__ array_2 = src_2->array; \
int32_t sum = 0; \
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 2) { \
const uint64_t word_1 = (array_1[i])opsymbol(array_2[i]), \
word_2 = (array_1[i + 1])opsymbol(array_2[i + 1]); \
sum += hamming(word_1); \
sum += hamming(word_2); \
} \
return sum; \
}
#endif
// we duplicate the function because other containers use the "or" term, makes API more consistent
BITSET_CONTAINER_FN(or, |, _mm256_or_si256, vorrq_u64)
BITSET_CONTAINER_FN(union, |, _mm256_or_si256, vorrq_u64)
// we duplicate the function because other containers use the "intersection" term, makes API more consistent
BITSET_CONTAINER_FN(and, &, _mm256_and_si256, vandq_u64)
BITSET_CONTAINER_FN(intersection, &, _mm256_and_si256, vandq_u64)
BITSET_CONTAINER_FN(xor, ^, _mm256_xor_si256, veorq_u64)
BITSET_CONTAINER_FN(andnot, &~, _mm256_andnot_si256, vbicq_u64)
// clang-format On
int bitset_container_to_uint32_array( void *vout, const bitset_container_t *cont, uint32_t base) {
#ifdef USEAVX2FORDECODING
if(cont->cardinality >= 8192)// heuristic
return (int) bitset_extract_setbits_avx2(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,cont->cardinality,base);
else
return (int) bitset_extract_setbits(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,base);
#else
return (int) bitset_extract_setbits(cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, vout,base);
#endif
}
/*
* Print this container using printf (useful for debugging).
*/
void bitset_container_printf(const bitset_container_t * v) {
printf("{");
uint32_t base = 0;
bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable
for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
uint64_t w = v->array[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
if(iamfirst) {// predicted to be false
printf("%u",base + r);
iamfirst = false;
} else {
printf(",%u",base + r);
}
w ^= t;
}
base += 64;
}
printf("}");
}
/*
* Print this container using printf as a comma-separated list of 32-bit integers starting at base.
*/
void bitset_container_printf_as_uint32_array(const bitset_container_t * v, uint32_t base) {
bool iamfirst = true;// TODO: rework so that this is not necessary yet still readable
for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
uint64_t w = v->array[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
if(iamfirst) {// predicted to be false
printf("%u", r + base);
iamfirst = false;
} else {
printf(",%u",r + base);
}
w ^= t;
}
base += 64;
}
}
// TODO: use the fast lower bound, also
int bitset_container_number_of_runs(bitset_container_t *b) {
int num_runs = 0;
uint64_t next_word = b->array[0];
for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS-1; ++i) {
uint64_t word = next_word;
next_word = b->array[i+1];
num_runs += hamming((~word) & (word << 1)) + ( (word >> 63) & ~next_word);
}
uint64_t word = next_word;
num_runs += hamming((~word) & (word << 1));
if((word & 0x8000000000000000ULL) != 0)
num_runs++;
return num_runs;
}
int32_t bitset_container_serialize(const bitset_container_t *container, char *buf) {
int32_t l = sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS;
memcpy(buf, container->array, l);
return(l);
}
int32_t bitset_container_write(const bitset_container_t *container,
char *buf) {
memcpy(buf, container->array, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
return bitset_container_size_in_bytes(container);
}
int32_t bitset_container_read(int32_t cardinality, bitset_container_t *container,
const char *buf) {
container->cardinality = cardinality;
memcpy(container->array, buf, BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
return bitset_container_size_in_bytes(container);
}
uint32_t bitset_container_serialization_len(void) {
return(sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS);
}
void* bitset_container_deserialize(const char *buf, size_t buf_len) {
bitset_container_t *ptr;
size_t l = sizeof(uint64_t) * BITSET_CONTAINER_SIZE_IN_WORDS;
if(l != buf_len)
return(NULL);
if((ptr = (bitset_container_t *)malloc(sizeof(bitset_container_t))) != NULL) {
memcpy(ptr, buf, sizeof(bitset_container_t));
// sizeof(__m256i) == 32
ptr->array = (uint64_t *) roaring_bitmap_aligned_malloc(32, l);
if (! ptr->array) {
free(ptr);
return NULL;
}
memcpy(ptr->array, buf, l);
ptr->cardinality = bitset_container_compute_cardinality(ptr);
}
return((void*)ptr);
}
bool bitset_container_iterate(const bitset_container_t *cont, uint32_t base, roaring_iterator iterator, void *ptr) {
for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
uint64_t w = cont->array[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
if(!iterator(r + base, ptr)) return false;
w ^= t;
}
base += 64;
}
return true;
}
bool bitset_container_iterate64(const bitset_container_t *cont, uint32_t base, roaring_iterator64 iterator, uint64_t high_bits, void *ptr) {
for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
uint64_t w = cont->array[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
if(!iterator(high_bits | (uint64_t)(r + base), ptr)) return false;
w ^= t;
}
base += 64;
}
return true;
}
bool bitset_container_equals(const bitset_container_t *container1, const bitset_container_t *container2) {
if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
if(container1->cardinality != container2->cardinality) {
return false;
}
if (container1->cardinality == INT32_C(0x10000)) {
return true;
}
}
#ifdef USEAVX
const __m256i *ptr1 = (const __m256i*)container1->array;
const __m256i *ptr2 = (const __m256i*)container2->array;
for (size_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)/32; i++) {
__m256i r1 = _mm256_load_si256(ptr1+i);
__m256i r2 = _mm256_load_si256(ptr2+i);
int mask = _mm256_movemask_epi8(_mm256_cmpeq_epi8(r1, r2));
if ((uint32_t)mask != UINT32_MAX) {
return false;
}
}
#else
return memcmp(container1->array,
container2->array,
BITSET_CONTAINER_SIZE_IN_WORDS*sizeof(uint64_t)) == 0;
#endif
return true;
}
bool bitset_container_is_subset(const bitset_container_t *container1,
const bitset_container_t *container2) {
if((container1->cardinality != BITSET_UNKNOWN_CARDINALITY) && (container2->cardinality != BITSET_UNKNOWN_CARDINALITY)) {
if(container1->cardinality > container2->cardinality) {
return false;
}
}
for(int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
if((container1->array[i] & container2->array[i]) != container1->array[i]) {
return false;
}
}
return true;
}
bool bitset_container_select(const bitset_container_t *container, uint32_t *start_rank, uint32_t rank, uint32_t *element) {
int card = bitset_container_cardinality(container);
if(rank >= *start_rank + card) {
*start_rank += card;
return false;
}
const uint64_t *array = container->array;
int32_t size;
for (int i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; i += 1) {
size = hamming(array[i]);
if(rank <= *start_rank + size) {
uint64_t w = container->array[i];
uint16_t base = i*64;
while (w != 0) {
uint64_t t = w & (~w + 1);
int r = __builtin_ctzll(w);
if(*start_rank == rank) {
*element = r+base;
return true;
}
w ^= t;
*start_rank += 1;
}
}
else
*start_rank += size;
}
assert(false);
__builtin_unreachable();
}
/* Returns the smallest value (assumes not empty) */
uint16_t bitset_container_minimum(const bitset_container_t *container) {
for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i ) {
uint64_t w = container->array[i];
if (w != 0) {
int r = __builtin_ctzll(w);
return r + i * 64;
}
}
return UINT16_MAX;
}
/* Returns the largest value (assumes not empty) */
uint16_t bitset_container_maximum(const bitset_container_t *container) {
for (int32_t i = BITSET_CONTAINER_SIZE_IN_WORDS - 1; i > 0; --i ) {
uint64_t w = container->array[i];
if (w != 0) {
int r = __builtin_clzll(w);
return i * 64 + 63 - r;
}
}
return 0;
}
/* Returns the number of values equal or smaller than x */
int bitset_container_rank(const bitset_container_t *container, uint16_t x) {
// credit: aqrit
int sum = 0;
int i = 0;
for (int end = x / 64; i < end; i++){
sum += hamming(container->array[i]);
}
uint64_t lastword = container->array[i];
uint64_t lastpos = UINT64_C(1) << (x % 64);
uint64_t mask = lastpos + lastpos - 1; // smear right
sum += hamming(lastword & mask);
return sum;
}
/* Returns the index of the first value equal or larger than x, or -1 */
int bitset_container_index_equalorlarger(const bitset_container_t *container, uint16_t x) {
uint32_t x32 = x;
uint32_t k = x32 / 64;
uint64_t word = container->array[k];
const int diff = x32 - k * 64; // in [0,64)
word = (word >> diff) << diff; // a mask is faster, but we don't care
while(word == 0) {
k++;
if(k == BITSET_CONTAINER_SIZE_IN_WORDS) return -1;
word = container->array[k];
}
return k * 64 + __builtin_ctzll(word);
}
/* end file src/containers/bitset.c */
/* begin file src/containers/containers.c */
void container_free(void *container, uint8_t typecode) {
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
bitset_container_free((bitset_container_t *)container);
break;
case ARRAY_CONTAINER_TYPE_CODE:
array_container_free((array_container_t *)container);
break;
case RUN_CONTAINER_TYPE_CODE:
run_container_free((run_container_t *)container);
break;
case SHARED_CONTAINER_TYPE_CODE:
shared_container_free((shared_container_t *)container);
break;
default:
assert(false);
__builtin_unreachable();
}
}
void container_printf(const void *container, uint8_t typecode) {
container = container_unwrap_shared(container, &typecode);
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
bitset_container_printf((const bitset_container_t *)container);
return;
case ARRAY_CONTAINER_TYPE_CODE:
array_container_printf((const array_container_t *)container);
return;
case RUN_CONTAINER_TYPE_CODE:
run_container_printf((const run_container_t *)container);
return;
default:
__builtin_unreachable();
}
}
void container_printf_as_uint32_array(const void *container, uint8_t typecode,
uint32_t base) {
container = container_unwrap_shared(container, &typecode);
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
bitset_container_printf_as_uint32_array(
(const bitset_container_t *)container, base);
return;
case ARRAY_CONTAINER_TYPE_CODE:
array_container_printf_as_uint32_array(
(const array_container_t *)container, base);
return;
case RUN_CONTAINER_TYPE_CODE:
run_container_printf_as_uint32_array(
(const run_container_t *)container, base);
return;
return;
default:
__builtin_unreachable();
}
}
int32_t container_serialize(const void *container, uint8_t typecode,
char *buf) {
container = container_unwrap_shared(container, &typecode);
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
return (bitset_container_serialize((const bitset_container_t *)container,
buf));
case ARRAY_CONTAINER_TYPE_CODE:
return (
array_container_serialize((const array_container_t *)container, buf));
case RUN_CONTAINER_TYPE_CODE:
return (run_container_serialize((const run_container_t *)container, buf));
default:
assert(0);
__builtin_unreachable();
return (-1);
}
}
uint32_t container_serialization_len(const void *container, uint8_t typecode) {
container = container_unwrap_shared(container, &typecode);
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
return bitset_container_serialization_len();
case ARRAY_CONTAINER_TYPE_CODE:
return array_container_serialization_len(
(const array_container_t *)container);
case RUN_CONTAINER_TYPE_CODE:
return run_container_serialization_len(
(const run_container_t *)container);
default:
assert(0);
__builtin_unreachable();
return (0);
}
}
void *container_deserialize(uint8_t typecode, const char *buf, size_t buf_len) {
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
return (bitset_container_deserialize(buf, buf_len));
case ARRAY_CONTAINER_TYPE_CODE:
return (array_container_deserialize(buf, buf_len));
case RUN_CONTAINER_TYPE_CODE:
return (run_container_deserialize(buf, buf_len));
case SHARED_CONTAINER_TYPE_CODE:
printf("this should never happen.\n");
assert(0);
__builtin_unreachable();
return (NULL);
default:
assert(0);
__builtin_unreachable();
return (NULL);
}
}
void *get_copy_of_container(void *container, uint8_t *typecode,
bool copy_on_write) {
if (copy_on_write) {
shared_container_t *shared_container;
if (*typecode == SHARED_CONTAINER_TYPE_CODE) {
shared_container = (shared_container_t *)container;
shared_container->counter += 1;
return shared_container;
}
assert(*typecode != SHARED_CONTAINER_TYPE_CODE);
if ((shared_container = (shared_container_t *)malloc(
sizeof(shared_container_t))) == NULL) {
return NULL;
}
shared_container->container = container;
shared_container->typecode = *typecode;
shared_container->counter = 2;
*typecode = SHARED_CONTAINER_TYPE_CODE;
return shared_container;
} // copy_on_write
// otherwise, no copy on write...
const void *actualcontainer =
container_unwrap_shared((const void *)container, typecode);
assert(*typecode != SHARED_CONTAINER_TYPE_CODE);
return container_clone(actualcontainer, *typecode);
}
/**
* Copies a container, requires a typecode. This allocates new memory, caller
* is responsible for deallocation.
*/
void *container_clone(const void *container, uint8_t typecode) {
container = container_unwrap_shared(container, &typecode);
switch (typecode) {
case BITSET_CONTAINER_TYPE_CODE:
return bitset_container_clone((const bitset_container_t *)container);
case ARRAY_CONTAINER_TYPE_CODE:
return array_container_clone((const array_container_t *)container);
case RUN_CONTAINER_TYPE_CODE:
return run_container_clone((const run_container_t *)container);
case SHARED_CONTAINER_TYPE_CODE:
printf("shared containers are not cloneable\n");
assert(false);
return NULL;
default:
assert(false);
__builtin_unreachable();
return NULL;
}
}
void *shared_container_extract_copy(shared_container_t *container,
uint8_t *typecode) {
assert(container->counter > 0);
assert(container->typecode != SHARED_CONTAINER_TYPE_CODE);
container->counter--;
*typecode = container->typecode;
void *answer;
if (container->counter == 0) {
answer = container->container;
container->container = NULL; // paranoid
free(container);
} else {
answer = container_clone(container->container, *typecode);
}
assert(*typecode != SHARED_CONTAINER_TYPE_CODE);
return answer;
}
void shared_container_free(shared_container_t *container) {
assert(container->counter > 0);
container->counter--;
if (container->counter == 0) {
assert(container->typecode != SHARED_CONTAINER_TYPE_CODE);
container_free(container->container, container->typecode);
container->container = NULL; // paranoid
free(container);
}
}
/* end file src/containers/containers.c */
/* begin file src/containers/convert.c */
#include <stdio.h>
// file contains grubby stuff that must know impl. details of all container
// types.
bitset_container_t *bitset_container_from_array(const array_container_t *a) {
bitset_container_t *ans = bitset_container_create();
int limit = array_container_cardinality(a);
for (int i = 0; i < limit; ++i) bitset_container_set(ans, a->array[i]);
return ans;
}
bitset_container_t *bitset_container_from_run(const run_container_t *arr) {
int card = run_container_cardinality(arr);
bitset_container_t *answer = bitset_container_create();
for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
rle16_t vl = arr->runs[rlepos];
bitset_set_lenrange(answer->array, vl.value, vl.length);
}
answer->cardinality = card;
return answer;
}
array_container_t *array_container_from_run(const run_container_t *arr) {
array_container_t *answer =
array_container_create_given_capacity(run_container_cardinality(arr));
answer->cardinality = 0;
for (int rlepos = 0; rlepos < arr->n_runs; ++rlepos) {
int run_start = arr->runs[rlepos].value;
int run_end = run_start + arr->runs[rlepos].length;
for (int run_value = run_start; run_value <= run_end; ++run_value) {
answer->array[answer->cardinality++] = (uint16_t)run_value;
}
}
return answer;
}
array_container_t *array_container_from_bitset(const bitset_container_t *bits) {
array_container_t *result =
array_container_create_given_capacity(bits->cardinality);
result->cardinality = bits->cardinality;
// sse version ends up being slower here
// (bitset_extract_setbits_sse_uint16)
// because of the sparsity of the data
bitset_extract_setbits_uint16(bits->array, BITSET_CONTAINER_SIZE_IN_WORDS,
result->array, 0);
return result;
}
/* assumes that container has adequate space. Run from [s,e] (inclusive) */
static void add_run(run_container_t *r, int s, int e) {
r->runs[r->n_runs].value = s;
r->runs[r->n_runs].length = e - s;
r->n_runs++;
}
run_container_t *run_container_from_array(const array_container_t *c) {
int32_t n_runs = array_container_number_of_runs(c);
run_container_t *answer = run_container_create_given_capacity(n_runs);
int prev = -2;
int run_start = -1;
int32_t card = c->cardinality;
if (card == 0) return answer;
for (int i = 0; i < card; ++i) {
const uint16_t cur_val = c->array[i];
if (cur_val != prev + 1) {
// new run starts; flush old one, if any
if (run_start != -1) add_run(answer, run_start, prev);
run_start = cur_val;
}
prev = c->array[i];
}
// now prev is the last seen value
add_run(answer, run_start, prev);
// assert(run_container_cardinality(answer) == c->cardinality);
return answer;
}
/**
* Convert the runcontainer to either a Bitmap or an Array Container, depending
* on the cardinality. Frees the container.
* Allocates and returns new container, which caller is responsible for freeing.
* It does not free the run container.
*/
void *convert_to_bitset_or_array_container(run_container_t *r, int32_t card,
uint8_t *resulttype) {
if (card <= DEFAULT_MAX_SIZE) {
array_container_t *answer = array_container_create_given_capacity(card);
answer->cardinality = 0;
for (int rlepos = 0; rlepos < r->n_runs; ++rlepos) {
uint16_t run_start = r->runs[rlepos].value;
uint16_t run_end = run_start + r->runs[rlepos].length;
for (uint16_t run_value = run_start; run_value <= run_end;
++run_value) {
answer->array[answer->cardinality++] = run_value;
}
}
assert(card == answer->cardinality);
*resulttype = ARRAY_CONTAINER_TYPE_CODE;
//run_container_free(r);
return answer;
}
bitset_container_t *answer = bitset_container_create();
for (int rlepos = 0; rlepos < r->n_runs; ++rlepos) {
uint16_t run_start = r->runs[rlepos].value;
bitset_set_lenrange(answer->array, run_start, r->runs[rlepos].length);
}
answer->cardinality = card;
*resulttype = BITSET_CONTAINER_TYPE_CODE;
//run_container_free(r);
return answer;
}
/* Converts a run container to either an array or a bitset, IF it saves space.
*/
/* If a conversion occurs, the caller is responsible to free the original
* container and
* he becomes responsible to free the new one. */
void *convert_run_to_efficient_container(run_container_t *c,
uint8_t *typecode_after) {
int32_t size_as_run_container =
run_container_serialized_size_in_bytes(c->n_runs);
int32_t size_as_bitset_container =
bitset_container_serialized_size_in_bytes();
int32_t card = run_container_cardinality(c);
int32_t size_as_array_container =
array_container_serialized_size_in_bytes(card);
int32_t min_size_non_run =
size_as_bitset_container < size_as_array_container
? size_as_bitset_container
: size_as_array_container;
if (size_as_run_container <= min_size_non_run) { // no conversion
*typecode_after = RUN_CONTAINER_TYPE_CODE;
return c;
}
if (card <= DEFAULT_MAX_SIZE) {
// to array
array_container_t *answer = array_container_create_given_capacity(card);
answer->cardinality = 0;
for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
int run_start = c->runs[rlepos].value;
int run_end = run_start + c->runs[rlepos].length;
for (int run_value = run_start; run_value <= run_end; ++run_value) {
answer->array[answer->cardinality++] = (uint16_t)run_value;
}
}
*typecode_after = ARRAY_CONTAINER_TYPE_CODE;
return answer;
}
// else to bitset
bitset_container_t *answer = bitset_container_create();
for (int rlepos = 0; rlepos < c->n_runs; ++rlepos) {
int start = c->runs[rlepos].value;
int end = start + c->runs[rlepos].length;
bitset_set_range(answer->array, start, end + 1);
}
answer->cardinality = card;
*typecode_after = BITSET_CONTAINER_TYPE_CODE;
return answer;
}
// like convert_run_to_efficient_container but frees the old result if needed
void *convert_run_to_efficient_container_and_free(run_container_t *c,
uint8_t *typecode_after) {
void *answer = convert_run_to_efficient_container(c, typecode_after);
if (answer != c) run_container_free(c);
return answer;
}
/* once converted, the original container is disposed here, rather than
in roaring_array
*/
// TODO: split into run- array- and bitset- subfunctions for sanity;
// a few function calls won't really matter.
void *convert_run_optimize(void *c, uint8_t typecode_original,
uint8_t *typecode_after) {
if (typecode_original == RUN_CONTAINER_TYPE_CODE) {
void *newc = convert_run_to_efficient_container((run_container_t *)c,
typecode_after);
if (newc != c) {
container_free(c, typecode_original);
}
return newc;
} else if (typecode_original == ARRAY_CONTAINER_TYPE_CODE) {
// it might need to be converted to a run container.
array_container_t *c_qua_array = (array_container_t *)c;
int32_t n_runs = array_container_number_of_runs(c_qua_array);
int32_t size_as_run_container =
run_container_serialized_size_in_bytes(n_runs);
int32_t card = array_container_cardinality(c_qua_array);
int32_t size_as_array_container =
array_container_serialized_size_in_bytes(card);
if (size_as_run_container >= size_as_array_container) {
*typecode_after = ARRAY_CONTAINER_TYPE_CODE;
return c;
}
// else convert array to run container
run_container_t *answer = run_container_create_given_capacity(n_runs);
int prev = -2;
int run_start = -1;
assert(card > 0);
for (int i = 0; i < card; ++i) {
uint16_t cur_val = c_qua_array->array[i];
if (cur_val != prev + 1) {
// new run starts; flush old one, if any
if (run_start != -1) add_run(answer, run_start, prev);
run_start = cur_val;
}
prev = c_qua_array->array[i];
}
assert(run_start >= 0);
// now prev is the last seen value
add_run(answer, run_start, prev);
*typecode_after = RUN_CONTAINER_TYPE_CODE;
array_container_free(c_qua_array);
return answer;
} else if (typecode_original ==
BITSET_CONTAINER_TYPE_CODE) { // run conversions on bitset
// does bitset need conversion to run?
bitset_container_t *c_qua_bitset = (bitset_container_t *)c;
int32_t n_runs = bitset_container_number_of_runs(c_qua_bitset);
int32_t size_as_run_container =
run_container_serialized_size_in_bytes(n_runs);
int32_t size_as_bitset_container =
bitset_container_serialized_size_in_bytes();
if (size_as_bitset_container <= size_as_run_container) {
// no conversion needed.
*typecode_after = BITSET_CONTAINER_TYPE_CODE;
return c;
}
// bitset to runcontainer (ported from Java RunContainer(
// BitmapContainer bc, int nbrRuns))
assert(n_runs > 0); // no empty bitmaps
run_container_t *answer = run_container_create_given_capacity(n_runs);
int long_ctr = 0;
uint64_t cur_word = c_qua_bitset->array[0];
int run_count = 0;
while (true) {
while (cur_word == UINT64_C(0) &&
long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
cur_word = c_qua_bitset->array[++long_ctr];
if (cur_word == UINT64_C(0)) {
bitset_container_free(c_qua_bitset);
*typecode_after = RUN_CONTAINER_TYPE_CODE;
return answer;
}
int local_run_start = __builtin_ctzll(cur_word);
int run_start = local_run_start + 64 * long_ctr;
uint64_t cur_word_with_1s = cur_word | (cur_word - 1);
int run_end = 0;
while (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF) &&
long_ctr < BITSET_CONTAINER_SIZE_IN_WORDS - 1)
cur_word_with_1s = c_qua_bitset->array[++long_ctr];
if (cur_word_with_1s == UINT64_C(0xFFFFFFFFFFFFFFFF)) {
run_end = 64 + long_ctr * 64; // exclusive, I guess
add_run(answer, run_start, run_end - 1);
bitset_container_free(c_qua_bitset);
*typecode_after = RUN_CONTAINER_TYPE_CODE;
return answer;
}
int local_run_end = __builtin_ctzll(~cur_word_with_1s);
run_end = local_run_end + long_ctr * 64;
add_run(answer, run_start, run_end - 1);
run_count++;
cur_word = cur_word_with_1s & (cur_word_with_1s + 1);
}
return answer;
} else {
assert(false);
__builtin_unreachable();
return NULL;
}
}
bitset_container_t *bitset_container_from_run_range(const run_container_t *run,
uint32_t min, uint32_t max) {
bitset_container_t *bitset = bitset_container_create();
int32_t union_cardinality = 0;
for (int32_t i = 0; i < run->n_runs; ++i) {
uint32_t rle_min = run->runs[i].value;
uint32_t rle_max = rle_min + run->runs[i].length;
bitset_set_lenrange(bitset->array, rle_min, rle_max - rle_min);
union_cardinality += run->runs[i].length + 1;
}
union_cardinality += max - min + 1;
union_cardinality -= bitset_lenrange_cardinality(bitset->array, min, max-min);
bitset_set_lenrange(bitset->array, min, max - min);
bitset->cardinality = union_cardinality;
return bitset;
}
/* end file src/containers/convert.c */
/* begin file src/containers/mixed_andnot.c */
/*
* mixed_andnot.c. More methods since operation is not symmetric,
* except no "wide" andnot , so no lazy options motivated.
*/
#include <assert.h>
#include <string.h>
/* Compute the andnot of src_1 and src_2 and write the result to
* dst, a valid array container that could be the same as dst.*/
void array_bitset_container_andnot(const array_container_t *src_1,
const bitset_container_t *src_2,
array_container_t *dst) {
// follows Java implementation as of June 2016
if (dst->capacity < src_1->cardinality) {
array_container_grow(dst, src_1->cardinality, false);
}
int32_t newcard = 0;
const int32_t origcard = src_1->cardinality;
for (int i = 0; i < origcard; ++i) {
uint16_t key = src_1->array[i];
dst->array[newcard] = key;
newcard += 1 - bitset_container_contains(src_2, key);
}
dst->cardinality = newcard;
}
/* Compute the andnot of src_1 and src_2 and write the result to
* src_1 */
void array_bitset_container_iandnot(array_container_t *src_1,
const bitset_container_t *src_2) {
array_bitset_container_andnot(src_1, src_2, src_1);
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst, which does not initially have a valid container.
* Return true for a bitset result; false for array
*/
bool bitset_array_container_andnot(const bitset_container_t *src_1,
const array_container_t *src_2, void **dst) {
// Java did this directly, but we have option of asm or avx
bitset_container_t *result = bitset_container_create();
bitset_container_copy(src_1, result);
result->cardinality =
(int32_t)bitset_clear_list(result->array, (uint64_t)result->cardinality,
src_2->array, (uint64_t)src_2->cardinality);
// do required type conversions.
if (result->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(result);
bitset_container_free(result);
return false;
}
*dst = result;
return true;
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst (which has no container initially). It will modify src_1
* to be dst if the result is a bitset. Otherwise, it will
* free src_1 and dst will be a new array container. In both
* cases, the caller is responsible for deallocating dst.
* Returns true iff dst is a bitset */
bool bitset_array_container_iandnot(bitset_container_t *src_1,
const array_container_t *src_2,
void **dst) {
*dst = src_1;
src_1->cardinality =
(int32_t)bitset_clear_list(src_1->array, (uint64_t)src_1->cardinality,
src_2->array, (uint64_t)src_2->cardinality);
if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(src_1);
bitset_container_free(src_1);
return false; // not bitset
} else
return true;
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst. Result may be either a bitset or an array container
* (returns "result is bitset"). dst does not initially have
* any container, but becomes either a bitset container (return
* result true) or an array container.
*/
bool run_bitset_container_andnot(const run_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
// follows the Java implementation as of June 2016
int card = run_container_cardinality(src_1);
if (card <= DEFAULT_MAX_SIZE) {
// must be an array
array_container_t *answer = array_container_create_given_capacity(card);
answer->cardinality = 0;
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
for (int run_value = rle.value; run_value <= rle.value + rle.length;
++run_value) {
if (!bitset_container_get(src_2, (uint16_t)run_value)) {
answer->array[answer->cardinality++] = (uint16_t)run_value;
}
}
}
*dst = answer;
return false;
} else { // we guess it will be a bitset, though have to check guess when
// done
bitset_container_t *answer = bitset_container_clone(src_2);
uint32_t last_pos = 0;
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
uint32_t start = rle.value;
uint32_t end = start + rle.length + 1;
bitset_reset_range(answer->array, last_pos, start);
bitset_flip_range(answer->array, start, end);
last_pos = end;
}
bitset_reset_range(answer->array, last_pos, (uint32_t)(1 << 16));
answer->cardinality = bitset_container_compute_cardinality(answer);
if (answer->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(answer);
bitset_container_free(answer);
return false; // not bitset
}
*dst = answer;
return true; // bitset
}
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst. Result may be either a bitset or an array container
* (returns "result is bitset"). dst does not initially have
* any container, but becomes either a bitset container (return
* result true) or an array container.
*/
bool run_bitset_container_iandnot(run_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
// dummy implementation
bool ans = run_bitset_container_andnot(src_1, src_2, dst);
run_container_free(src_1);
return ans;
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst. Result may be either a bitset or an array container
* (returns "result is bitset"). dst does not initially have
* any container, but becomes either a bitset container (return
* result true) or an array container.
*/
bool bitset_run_container_andnot(const bitset_container_t *src_1,
const run_container_t *src_2, void **dst) {
// follows Java implementation
bitset_container_t *result = bitset_container_create();
bitset_container_copy(src_1, result);
for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
rle16_t rle = src_2->runs[rlepos];
bitset_reset_range(result->array, rle.value,
rle.value + rle.length + UINT32_C(1));
}
result->cardinality = bitset_container_compute_cardinality(result);
if (result->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(result);
bitset_container_free(result);
return false; // not bitset
}
*dst = result;
return true; // bitset
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst (which has no container initially). It will modify src_1
* to be dst if the result is a bitset. Otherwise, it will
* free src_1 and dst will be a new array container. In both
* cases, the caller is responsible for deallocating dst.
* Returns true iff dst is a bitset */
bool bitset_run_container_iandnot(bitset_container_t *src_1,
const run_container_t *src_2, void **dst) {
*dst = src_1;
for (int32_t rlepos = 0; rlepos < src_2->n_runs; ++rlepos) {
rle16_t rle = src_2->runs[rlepos];
bitset_reset_range(src_1->array, rle.value,
rle.value + rle.length + UINT32_C(1));
}
src_1->cardinality = bitset_container_compute_cardinality(src_1);
if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(src_1);
bitset_container_free(src_1);
return false; // not bitset
} else
return true;
}
/* helper. a_out must be a valid array container with adequate capacity.
* Returns the cardinality of the output container. Partly Based on Java
* implementation Util.unsignedDifference.
*
* TODO: Util.unsignedDifference does not use advanceUntil. Is it cheaper
* to avoid advanceUntil?
*/
static int run_array_array_subtract(const run_container_t *r,
const array_container_t *a_in,
array_container_t *a_out) {
int out_card = 0;
int32_t in_array_pos =
-1; // since advanceUntil always assumes we start the search AFTER this
for (int rlepos = 0; rlepos < r->n_runs; rlepos++) {
int32_t start = r->runs[rlepos].value;
int32_t end = start + r->runs[rlepos].length + 1;
in_array_pos = advanceUntil(a_in->array, in_array_pos,
a_in->cardinality, (uint16_t)start);
if (in_array_pos >= a_in->cardinality) { // run has no items subtracted
for (int32_t i = start; i < end; ++i)
a_out->array[out_card++] = (uint16_t)i;
} else {
uint16_t next_nonincluded = a_in->array[in_array_pos];
if (next_nonincluded >= end) {
// another case when run goes unaltered
for (int32_t i = start; i < end; ++i)
a_out->array[out_card++] = (uint16_t)i;
in_array_pos--; // ensure we see this item again if necessary
} else {
for (int32_t i = start; i < end; ++i)
if (i != next_nonincluded)
a_out->array[out_card++] = (uint16_t)i;
else // 0 should ensure we don't match
next_nonincluded =
(in_array_pos + 1 >= a_in->cardinality)
? 0
: a_in->array[++in_array_pos];
in_array_pos--; // see again
}
}
}
return out_card;
}
/* dst does not indicate a valid container initially. Eventually it
* can become any type of container.
*/
int run_array_container_andnot(const run_container_t *src_1,
const array_container_t *src_2, void **dst) {
// follows the Java impl as of June 2016
int card = run_container_cardinality(src_1);
const int arbitrary_threshold = 32;
if (card <= arbitrary_threshold) {
if (src_2->cardinality == 0) {
*dst = run_container_clone(src_1);
return RUN_CONTAINER_TYPE_CODE;
}
// Java's "lazyandNot.toEfficientContainer" thing
run_container_t *answer = run_container_create_given_capacity(
card + array_container_cardinality(src_2));
int rlepos = 0;
int xrlepos = 0; // "x" is src_2
rle16_t rle = src_1->runs[rlepos];
int32_t start = rle.value;
int32_t end = start + rle.length + 1;
int32_t xstart = src_2->array[xrlepos];
while ((rlepos < src_1->n_runs) && (xrlepos < src_2->cardinality)) {
if (end <= xstart) {
// output the first run
answer->runs[answer->n_runs++] =
(rle16_t){.value = (uint16_t)start,
.length = (uint16_t)(end - start - 1)};
rlepos++;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
} else if (xstart + 1 <= start) {
// exit the second run
xrlepos++;
if (xrlepos < src_2->cardinality) {
xstart = src_2->array[xrlepos];
}
} else {
if (start < xstart) {
answer->runs[answer->n_runs++] =
(rle16_t){.value = (uint16_t)start,
.length = (uint16_t)(xstart - start - 1)};
}
if (xstart + 1 < end) {
start = xstart + 1;
} else {
rlepos++;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
}
}
}
if (rlepos < src_1->n_runs) {
answer->runs[answer->n_runs++] =
(rle16_t){.value = (uint16_t)start,
.length = (uint16_t)(end - start - 1)};
rlepos++;
if (rlepos < src_1->n_runs) {
memcpy(answer->runs + answer->n_runs, src_1->runs + rlepos,
(src_1->n_runs - rlepos) * sizeof(rle16_t));
answer->n_runs += (src_1->n_runs - rlepos);
}
}
uint8_t return_type;
*dst = convert_run_to_efficient_container(answer, &return_type);
if (answer != *dst) run_container_free(answer);
return return_type;
}
// else it's a bitmap or array
if (card <= DEFAULT_MAX_SIZE) {
array_container_t *ac = array_container_create_given_capacity(card);
// nb Java code used a generic iterator-based merge to compute
// difference
ac->cardinality = run_array_array_subtract(src_1, src_2, ac);
*dst = ac;
return ARRAY_CONTAINER_TYPE_CODE;
}
bitset_container_t *ans = bitset_container_from_run(src_1);
bool result_is_bitset = bitset_array_container_iandnot(ans, src_2, dst);
return (result_is_bitset ? BITSET_CONTAINER_TYPE_CODE
: ARRAY_CONTAINER_TYPE_CODE);
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst (which has no container initially). It will modify src_1
* to be dst if the result is a bitset. Otherwise, it will
* free src_1 and dst will be a new array container. In both
* cases, the caller is responsible for deallocating dst.
* Returns true iff dst is a bitset */
int run_array_container_iandnot(run_container_t *src_1,
const array_container_t *src_2, void **dst) {
// dummy implementation same as June 2016 Java
int ans = run_array_container_andnot(src_1, src_2, dst);
run_container_free(src_1);
return ans;
}
/* dst must be a valid array container, allowed to be src_1 */
void array_run_container_andnot(const array_container_t *src_1,
const run_container_t *src_2,
array_container_t *dst) {
// basically following Java impl as of June 2016
if (src_1->cardinality > dst->capacity) {
array_container_grow(dst, src_1->cardinality, false);
}
if (src_2->n_runs == 0) {
memmove(dst->array, src_1->array,
sizeof(uint16_t) * src_1->cardinality);
dst->cardinality = src_1->cardinality;
return;
}
int32_t run_start = src_2->runs[0].value;
int32_t run_end = run_start + src_2->runs[0].length;
int which_run = 0;
uint16_t val = 0;
int dest_card = 0;
for (int i = 0; i < src_1->cardinality; ++i) {
val = src_1->array[i];
if (val < run_start)
dst->array[dest_card++] = val;
else if (val <= run_end) {
; // omitted item
} else {
do {
if (which_run + 1 < src_2->n_runs) {
++which_run;
run_start = src_2->runs[which_run].value;
run_end = run_start + src_2->runs[which_run].length;
} else
run_start = run_end = (1 << 16) + 1;
} while (val > run_end);
--i;
}
}
dst->cardinality = dest_card;
}
/* dst does not indicate a valid container initially. Eventually it
* can become any kind of container.
*/
void array_run_container_iandnot(array_container_t *src_1,
const run_container_t *src_2) {
array_run_container_andnot(src_1, src_2, src_1);
}
/* dst does not indicate a valid container initially. Eventually it
* can become any kind of container.
*/
int run_run_container_andnot(const run_container_t *src_1,
const run_container_t *src_2, void **dst) {
run_container_t *ans = run_container_create();
run_container_andnot(src_1, src_2, ans);
uint8_t typecode_after;
*dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
return typecode_after;
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst (which has no container initially). It will modify src_1
* to be dst if the result is a bitset. Otherwise, it will
* free src_1 and dst will be a new array container. In both
* cases, the caller is responsible for deallocating dst.
* Returns true iff dst is a bitset */
int run_run_container_iandnot(run_container_t *src_1,
const run_container_t *src_2, void **dst) {
// following Java impl as of June 2016 (dummy)
int ans = run_run_container_andnot(src_1, src_2, dst);
run_container_free(src_1);
return ans;
}
/*
* dst is a valid array container and may be the same as src_1
*/
void array_array_container_andnot(const array_container_t *src_1,
const array_container_t *src_2,
array_container_t *dst) {
array_container_andnot(src_1, src_2, dst);
}
/* inplace array-array andnot will always be able to reuse the space of
* src_1 */
void array_array_container_iandnot(array_container_t *src_1,
const array_container_t *src_2) {
array_container_andnot(src_1, src_2, src_1);
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst (which has no container initially). Return value is
* "dst is a bitset"
*/
bool bitset_bitset_container_andnot(const bitset_container_t *src_1,
const bitset_container_t *src_2,
void **dst) {
bitset_container_t *ans = bitset_container_create();
int card = bitset_container_andnot(src_1, src_2, ans);
if (card <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(ans);
bitset_container_free(ans);
return false; // not bitset
} else {
*dst = ans;
return true;
}
}
/* Compute the andnot of src_1 and src_2 and write the result to
* dst (which has no container initially). It will modify src_1
* to be dst if the result is a bitset. Otherwise, it will
* free src_1 and dst will be a new array container. In both
* cases, the caller is responsible for deallocating dst.
* Returns true iff dst is a bitset */
bool bitset_bitset_container_iandnot(bitset_container_t *src_1,
const bitset_container_t *src_2,
void **dst) {
int card = bitset_container_andnot(src_1, src_2, src_1);
if (card <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(src_1);
bitset_container_free(src_1);
return false; // not bitset
} else {
*dst = src_1;
return true;
}
}
/* end file src/containers/mixed_andnot.c */
/* begin file src/containers/mixed_equal.c */
bool array_container_equal_bitset(const array_container_t* container1,
const bitset_container_t* container2) {
if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
if (container2->cardinality != container1->cardinality) {
return false;
}
}
int32_t pos = 0;
for (int32_t i = 0; i < BITSET_CONTAINER_SIZE_IN_WORDS; ++i) {
uint64_t w = container2->array[i];
while (w != 0) {
uint64_t t = w & (~w + 1);
uint16_t r = i * 64 + __builtin_ctzll(w);
if (pos >= container1->cardinality) {
return false;
}
if (container1->array[pos] != r) {
return false;
}
++pos;
w ^= t;
}
}
return (pos == container1->cardinality);
}
bool run_container_equals_array(const run_container_t* container1,
const array_container_t* container2) {
if (run_container_cardinality(container1) != container2->cardinality)
return false;
int32_t pos = 0;
for (int i = 0; i < container1->n_runs; ++i) {
const uint32_t run_start = container1->runs[i].value;
const uint32_t le = container1->runs[i].length;
if (container2->array[pos] != run_start) {
return false;
}
if (container2->array[pos + le] != run_start + le) {
return false;
}
pos += le + 1;
}
return true;
}
bool run_container_equals_bitset(const run_container_t* container1,
const bitset_container_t* container2) {
int run_card = run_container_cardinality(container1);
int bitset_card = (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) ?
container2->cardinality :
bitset_container_compute_cardinality(container2);
if (bitset_card != run_card) {
return false;
}
for (int32_t i = 0; i < container1->n_runs; i++) {
uint32_t begin = container1->runs[i].value;
if (container1->runs[i].length) {
uint32_t end = begin + container1->runs[i].length + 1;
if (!bitset_container_contains_range(container2, begin, end)) {
return false;
}
} else {
if (!bitset_container_contains(container2, begin)) {
return false;
}
}
}
return true;
}
/* end file src/containers/mixed_equal.c */
/* begin file src/containers/mixed_intersection.c */
/*
* mixed_intersection.c
*
*/
/* Compute the intersection of src_1 and src_2 and write the result to
* dst. */
void array_bitset_container_intersection(const array_container_t *src_1,
const bitset_container_t *src_2,
array_container_t *dst) {
if (dst->capacity < src_1->cardinality) {
array_container_grow(dst, src_1->cardinality, false);
}
int32_t newcard = 0; // dst could be src_1
const int32_t origcard = src_1->cardinality;
for (int i = 0; i < origcard; ++i) {
uint16_t key = src_1->array[i];
// this branchless approach is much faster...
dst->array[newcard] = key;
newcard += bitset_container_contains(src_2, key);
/**
* we could do it this way instead...
* if (bitset_container_contains(src_2, key)) {
* dst->array[newcard++] = key;
* }
* but if the result is unpredictible, the processor generates
* many mispredicted branches.
* Difference can be huge (from 3 cycles when predictible all the way
* to 16 cycles when unpredictible.
* See
* https://github.com/lemire/Code-used-on-Daniel-Lemire-s-blog/blob/master/extra/bitset/c/arraybitsetintersection.c
*/
}
dst->cardinality = newcard;
}
/* Compute the size of the intersection of src_1 and src_2. */
int array_bitset_container_intersection_cardinality(
const array_container_t *src_1, const bitset_container_t *src_2) {
int32_t newcard = 0;
const int32_t origcard = src_1->cardinality;
for (int i = 0; i < origcard; ++i) {
uint16_t key = src_1->array[i];
newcard += bitset_container_contains(src_2, key);
}
return newcard;
}
bool array_bitset_container_intersect(const array_container_t *src_1,
const bitset_container_t *src_2) {
const int32_t origcard = src_1->cardinality;
for (int i = 0; i < origcard; ++i) {
uint16_t key = src_1->array[i];
if(bitset_container_contains(src_2, key)) return true;
}
return false;
}
/* Compute the intersection of src_1 and src_2 and write the result to
* dst. It is allowed for dst to be equal to src_1. We assume that dst is a
* valid container. */
void array_run_container_intersection(const array_container_t *src_1,
const run_container_t *src_2,
array_container_t *dst) {
if (run_container_is_full(src_2)) {
if (dst != src_1) array_container_copy(src_1, dst);
return;
}
if (dst->capacity < src_1->cardinality) {
array_container_grow(dst, src_1->cardinality, false);
}
if (src_2->n_runs == 0) {
return;
}
int32_t rlepos = 0;
int32_t arraypos = 0;
rle16_t rle = src_2->runs[rlepos];
int32_t newcard = 0;
while (arraypos < src_1->cardinality) {
const uint16_t arrayval = src_1->array[arraypos];
while (rle.value + rle.length <
arrayval) { // this will frequently be false
++rlepos;
if (rlepos == src_2->n_runs) {
dst->cardinality = newcard;
return; // we are done
}
rle = src_2->runs[rlepos];
}
if (rle.value > arrayval) {
arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
rle.value);
} else {
dst->array[newcard] = arrayval;
newcard++;
arraypos++;
}
}
dst->cardinality = newcard;
}
/* Compute the intersection of src_1 and src_2 and write the result to
* *dst. If the result is true then the result is a bitset_container_t
* otherwise is a array_container_t. If *dst == src_2, an in-place processing
* is attempted.*/
bool run_bitset_container_intersection(const run_container_t *src_1,
const bitset_container_t *src_2,
void **dst) {
if (run_container_is_full(src_1)) {
if (*dst != src_2) *dst = bitset_container_clone(src_2);
return true;
}
int32_t card = run_container_cardinality(src_1);
if (card <= DEFAULT_MAX_SIZE) {
// result can only be an array (assuming that we never make a
// RunContainer)
if (card > src_2->cardinality) {
card = src_2->cardinality;
}
array_container_t *answer = array_container_create_given_capacity(card);
*dst = answer;
if (*dst == NULL) {
return false;
}
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
uint32_t endofrun = (uint32_t)rle.value + rle.length;
for (uint32_t runValue = rle.value; runValue <= endofrun;
++runValue) {
answer->array[answer->cardinality] = (uint16_t)runValue;
answer->cardinality +=
bitset_container_contains(src_2, runValue);
}
}
return false;
}
if (*dst == src_2) { // we attempt in-place
bitset_container_t *answer = (bitset_container_t *)*dst;
uint32_t start = 0;
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
const rle16_t rle = src_1->runs[rlepos];
uint32_t end = rle.value;
bitset_reset_range(src_2->array, start, end);
start = end + rle.length + 1;
}
bitset_reset_range(src_2->array, start, UINT32_C(1) << 16);
answer->cardinality = bitset_container_compute_cardinality(answer);
if (src_2->cardinality > DEFAULT_MAX_SIZE) {
return true;
} else {
array_container_t *newanswer = array_container_from_bitset(src_2);
if (newanswer == NULL) {
*dst = NULL;
return false;
}
*dst = newanswer;
return false;
}
} else { // no inplace
// we expect the answer to be a bitmap (if we are lucky)
bitset_container_t *answer = bitset_container_clone(src_2);
*dst = answer;
if (answer == NULL) {
return true;
}
uint32_t start = 0;
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
const rle16_t rle = src_1->runs[rlepos];
uint32_t end = rle.value;
bitset_reset_range(answer->array, start, end);
start = end + rle.length + 1;
}
bitset_reset_range(answer->array, start, UINT32_C(1) << 16);
answer->cardinality = bitset_container_compute_cardinality(answer);
if (answer->cardinality > DEFAULT_MAX_SIZE) {
return true;
} else {
array_container_t *newanswer = array_container_from_bitset(answer);
bitset_container_free((bitset_container_t *)*dst);
if (newanswer == NULL) {
*dst = NULL;
return false;
}
*dst = newanswer;
return false;
}
}
}
/* Compute the size of the intersection between src_1 and src_2 . */
int array_run_container_intersection_cardinality(const array_container_t *src_1,
const run_container_t *src_2) {
if (run_container_is_full(src_2)) {
return src_1->cardinality;
}
if (src_2->n_runs == 0) {
return 0;
}
int32_t rlepos = 0;
int32_t arraypos = 0;
rle16_t rle = src_2->runs[rlepos];
int32_t newcard = 0;
while (arraypos < src_1->cardinality) {
const uint16_t arrayval = src_1->array[arraypos];
while (rle.value + rle.length <
arrayval) { // this will frequently be false
++rlepos;
if (rlepos == src_2->n_runs) {
return newcard; // we are done
}
rle = src_2->runs[rlepos];
}
if (rle.value > arrayval) {
arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
rle.value);
} else {
newcard++;
arraypos++;
}
}
return newcard;
}
/* Compute the intersection between src_1 and src_2
**/
int run_bitset_container_intersection_cardinality(
const run_container_t *src_1, const bitset_container_t *src_2) {
if (run_container_is_full(src_1)) {
return bitset_container_cardinality(src_2);
}
int answer = 0;
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
answer +=
bitset_lenrange_cardinality(src_2->array, rle.value, rle.length);
}
return answer;
}
bool array_run_container_intersect(const array_container_t *src_1,
const run_container_t *src_2) {
if( run_container_is_full(src_2) ) {
return !array_container_empty(src_1);
}
if (src_2->n_runs == 0) {
return false;
}
int32_t rlepos = 0;
int32_t arraypos = 0;
rle16_t rle = src_2->runs[rlepos];
while (arraypos < src_1->cardinality) {
const uint16_t arrayval = src_1->array[arraypos];
while (rle.value + rle.length <
arrayval) { // this will frequently be false
++rlepos;
if (rlepos == src_2->n_runs) {
return false; // we are done
}
rle = src_2->runs[rlepos];
}
if (rle.value > arrayval) {
arraypos = advanceUntil(src_1->array, arraypos, src_1->cardinality,
rle.value);
} else {
return true;
}
}
return false;
}
/* Compute the intersection between src_1 and src_2
**/
bool run_bitset_container_intersect(const run_container_t *src_1,
const bitset_container_t *src_2) {
if( run_container_is_full(src_1) ) {
return !bitset_container_empty(src_2);
}
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
if(!bitset_lenrange_empty(src_2->array, rle.value,rle.length)) return true;
}
return false;
}
/*
* Compute the intersection between src_1 and src_2 and write the result
* to *dst. If the return function is true, the result is a bitset_container_t
* otherwise is a array_container_t.
*/
bool bitset_bitset_container_intersection(const bitset_container_t *src_1,
const bitset_container_t *src_2,
void **dst) {
const int newCardinality = bitset_container_and_justcard(src_1, src_2);
if (newCardinality > DEFAULT_MAX_SIZE) {
*dst = bitset_container_create();
if (*dst != NULL) {
bitset_container_and_nocard(src_1, src_2,
(bitset_container_t *)*dst);
((bitset_container_t *)*dst)->cardinality = newCardinality;
}
return true; // it is a bitset
}
*dst = array_container_create_given_capacity(newCardinality);
if (*dst != NULL) {
((array_container_t *)*dst)->cardinality = newCardinality;
bitset_extract_intersection_setbits_uint16(
((const bitset_container_t *)src_1)->array,
((const bitset_container_t *)src_2)->array,
BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array,
0);
}
return false; // not a bitset
}
bool bitset_bitset_container_intersection_inplace(
bitset_container_t *src_1, const bitset_container_t *src_2, void **dst) {
const int newCardinality = bitset_container_and_justcard(src_1, src_2);
if (newCardinality > DEFAULT_MAX_SIZE) {
*dst = src_1;
bitset_container_and_nocard(src_1, src_2, src_1);
((bitset_container_t *)*dst)->cardinality = newCardinality;
return true; // it is a bitset
}
*dst = array_container_create_given_capacity(newCardinality);
if (*dst != NULL) {
((array_container_t *)*dst)->cardinality = newCardinality;
bitset_extract_intersection_setbits_uint16(
((const bitset_container_t *)src_1)->array,
((const bitset_container_t *)src_2)->array,
BITSET_CONTAINER_SIZE_IN_WORDS, ((array_container_t *)*dst)->array,
0);
}
return false; // not a bitset
}
/* end file src/containers/mixed_intersection.c */
/* begin file src/containers/mixed_negation.c */
/*
* mixed_negation.c
*
*/
#include <assert.h>
#include <string.h>
// TODO: make simplified and optimized negation code across
// the full range.
/* Negation across the entire range of the container.
* Compute the negation of src and write the result
* to *dst. The complement of a
* sufficiently sparse set will always be dense and a hence a bitmap
' * We assume that dst is pre-allocated and a valid bitset container
* There can be no in-place version.
*/
void array_container_negation(const array_container_t *src,
bitset_container_t *dst) {
uint64_t card = UINT64_C(1 << 16);
bitset_container_set_all(dst);
dst->cardinality = (int32_t)bitset_clear_list(dst->array, card, src->array,
(uint64_t)src->cardinality);
}
/* Negation across the entire range of the container
* Compute the negation of src and write the result
* to *dst. A true return value indicates a bitset result,
* otherwise the result is an array container.
* We assume that dst is not pre-allocated. In
* case of failure, *dst will be NULL.
*/
bool bitset_container_negation(const bitset_container_t *src, void **dst) {
return bitset_container_negation_range(src, 0, (1 << 16), dst);
}
/* inplace version */
/*
* Same as bitset_container_negation except that if the output is to
* be a
* bitset_container_t, then src is modified and no allocation is made.
* If the output is to be an array_container_t, then caller is responsible
* to free the container.
* In all cases, the result is in *dst.
*/
bool bitset_container_negation_inplace(bitset_container_t *src, void **dst) {
return bitset_container_negation_range_inplace(src, 0, (1 << 16), dst);
}
/* Negation across the entire range of container
* Compute the negation of src and write the result
* to *dst. Return values are the *_TYPECODES as defined * in containers.h
* We assume that dst is not pre-allocated. In
* case of failure, *dst will be NULL.
*/
int run_container_negation(const run_container_t *src, void **dst) {
return run_container_negation_range(src, 0, (1 << 16), dst);
}
/*
* Same as run_container_negation except that if the output is to
* be a
* run_container_t, and has the capacity to hold the result,
* then src is modified and no allocation is made.
* In all cases, the result is in *dst.
*/
int run_container_negation_inplace(run_container_t *src, void **dst) {
return run_container_negation_range_inplace(src, 0, (1 << 16), dst);
}
/* Negation across a range of the container.
* Compute the negation of src and write the result
* to *dst. Returns true if the result is a bitset container
* and false for an array container. *dst is not preallocated.
*/
bool array_container_negation_range(const array_container_t *src,
const int range_start, const int range_end,
void **dst) {
/* close port of the Java implementation */
if (range_start >= range_end) {
*dst = array_container_clone(src);
return false;
}
int32_t start_index =
binarySearch(src->array, src->cardinality, (uint16_t)range_start);
if (start_index < 0) start_index = -start_index - 1;
int32_t last_index =
binarySearch(src->array, src->cardinality, (uint16_t)(range_end - 1));
if (last_index < 0) last_index = -last_index - 2;
const int32_t current_values_in_range = last_index - start_index + 1;
const int32_t span_to_be_flipped = range_end - range_start;
const int32_t new_values_in_range =
span_to_be_flipped - current_values_in_range;
const int32_t cardinality_change =
new_values_in_range - current_values_in_range;
const int32_t new_cardinality = src->cardinality + cardinality_change;
if (new_cardinality > DEFAULT_MAX_SIZE) {
bitset_container_t *temp = bitset_container_from_array(src);
bitset_flip_range(temp->array, (uint32_t)range_start,
(uint32_t)range_end);
temp->cardinality = new_cardinality;
*dst = temp;
return true;
}
array_container_t *arr =
array_container_create_given_capacity(new_cardinality);
*dst = (void *)arr;
if(new_cardinality == 0) {
arr->cardinality = new_cardinality;
return false; // we are done.
}
// copy stuff before the active area
memcpy(arr->array, src->array, start_index * sizeof(uint16_t));
// work on the range
int32_t out_pos = start_index, in_pos = start_index;
int32_t val_in_range = range_start;
for (; val_in_range < range_end && in_pos <= last_index; ++val_in_range) {
if ((uint16_t)val_in_range != src->array[in_pos]) {
arr->array[out_pos++] = (uint16_t)val_in_range;
} else {
++in_pos;
}
}
for (; val_in_range < range_end; ++val_in_range)
arr->array[out_pos++] = (uint16_t)val_in_range;
// content after the active range
memcpy(arr->array + out_pos, src->array + (last_index + 1),
(src->cardinality - (last_index + 1)) * sizeof(uint16_t));
arr->cardinality = new_cardinality;
return false;
}
/* Even when the result would fit, it is unclear how to make an
* inplace version without inefficient copying.
*/
bool array_container_negation_range_inplace(array_container_t *src,
const int range_start,
const int range_end, void **dst) {
bool ans = array_container_negation_range(src, range_start, range_end, dst);
// TODO : try a real inplace version
array_container_free(src);
return ans;
}
/* Negation across a range of the container
* Compute the negation of src and write the result
* to *dst. A true return value indicates a bitset result,
* otherwise the result is an array container.
* We assume that dst is not pre-allocated. In
* case of failure, *dst will be NULL.
*/
bool bitset_container_negation_range(const bitset_container_t *src,
const int range_start, const int range_end,
void **dst) {
// TODO maybe consider density-based estimate
// and sometimes build result directly as array, with
// conversion back to bitset if wrong. Or determine
// actual result cardinality, then go directly for the known final cont.
// keep computation using bitsets as long as possible.
bitset_container_t *t = bitset_container_clone(src);
bitset_flip_range(t->array, (uint32_t)range_start, (uint32_t)range_end);
t->cardinality = bitset_container_compute_cardinality(t);
if (t->cardinality > DEFAULT_MAX_SIZE) {
*dst = t;
return true;
} else {
*dst = array_container_from_bitset(t);
bitset_container_free(t);
return false;
}
}
/* inplace version */
/*
* Same as bitset_container_negation except that if the output is to
* be a
* bitset_container_t, then src is modified and no allocation is made.
* If the output is to be an array_container_t, then caller is responsible
* to free the container.
* In all cases, the result is in *dst.
*/
bool bitset_container_negation_range_inplace(bitset_container_t *src,
const int range_start,
const int range_end, void **dst) {
bitset_flip_range(src->array, (uint32_t)range_start, (uint32_t)range_end);
src->cardinality = bitset_container_compute_cardinality(src);
if (src->cardinality > DEFAULT_MAX_SIZE) {
*dst = src;
return true;
}
*dst = array_container_from_bitset(src);
bitset_container_free(src);
return false;
}
/* Negation across a range of container
* Compute the negation of src and write the result
* to *dst. Return values are the *_TYPECODES as defined * in containers.h
* We assume that dst is not pre-allocated. In
* case of failure, *dst will be NULL.
*/
int run_container_negation_range(const run_container_t *src,
const int range_start, const int range_end,
void **dst) {
uint8_t return_typecode;
// follows the Java implementation
if (range_end <= range_start) {
*dst = run_container_clone(src);
return RUN_CONTAINER_TYPE_CODE;
}
run_container_t *ans = run_container_create_given_capacity(
src->n_runs + 1); // src->n_runs + 1);
int k = 0;
for (; k < src->n_runs && src->runs[k].value < range_start; ++k) {
ans->runs[k] = src->runs[k];
ans->n_runs++;
}
run_container_smart_append_exclusive(
ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
for (; k < src->n_runs; ++k) {
run_container_smart_append_exclusive(ans, src->runs[k].value,
src->runs[k].length);
}
*dst = convert_run_to_efficient_container(ans, &return_typecode);
if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans);
return return_typecode;
}
/*
* Same as run_container_negation except that if the output is to
* be a
* run_container_t, and has the capacity to hold the result,
* then src is modified and no allocation is made.
* In all cases, the result is in *dst.
*/
int run_container_negation_range_inplace(run_container_t *src,
const int range_start,
const int range_end, void **dst) {
uint8_t return_typecode;
if (range_end <= range_start) {
*dst = src;
return RUN_CONTAINER_TYPE_CODE;
}
// TODO: efficient special case when range is 0 to 65535 inclusive
if (src->capacity == src->n_runs) {
// no excess room. More checking to see if result can fit
bool last_val_before_range = false;
bool first_val_in_range = false;
bool last_val_in_range = false;
bool first_val_past_range = false;
if (range_start > 0)
last_val_before_range =
run_container_contains(src, (uint16_t)(range_start - 1));
first_val_in_range = run_container_contains(src, (uint16_t)range_start);
if (last_val_before_range == first_val_in_range) {
last_val_in_range =
run_container_contains(src, (uint16_t)(range_end - 1));
if (range_end != 0x10000)
first_val_past_range =
run_container_contains(src, (uint16_t)range_end);
if (last_val_in_range ==
first_val_past_range) { // no space for inplace
int ans = run_container_negation_range(src, range_start,
range_end, dst);
run_container_free(src);
return ans;
}
}
}
// all other cases: result will fit
run_container_t *ans = src;
int my_nbr_runs = src->n_runs;
ans->n_runs = 0;
int k = 0;
for (; (k < my_nbr_runs) && (src->runs[k].value < range_start); ++k) {
// ans->runs[k] = src->runs[k]; (would be self-copy)
ans->n_runs++;
}
// as with Java implementation, use locals to give self a buffer of depth 1
rle16_t buffered = (rle16_t){.value = (uint16_t)0, .length = (uint16_t)0};
rle16_t next = buffered;
if (k < my_nbr_runs) buffered = src->runs[k];
run_container_smart_append_exclusive(
ans, (uint16_t)range_start, (uint16_t)(range_end - range_start - 1));
for (; k < my_nbr_runs; ++k) {
if (k + 1 < my_nbr_runs) next = src->runs[k + 1];
run_container_smart_append_exclusive(ans, buffered.value,
buffered.length);
buffered = next;
}
*dst = convert_run_to_efficient_container(ans, &return_typecode);
if (return_typecode != RUN_CONTAINER_TYPE_CODE) run_container_free(ans);
return return_typecode;
}
/* end file src/containers/mixed_negation.c */
/* begin file src/containers/mixed_subset.c */
bool array_container_is_subset_bitset(const array_container_t* container1,
const bitset_container_t* container2) {
if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
if (container2->cardinality < container1->cardinality) {
return false;
}
}
for (int i = 0; i < container1->cardinality; ++i) {
if (!bitset_container_contains(container2, container1->array[i])) {
return false;
}
}
return true;
}
bool run_container_is_subset_array(const run_container_t* container1,
const array_container_t* container2) {
if (run_container_cardinality(container1) > container2->cardinality)
return false;
int32_t start_pos = -1, stop_pos = -1;
for (int i = 0; i < container1->n_runs; ++i) {
int32_t start = container1->runs[i].value;
int32_t stop = start + container1->runs[i].length;
start_pos = advanceUntil(container2->array, stop_pos,
container2->cardinality, start);
stop_pos = advanceUntil(container2->array, stop_pos,
container2->cardinality, stop);
if (start_pos == container2->cardinality) {
return false;
} else if (stop_pos - start_pos != stop - start ||
container2->array[start_pos] != start ||
container2->array[stop_pos] != stop) {
return false;
}
}
return true;
}
bool array_container_is_subset_run(const array_container_t* container1,
const run_container_t* container2) {
if (container1->cardinality > run_container_cardinality(container2))
return false;
int i_array = 0, i_run = 0;
while (i_array < container1->cardinality && i_run < container2->n_runs) {
uint32_t start = container2->runs[i_run].value;
uint32_t stop = start + container2->runs[i_run].length;
if (container1->array[i_array] < start) {
return false;
} else if (container1->array[i_array] > stop) {
i_run++;
} else { // the value of the array is in the run
i_array++;
}
}
if (i_array == container1->cardinality) {
return true;
} else {
return false;
}
}
bool run_container_is_subset_bitset(const run_container_t* container1,
const bitset_container_t* container2) {
// todo: this code could be much faster
if (container2->cardinality != BITSET_UNKNOWN_CARDINALITY) {
if (container2->cardinality < run_container_cardinality(container1)) {
return false;
}
} else {
int32_t card = bitset_container_compute_cardinality(
container2); // modify container2?
if (card < run_container_cardinality(container1)) {
return false;
}
}
for (int i = 0; i < container1->n_runs; ++i) {
uint32_t run_start = container1->runs[i].value;
uint32_t le = container1->runs[i].length;
for (uint32_t j = run_start; j <= run_start + le; ++j) {
if (!bitset_container_contains(container2, j)) {
return false;
}
}
}
return true;
}
bool bitset_container_is_subset_run(const bitset_container_t* container1,
const run_container_t* container2) {
// todo: this code could be much faster
if (container1->cardinality != BITSET_UNKNOWN_CARDINALITY) {
if (container1->cardinality > run_container_cardinality(container2)) {
return false;
}
}
int32_t i_bitset = 0, i_run = 0;
while (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS &&
i_run < container2->n_runs) {
uint64_t w = container1->array[i_bitset];
while (w != 0 && i_run < container2->n_runs) {
uint32_t start = container2->runs[i_run].value;
uint32_t stop = start + container2->runs[i_run].length;
uint64_t t = w & (~w + 1);
uint16_t r = i_bitset * 64 + __builtin_ctzll(w);
if (r < start) {
return false;
} else if (r > stop) {
i_run++;
continue;
} else {
w ^= t;
}
}
if (w == 0) {
i_bitset++;
} else {
return false;
}
}
if (i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS) {
// terminated iterating on the run containers, check that rest of bitset
// is empty
for (; i_bitset < BITSET_CONTAINER_SIZE_IN_WORDS; i_bitset++) {
if (container1->array[i_bitset] != 0) {
return false;
}
}
}
return true;
}
/* end file src/containers/mixed_subset.c */
/* begin file src/containers/mixed_union.c */
/*
* mixed_union.c
*
*/
#include <assert.h>
#include <string.h>
/* Compute the union of src_1 and src_2 and write the result to
* dst. */
void array_bitset_container_union(const array_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
if (src_2 != dst) bitset_container_copy(src_2, dst);
dst->cardinality = (int32_t)bitset_set_list_withcard(
dst->array, dst->cardinality, src_1->array, src_1->cardinality);
}
/* Compute the union of src_1 and src_2 and write the result to
* dst. It is allowed for src_2 to be dst. This version does not
* update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY). */
void array_bitset_container_lazy_union(const array_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
if (src_2 != dst) bitset_container_copy(src_2, dst);
bitset_set_list(dst->array, src_1->array, src_1->cardinality);
dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
void run_bitset_container_union(const run_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
assert(!run_container_is_full(src_1)); // catch this case upstream
if (src_2 != dst) bitset_container_copy(src_2, dst);
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
bitset_set_lenrange(dst->array, rle.value, rle.length);
}
dst->cardinality = bitset_container_compute_cardinality(dst);
}
void run_bitset_container_lazy_union(const run_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
assert(!run_container_is_full(src_1)); // catch this case upstream
if (src_2 != dst) bitset_container_copy(src_2, dst);
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
bitset_set_lenrange(dst->array, rle.value, rle.length);
}
dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
// why do we leave the result as a run container??
void array_run_container_union(const array_container_t *src_1,
const run_container_t *src_2,
run_container_t *dst) {
if (run_container_is_full(src_2)) {
run_container_copy(src_2, dst);
return;
}
// TODO: see whether the "2*" is spurious
run_container_grow(dst, 2 * (src_1->cardinality + src_2->n_runs), false);
int32_t rlepos = 0;
int32_t arraypos = 0;
rle16_t previousrle;
if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
previousrle = run_container_append_first(dst, src_2->runs[rlepos]);
rlepos++;
} else {
previousrle =
run_container_append_value_first(dst, src_1->array[arraypos]);
arraypos++;
}
while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
run_container_append(dst, src_2->runs[rlepos], &previousrle);
rlepos++;
} else {
run_container_append_value(dst, src_1->array[arraypos],
&previousrle);
arraypos++;
}
}
if (arraypos < src_1->cardinality) {
while (arraypos < src_1->cardinality) {
run_container_append_value(dst, src_1->array[arraypos],
&previousrle);
arraypos++;
}
} else {
while (rlepos < src_2->n_runs) {
run_container_append(dst, src_2->runs[rlepos], &previousrle);
rlepos++;
}
}
}
void array_run_container_inplace_union(const array_container_t *src_1,
run_container_t *src_2) {
if (run_container_is_full(src_2)) {
return;
}
const int32_t maxoutput = src_1->cardinality + src_2->n_runs;
const int32_t neededcapacity = maxoutput + src_2->n_runs;
if (src_2->capacity < neededcapacity)
run_container_grow(src_2, neededcapacity, true);
memmove(src_2->runs + maxoutput, src_2->runs,
src_2->n_runs * sizeof(rle16_t));
rle16_t *inputsrc2 = src_2->runs + maxoutput;
int32_t rlepos = 0;
int32_t arraypos = 0;
int src2nruns = src_2->n_runs;
src_2->n_runs = 0;
rle16_t previousrle;
if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
previousrle = run_container_append_first(src_2, inputsrc2[rlepos]);
rlepos++;
} else {
previousrle =
run_container_append_value_first(src_2, src_1->array[arraypos]);
arraypos++;
}
while ((rlepos < src2nruns) && (arraypos < src_1->cardinality)) {
if (inputsrc2[rlepos].value <= src_1->array[arraypos]) {
run_container_append(src_2, inputsrc2[rlepos], &previousrle);
rlepos++;
} else {
run_container_append_value(src_2, src_1->array[arraypos],
&previousrle);
arraypos++;
}
}
if (arraypos < src_1->cardinality) {
while (arraypos < src_1->cardinality) {
run_container_append_value(src_2, src_1->array[arraypos],
&previousrle);
arraypos++;
}
} else {
while (rlepos < src2nruns) {
run_container_append(src_2, inputsrc2[rlepos], &previousrle);
rlepos++;
}
}
}
bool array_array_container_union(const array_container_t *src_1,
const array_container_t *src_2, void **dst) {
int totalCardinality = src_1->cardinality + src_2->cardinality;
if (totalCardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_create_given_capacity(totalCardinality);
if (*dst != NULL) {
array_container_union(src_1, src_2, (array_container_t *)*dst);
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = (bitset_container_t *)*dst;
bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
ourbitset->array, src_1->cardinality, src_2->array,
src_2->cardinality);
if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
// need to convert!
*dst = array_container_from_bitset(ourbitset);
bitset_container_free(ourbitset);
returnval = false; // not going to be a bitset
}
}
return returnval;
}
bool array_array_container_inplace_union(array_container_t *src_1,
const array_container_t *src_2, void **dst) {
int totalCardinality = src_1->cardinality + src_2->cardinality;
*dst = NULL;
if (totalCardinality <= DEFAULT_MAX_SIZE) {
if(src_1->capacity < totalCardinality) {
*dst = array_container_create_given_capacity(2 * totalCardinality); // be purposefully generous
if (*dst != NULL) {
array_container_union(src_1, src_2, (array_container_t *)*dst);
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
} else {
memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t));
src_1->cardinality = (int32_t)union_uint16(src_1->array + src_2->cardinality, src_1->cardinality,
src_2->array, src_2->cardinality, src_1->array);
return false; // not a bitset
}
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = (bitset_container_t *)*dst;
bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
ourbitset->cardinality = (int32_t)bitset_set_list_withcard(
ourbitset->array, src_1->cardinality, src_2->array,
src_2->cardinality);
if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
// need to convert!
if(src_1->capacity < ourbitset->cardinality) {
array_container_grow(src_1, ourbitset->cardinality, false);
}
bitset_extract_setbits_uint16(ourbitset->array, BITSET_CONTAINER_SIZE_IN_WORDS,
src_1->array, 0);
src_1->cardinality = ourbitset->cardinality;
*dst = src_1;
bitset_container_free(ourbitset);
returnval = false; // not going to be a bitset
}
}
return returnval;
}
bool array_array_container_lazy_union(const array_container_t *src_1,
const array_container_t *src_2,
void **dst) {
int totalCardinality = src_1->cardinality + src_2->cardinality;
if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
*dst = array_container_create_given_capacity(totalCardinality);
if (*dst != NULL) {
array_container_union(src_1, src_2, (array_container_t *)*dst);
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = (bitset_container_t *)*dst;
bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
bitset_set_list(ourbitset->array, src_2->array, src_2->cardinality);
ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
return returnval;
}
bool array_array_container_lazy_inplace_union(array_container_t *src_1,
const array_container_t *src_2,
void **dst) {
int totalCardinality = src_1->cardinality + src_2->cardinality;
*dst = NULL;
if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
if(src_1->capacity < totalCardinality) {
*dst = array_container_create_given_capacity(2 * totalCardinality); // be purposefully generous
if (*dst != NULL) {
array_container_union(src_1, src_2, (array_container_t *)*dst);
} else {
return true; // otherwise failure won't be caught
}
return false; // not a bitset
} else {
memmove(src_1->array + src_2->cardinality, src_1->array, src_1->cardinality * sizeof(uint16_t));
src_1->cardinality = (int32_t)union_uint16(src_1->array + src_2->cardinality, src_1->cardinality,
src_2->array, src_2->cardinality, src_1->array);
return false; // not a bitset
}
}
*dst = bitset_container_create();
bool returnval = true; // expect a bitset
if (*dst != NULL) {
bitset_container_t *ourbitset = (bitset_container_t *)*dst;
bitset_set_list(ourbitset->array, src_1->array, src_1->cardinality);
bitset_set_list(ourbitset->array, src_2->array, src_2->cardinality);
ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
return returnval;
}
/* end file src/containers/mixed_union.c */
/* begin file src/containers/mixed_xor.c */
/*
* mixed_xor.c
*/
#include <assert.h>
#include <string.h>
/* Compute the xor of src_1 and src_2 and write the result to
* dst (which has no container initially).
* Result is true iff dst is a bitset */
bool array_bitset_container_xor(const array_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
bitset_container_t *result = bitset_container_create();
bitset_container_copy(src_2, result);
result->cardinality = (int32_t)bitset_flip_list_withcard(
result->array, result->cardinality, src_1->array, src_1->cardinality);
// do required type conversions.
if (result->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(result);
bitset_container_free(result);
return false; // not bitset
}
*dst = result;
return true; // bitset
}
/* Compute the xor of src_1 and src_2 and write the result to
* dst. It is allowed for src_2 to be dst. This version does not
* update the cardinality of dst (it is set to BITSET_UNKNOWN_CARDINALITY).
*/
void array_bitset_container_lazy_xor(const array_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
if (src_2 != dst) bitset_container_copy(src_2, dst);
bitset_flip_list(dst->array, src_1->array, src_1->cardinality);
dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
/* Compute the xor of src_1 and src_2 and write the result to
* dst. Result may be either a bitset or an array container
* (returns "result is bitset"). dst does not initially have
* any container, but becomes either a bitset container (return
* result true) or an array container.
*/
bool run_bitset_container_xor(const run_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
bitset_container_t *result = bitset_container_create();
bitset_container_copy(src_2, result);
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
bitset_flip_range(result->array, rle.value,
rle.value + rle.length + UINT32_C(1));
}
result->cardinality = bitset_container_compute_cardinality(result);
if (result->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(result);
bitset_container_free(result);
return false; // not bitset
}
*dst = result;
return true; // bitset
}
/* lazy xor. Dst is initialized and may be equal to src_2.
* Result is left as a bitset container, even if actual
* cardinality would dictate an array container.
*/
void run_bitset_container_lazy_xor(const run_container_t *src_1,
const bitset_container_t *src_2,
bitset_container_t *dst) {
if (src_2 != dst) bitset_container_copy(src_2, dst);
for (int32_t rlepos = 0; rlepos < src_1->n_runs; ++rlepos) {
rle16_t rle = src_1->runs[rlepos];
bitset_flip_range(dst->array, rle.value,
rle.value + rle.length + UINT32_C(1));
}
dst->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
/* dst does not indicate a valid container initially. Eventually it
* can become any kind of container.
*/
int array_run_container_xor(const array_container_t *src_1,
const run_container_t *src_2, void **dst) {
// semi following Java XOR implementation as of May 2016
// the C OR implementation works quite differently and can return a run
// container
// TODO could optimize for full run containers.
// use of lazy following Java impl.
const int arbitrary_threshold = 32;
if (src_1->cardinality < arbitrary_threshold) {
run_container_t *ans = run_container_create();
array_run_container_lazy_xor(src_1, src_2, ans); // keeps runs.
uint8_t typecode_after;
*dst =
convert_run_to_efficient_container_and_free(ans, &typecode_after);
return typecode_after;
}
int card = run_container_cardinality(src_2);
if (card <= DEFAULT_MAX_SIZE) {
// Java implementation works with the array, xoring the run elements via
// iterator
array_container_t *temp = array_container_from_run(src_2);
bool ret_is_bitset = array_array_container_xor(temp, src_1, dst);
array_container_free(temp);
return ret_is_bitset ? BITSET_CONTAINER_TYPE_CODE
: ARRAY_CONTAINER_TYPE_CODE;
} else { // guess that it will end up as a bitset
bitset_container_t *result = bitset_container_from_run(src_2);
bool is_bitset = bitset_array_container_ixor(result, src_1, dst);
// any necessary type conversion has been done by the ixor
int retval = (is_bitset ? BITSET_CONTAINER_TYPE_CODE
: ARRAY_CONTAINER_TYPE_CODE);
return retval;
}
}
/* Dst is a valid run container. (Can it be src_2? Let's say not.)
* Leaves result as run container, even if other options are
* smaller.
*/
void array_run_container_lazy_xor(const array_container_t *src_1,
const run_container_t *src_2,
run_container_t *dst) {
run_container_grow(dst, src_1->cardinality + src_2->n_runs, false);
int32_t rlepos = 0;
int32_t arraypos = 0;
dst->n_runs = 0;
while ((rlepos < src_2->n_runs) && (arraypos < src_1->cardinality)) {
if (src_2->runs[rlepos].value <= src_1->array[arraypos]) {
run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
src_2->runs[rlepos].length);
rlepos++;
} else {
run_container_smart_append_exclusive(dst, src_1->array[arraypos],
0);
arraypos++;
}
}
while (arraypos < src_1->cardinality) {
run_container_smart_append_exclusive(dst, src_1->array[arraypos], 0);
arraypos++;
}
while (rlepos < src_2->n_runs) {
run_container_smart_append_exclusive(dst, src_2->runs[rlepos].value,
src_2->runs[rlepos].length);
rlepos++;
}
}
/* dst does not indicate a valid container initially. Eventually it
* can become any kind of container.
*/
int run_run_container_xor(const run_container_t *src_1,
const run_container_t *src_2, void **dst) {
run_container_t *ans = run_container_create();
run_container_xor(src_1, src_2, ans);
uint8_t typecode_after;
*dst = convert_run_to_efficient_container_and_free(ans, &typecode_after);
return typecode_after;
}
/*
* Java implementation (as of May 2016) for array_run, run_run
* and bitset_run don't do anything different for inplace.
* Could adopt the mixed_union.c approach instead (ie, using
* smart_append_exclusive)
*
*/
bool array_array_container_xor(const array_container_t *src_1,
const array_container_t *src_2, void **dst) {
int totalCardinality =
src_1->cardinality + src_2->cardinality; // upper bound
if (totalCardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_create_given_capacity(totalCardinality);
array_container_xor(src_1, src_2, (array_container_t *)*dst);
return false; // not a bitset
}
*dst = bitset_container_from_array(src_1);
bool returnval = true; // expect a bitset
bitset_container_t *ourbitset = (bitset_container_t *)*dst;
ourbitset->cardinality = (uint32_t)bitset_flip_list_withcard(
ourbitset->array, src_1->cardinality, src_2->array, src_2->cardinality);
if (ourbitset->cardinality <= DEFAULT_MAX_SIZE) {
// need to convert!
*dst = array_container_from_bitset(ourbitset);
bitset_container_free(ourbitset);
returnval = false; // not going to be a bitset
}
return returnval;
}
bool array_array_container_lazy_xor(const array_container_t *src_1,
const array_container_t *src_2,
void **dst) {
int totalCardinality = src_1->cardinality + src_2->cardinality;
// upper bound, but probably poor estimate for xor
if (totalCardinality <= ARRAY_LAZY_LOWERBOUND) {
*dst = array_container_create_given_capacity(totalCardinality);
if (*dst != NULL)
array_container_xor(src_1, src_2, (array_container_t *)*dst);
return false; // not a bitset
}
*dst = bitset_container_from_array(src_1);
bool returnval = true; // expect a bitset (maybe, for XOR??)
if (*dst != NULL) {
bitset_container_t *ourbitset = (bitset_container_t *)*dst;
bitset_flip_list(ourbitset->array, src_2->array, src_2->cardinality);
ourbitset->cardinality = BITSET_UNKNOWN_CARDINALITY;
}
return returnval;
}
/* Compute the xor of src_1 and src_2 and write the result to
* dst (which has no container initially). Return value is
* "dst is a bitset"
*/
bool bitset_bitset_container_xor(const bitset_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
bitset_container_t *ans = bitset_container_create();
int card = bitset_container_xor(src_1, src_2, ans);
if (card <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(ans);
bitset_container_free(ans);
return false; // not bitset
} else {
*dst = ans;
return true;
}
}
/* Compute the xor of src_1 and src_2 and write the result to
* dst (which has no container initially). It will modify src_1
* to be dst if the result is a bitset. Otherwise, it will
* free src_1 and dst will be a new array container. In both
* cases, the caller is responsible for deallocating dst.
* Returns true iff dst is a bitset */
bool bitset_array_container_ixor(bitset_container_t *src_1,
const array_container_t *src_2, void **dst) {
*dst = src_1;
src_1->cardinality = (uint32_t)bitset_flip_list_withcard(
src_1->array, src_1->cardinality, src_2->array, src_2->cardinality);
if (src_1->cardinality <= DEFAULT_MAX_SIZE) {
*dst = array_container_from_bitset(src_1);
bitset_container_free(src_1);
return false; // not bitset
} else
return true;
}
/* a bunch of in-place, some of which may not *really* be inplace.
* TODO: write actual inplace routine if efficiency warrants it
* Anything inplace with a bitset is a good candidate
*/
bool bitset_bitset_container_ixor(bitset_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
bool ans = bitset_bitset_container_xor(src_1, src_2, dst);
bitset_container_free(src_1);
return ans;
}
bool array_bitset_container_ixor(array_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
bool ans = array_bitset_container_xor(src_1, src_2, dst);
array_container_free(src_1);
return ans;
}
/* Compute the xor of src_1 and src_2 and write the result to
* dst. Result may be either a bitset or an array container
* (returns "result is bitset"). dst does not initially have
* any container, but becomes either a bitset container (return
* result true) or an array container.
*/
bool run_bitset_container_ixor(run_container_t *src_1,
const bitset_container_t *src_2, void **dst) {
bool ans = run_bitset_container_xor(src_1, src_2, dst);
run_container_free(src_1);
return ans;
}
bool bitset_run_container_ixor(bitset_container_t *src_1,
const run_container_t *src_2, void **dst) {
bool ans = run_bitset_container_xor(src_2, src_1, dst);
bitset_container_free(src_1);
return ans;
}
/* dst does not indicate a valid container initially. Eventually it
* can become any kind of container.
*/
int array_run_container_ixor(array_container_t *src_1,
const run_container_t *src_2, void **dst) {
int ans = array_run_container_xor(src_1, src_2, dst);
array_container_free(src_1);
return ans;
}
int run_array_container_ixor(run_container_t *src_1,
const array_container_t *src_2, void **dst) {
int ans = array_run_container_xor(src_2, src_1, dst);
run_container_free(src_1);
return ans;
}
bool array_array_container_ixor(array_container_t *src_1,
const array_container_t *src_2, void **dst) {
bool ans = array_array_container_xor(src_1, src_2, dst);
array_container_free(src_1);
return ans;
}
int run_run_container_ixor(run_container_t *src_1, const run_container_t *src_2,
void **dst) {
int ans = run_run_container_xor(src_1, src_2, dst);
run_container_free(src_1);
return ans;
}
/* end file src/containers/mixed_xor.c */
/* begin file src/containers/run.c */
#include <stdio.h>
#include <stdlib.h>
bool run_container_add(run_container_t *run, uint16_t pos) {
int32_t index = interleavedBinarySearch(run->runs, run->n_runs, pos);
if (index >= 0) return false; // already there
index = -index - 2; // points to preceding value, possibly -1
if (index >= 0) { // possible match
int32_t offset = pos - run->runs[index].value;
int32_t le = run->runs[index].length;
if (offset <= le) return false; // already there
if (offset == le + 1) {
// we may need to fuse
if (index + 1 < run->n_runs) {
if (run->runs[index + 1].value == pos + 1) {
// indeed fusion is needed
run->runs[index].length = run->runs[index + 1].value +
run->runs[index + 1].length -
run->runs[index].value;
recoverRoomAtIndex(run, (uint16_t)(index + 1));
return true;
}
}
run->runs[index].length++;
return true;
}
if (index + 1 < run->n_runs) {
// we may need to fuse
if (run->runs[index + 1].value == pos + 1) {
// indeed fusion is needed
run->runs[index + 1].value = pos;
run->runs[index + 1].length = run->runs[index + 1].length + 1;
return true;
}
}
}
if (index == -1) {
// we may need to extend the first run
if (0 < run->n_runs) {
if (run->runs[0].value == pos + 1) {
run->runs[0].length++;
run->runs[0].value--;
return true;
}
}
}
makeRoomAtIndex(run, (uint16_t)(index + 1));
run->runs[index + 1].value = pos;
run->runs[index + 1].length = 0;
return true;
}
/* Create a new run container. Return NULL in case of failure. */
run_container_t *run_container_create_given_capacity(int32_t size) {
run_container_t *run;
/* Allocate the run container itself. */
run = (run_container_t *)malloc(sizeof(run_container_t));
assert (run);
if (size <= 0) // we don't want to rely on malloc(0)
run->runs = NULL;
run->runs = (rle16_t *)malloc(sizeof(rle16_t) * size);
assert (run->runs);
run->capacity = size;
run->n_runs = 0;
return run;
}
int run_container_shrink_to_fit(run_container_t *src) {
if (src->n_runs == src->capacity) return 0; // nothing to do
int savings = src->capacity - src->n_runs;
src->capacity = src->n_runs;
rle16_t *oldruns = src->runs;
src->runs = (rle16_t *)realloc(oldruns, src->capacity * sizeof(rle16_t));
if (src->runs == NULL) free(oldruns); // should never happen?
return savings;
}
/* Create a new run container. Return NULL in case of failure. */
run_container_t *run_container_create(void) {
return run_container_create_given_capacity(RUN_DEFAULT_INIT_SIZE);
}
run_container_t *run_container_clone(const run_container_t *src) {
run_container_t *run = run_container_create_given_capacity(src->capacity);
if (run == NULL) return NULL;
run->capacity = src->capacity;
run->n_runs = src->n_runs;
memcpy(run->runs, src->runs, src->n_runs * sizeof(rle16_t));
return run;
}
/* Free memory. */
void run_container_free(run_container_t *run) {
if(run->runs != NULL) {// Jon Strabala reports that some tools complain otherwise
free(run->runs);
run->runs = NULL; // pedantic
}
free(run);
}
void run_container_grow(run_container_t *run, int32_t min, bool copy) {
int32_t newCapacity =
(run->capacity == 0)
? RUN_DEFAULT_INIT_SIZE
: run->capacity < 64 ? run->capacity * 2
: run->capacity < 1024 ? run->capacity * 3 / 2
: run->capacity * 5 / 4;
if (newCapacity < min) newCapacity = min;
run->capacity = newCapacity;
assert(run->capacity >= min);
if (copy) {
rle16_t *oldruns = run->runs;
run->runs =
(rle16_t *)realloc(oldruns, run->capacity * sizeof(rle16_t));
if (run->runs == NULL) free(oldruns);
} else {
// Jon Strabala reports that some tools complain otherwise
if (run->runs != NULL) {
free(run->runs);
}
run->runs = (rle16_t *)malloc(run->capacity * sizeof(rle16_t));
}
// handle the case where realloc fails
if (run->runs == NULL) {
fprintf(stderr, "could not allocate memory\n");
}
assert(run->runs != NULL);
}
/* copy one container into another */
void run_container_copy(const run_container_t *src, run_container_t *dst) {
const int32_t n_runs = src->n_runs;
if (src->n_runs > dst->capacity) {
run_container_grow(dst, n_runs, false);
}
dst->n_runs = n_runs;
memcpy(dst->runs, src->runs, sizeof(rle16_t) * n_runs);
}
/* Compute the union of `src_1' and `src_2' and write the result to `dst'
* It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
void run_container_union(const run_container_t *src_1,
const run_container_t *src_2, run_container_t *dst) {
// TODO: this could be a lot more efficient
// we start out with inexpensive checks
const bool if1 = run_container_is_full(src_1);
const bool if2 = run_container_is_full(src_2);
if (if1 || if2) {
if (if1) {
run_container_copy(src_1, dst);
return;
}
if (if2) {
run_container_copy(src_2, dst);
return;
}
}
const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
if (dst->capacity < neededcapacity)
run_container_grow(dst, neededcapacity, false);
dst->n_runs = 0;
int32_t rlepos = 0;
int32_t xrlepos = 0;
rle16_t previousrle;
if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
previousrle = run_container_append_first(dst, src_1->runs[rlepos]);
rlepos++;
} else {
previousrle = run_container_append_first(dst, src_2->runs[xrlepos]);
xrlepos++;
}
while ((xrlepos < src_2->n_runs) && (rlepos < src_1->n_runs)) {
rle16_t newrl;
if (src_1->runs[rlepos].value <= src_2->runs[xrlepos].value) {
newrl = src_1->runs[rlepos];
rlepos++;
} else {
newrl = src_2->runs[xrlepos];
xrlepos++;
}
run_container_append(dst, newrl, &previousrle);
}
while (xrlepos < src_2->n_runs) {
run_container_append(dst, src_2->runs[xrlepos], &previousrle);
xrlepos++;
}
while (rlepos < src_1->n_runs) {
run_container_append(dst, src_1->runs[rlepos], &previousrle);
rlepos++;
}
}
/* Compute the union of `src_1' and `src_2' and write the result to `src_1'
*/
void run_container_union_inplace(run_container_t *src_1,
const run_container_t *src_2) {
// TODO: this could be a lot more efficient
// we start out with inexpensive checks
const bool if1 = run_container_is_full(src_1);
const bool if2 = run_container_is_full(src_2);
if (if1 || if2) {
if (if1) {
return;
}
if (if2) {
run_container_copy(src_2, src_1);
return;
}
}
// we move the data to the end of the current array
const int32_t maxoutput = src_1->n_runs + src_2->n_runs;
const int32_t neededcapacity = maxoutput + src_1->n_runs;
if (src_1->capacity < neededcapacity)
run_container_grow(src_1, neededcapacity, true);
memmove(src_1->runs + maxoutput, src_1->runs,
src_1->n_runs * sizeof(rle16_t));
rle16_t *inputsrc1 = src_1->runs + maxoutput;
const int32_t input1nruns = src_1->n_runs;
src_1->n_runs = 0;
int32_t rlepos = 0;
int32_t xrlepos = 0;
rle16_t previousrle;
if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
previousrle = run_container_append_first(src_1, inputsrc1[rlepos]);
rlepos++;
} else {
previousrle = run_container_append_first(src_1, src_2->runs[xrlepos]);
xrlepos++;
}
while ((xrlepos < src_2->n_runs) && (rlepos < input1nruns)) {
rle16_t newrl;
if (inputsrc1[rlepos].value <= src_2->runs[xrlepos].value) {
newrl = inputsrc1[rlepos];
rlepos++;
} else {
newrl = src_2->runs[xrlepos];
xrlepos++;
}
run_container_append(src_1, newrl, &previousrle);
}
while (xrlepos < src_2->n_runs) {
run_container_append(src_1, src_2->runs[xrlepos], &previousrle);
xrlepos++;
}
while (rlepos < input1nruns) {
run_container_append(src_1, inputsrc1[rlepos], &previousrle);
rlepos++;
}
}
/* Compute the symmetric difference of `src_1' and `src_2' and write the result
* to `dst'
* It is assumed that `dst' is distinct from both `src_1' and `src_2'. */
void run_container_xor(const run_container_t *src_1,
const run_container_t *src_2, run_container_t *dst) {
// don't bother to convert xor with full range into negation
// since negation is implemented similarly
const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
if (dst->capacity < neededcapacity)
run_container_grow(dst, neededcapacity, false);
int32_t pos1 = 0;
int32_t pos2 = 0;
dst->n_runs = 0;
while ((pos1 < src_1->n_runs) && (pos2 < src_2->n_runs)) {
if (src_1->runs[pos1].value <= src_2->runs[pos2].value) {
run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
src_1->runs[pos1].length);
pos1++;
} else {
run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
src_2->runs[pos2].length);
pos2++;
}
}
while (pos1 < src_1->n_runs) {
run_container_smart_append_exclusive(dst, src_1->runs[pos1].value,
src_1->runs[pos1].length);
pos1++;
}
while (pos2 < src_2->n_runs) {
run_container_smart_append_exclusive(dst, src_2->runs[pos2].value,
src_2->runs[pos2].length);
pos2++;
}
}
/* Compute the intersection of src_1 and src_2 and write the result to
* dst. It is assumed that dst is distinct from both src_1 and src_2. */
void run_container_intersection(const run_container_t *src_1,
const run_container_t *src_2,
run_container_t *dst) {
const bool if1 = run_container_is_full(src_1);
const bool if2 = run_container_is_full(src_2);
if (if1 || if2) {
if (if1) {
run_container_copy(src_2, dst);
return;
}
if (if2) {
run_container_copy(src_1, dst);
return;
}
}
// TODO: this could be a lot more efficient, could use SIMD optimizations
const int32_t neededcapacity = src_1->n_runs + src_2->n_runs;
if (dst->capacity < neededcapacity)
run_container_grow(dst, neededcapacity, false);
dst->n_runs = 0;
int32_t rlepos = 0;
int32_t xrlepos = 0;
int32_t start = src_1->runs[rlepos].value;
int32_t end = start + src_1->runs[rlepos].length + 1;
int32_t xstart = src_2->runs[xrlepos].value;
int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
if (end <= xstart) {
++rlepos;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
} else if (xend <= start) {
++xrlepos;
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
} else { // they overlap
const int32_t lateststart = start > xstart ? start : xstart;
int32_t earliestend;
if (end == xend) { // improbable
earliestend = end;
rlepos++;
xrlepos++;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
} else if (end < xend) {
earliestend = end;
rlepos++;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
} else { // end > xend
earliestend = xend;
xrlepos++;
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
}
dst->runs[dst->n_runs].value = (uint16_t)lateststart;
dst->runs[dst->n_runs].length =
(uint16_t)(earliestend - lateststart - 1);
dst->n_runs++;
}
}
}
/* Compute the size of the intersection of src_1 and src_2 . */
int run_container_intersection_cardinality(const run_container_t *src_1,
const run_container_t *src_2) {
const bool if1 = run_container_is_full(src_1);
const bool if2 = run_container_is_full(src_2);
if (if1 || if2) {
if (if1) {
return run_container_cardinality(src_2);
}
if (if2) {
return run_container_cardinality(src_1);
}
}
int answer = 0;
int32_t rlepos = 0;
int32_t xrlepos = 0;
int32_t start = src_1->runs[rlepos].value;
int32_t end = start + src_1->runs[rlepos].length + 1;
int32_t xstart = src_2->runs[xrlepos].value;
int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
if (end <= xstart) {
++rlepos;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
} else if (xend <= start) {
++xrlepos;
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
} else { // they overlap
const int32_t lateststart = start > xstart ? start : xstart;
int32_t earliestend;
if (end == xend) { // improbable
earliestend = end;
rlepos++;
xrlepos++;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
} else if (end < xend) {
earliestend = end;
rlepos++;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
} else { // end > xend
earliestend = xend;
xrlepos++;
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
}
answer += earliestend - lateststart;
}
}
return answer;
}
bool run_container_intersect(const run_container_t *src_1,
const run_container_t *src_2) {
const bool if1 = run_container_is_full(src_1);
const bool if2 = run_container_is_full(src_2);
if (if1 || if2) {
if (if1) {
return !run_container_empty(src_2);
}
if (if2) {
return !run_container_empty(src_1);
}
}
int32_t rlepos = 0;
int32_t xrlepos = 0;
int32_t start = src_1->runs[rlepos].value;
int32_t end = start + src_1->runs[rlepos].length + 1;
int32_t xstart = src_2->runs[xrlepos].value;
int32_t xend = xstart + src_2->runs[xrlepos].length + 1;
while ((rlepos < src_1->n_runs) && (xrlepos < src_2->n_runs)) {
if (end <= xstart) {
++rlepos;
if (rlepos < src_1->n_runs) {
start = src_1->runs[rlepos].value;
end = start + src_1->runs[rlepos].length + 1;
}
} else if (xend <= start) {
++xrlepos;
if (xrlepos < src_2->n_runs) {
xstart = src_2->runs[xrlepos].value;
xend = xstart + src_2->runs[xrlepos].length + 1;
}
} else { // they overlap
return true;
}
}
return false;
}
/* Compute the difference of src_1 and src_2 and write the result to
* dst. It is assumed that dst is distinct from both src_1 and src_2. */
void run_container_andnot(const run_container_t *src_1,
const run_container_t *src_2, run_container_t *dst) {
// following Java implementation as of June 2016
if (dst->capacity < src_1->n_runs + src_2->n_runs)
run_container_grow(dst, src_1->n_runs + src_2->n_runs, false);
dst->n_runs = 0;
int rlepos1 = 0;
int rlepos2 = 0;
int32_t start = src_1->runs[rlepos1].value;
int32_t end = start + src_1->runs[rlepos1].length + 1;
int32_t start2 = src_2->runs[rlepos2].value;
int32_t end2 = start2 + src_2->runs[rlepos2].length + 1;
while ((rlepos1 < src_1->n_runs) && (rlepos2 < src_2->n_runs)) {
if (end <= start2) {
// output the first run
dst->runs[dst->n_runs++] =
(rle16_t){.value = (uint16_t)start,
.length = (uint16_t)(end - start - 1)};
rlepos1++;
if (rlepos1 < src_1->n_runs) {
start = src_1->runs[rlepos1].value;
end = start + src_1->runs[rlepos1].length + 1;
}
} else if (end2 <= start) {
// exit the second run
rlepos2++;
if (rlepos2 < src_2->n_runs) {
start2 = src_2->runs[rlepos2].value;
end2 = start2 + src_2->runs[rlepos2].length + 1;
}
} else {
if (start < start2) {
dst->runs[dst->n_runs++] =
(rle16_t){.value = (uint16_t)start,
.length = (uint16_t)(start2 - start - 1)};
}
if (end2 < end) {
start = end2;
} else {
rlepos1++;
if (rlepos1 < src_1->n_runs) {
start = src_1->runs[rlepos1].value;
end = start + src_1->runs[rlepos1].length + 1;
}
}
}
}
if (rlepos1 < src_1->n_runs) {
dst->runs[dst->n_runs++] = (rle16_t){
.value = (uint16_t)start, .length = (uint16_t)(end - start - 1)};
rlepos1++;
if (rlepos1 < src_1->n_runs) {
memcpy(dst->runs + dst->n_runs, src_1->runs + rlepos1,
sizeof(rle16_t) * (src_1->n_runs - rlepos1));
dst->n_runs += src_1->n_runs - rlepos1;
}
}
}
int run_container_to_uint32_array(void *vout, const run_container_t *cont,
uint32_t base) {
int outpos = 0;
uint32_t *out = (uint32_t *)vout;
for (int i = 0; i < cont->n_runs; ++i) {
uint32_t run_start = base + cont->runs[i].value;
uint16_t le = cont->runs[i].length;
for (int j = 0; j <= le; ++j) {
uint32_t val = run_start + j;
memcpy(out + outpos, &val,
sizeof(uint32_t)); // should be compiled as a MOV on x64
outpos++;
}
}
return outpos;
}
/*
* Print this container using printf (useful for debugging).
*/
void run_container_printf(const run_container_t *cont) {
for (int i = 0; i < cont->n_runs; ++i) {
uint16_t run_start = cont->runs[i].value;
uint16_t le = cont->runs[i].length;
printf("[%d,%d]", run_start, run_start + le);
}
}
/*
* Print this container using printf as a comma-separated list of 32-bit
* integers starting at base.
*/
void run_container_printf_as_uint32_array(const run_container_t *cont,
uint32_t base) {
if (cont->n_runs == 0) return;
{
uint32_t run_start = base + cont->runs[0].value;
uint16_t le = cont->runs[0].length;
printf("%u", run_start);
for (uint32_t j = 1; j <= le; ++j) printf(",%u", run_start + j);
}
for (int32_t i = 1; i < cont->n_runs; ++i) {
uint32_t run_start = base + cont->runs[i].value;
uint16_t le = cont->runs[i].length;
for (uint32_t j = 0; j <= le; ++j) printf(",%u", run_start + j);
}
}
int32_t run_container_serialize(const run_container_t *container, char *buf) {
int32_t l, off;
memcpy(buf, &container->n_runs, off = sizeof(container->n_runs));
memcpy(&buf[off], &container->capacity, sizeof(container->capacity));
off += sizeof(container->capacity);
l = sizeof(rle16_t) * container->n_runs;
memcpy(&buf[off], container->runs, l);
return (off + l);
}
int32_t run_container_write(const run_container_t *container, char *buf) {
memcpy(buf, &container->n_runs, sizeof(uint16_t));
memcpy(buf + sizeof(uint16_t), container->runs,
container->n_runs * sizeof(rle16_t));
return run_container_size_in_bytes(container);
}
int32_t run_container_read(int32_t cardinality, run_container_t *container,
const char *buf) {
(void)cardinality;
memcpy(&container->n_runs, buf, sizeof(uint16_t));
if (container->n_runs > container->capacity)
run_container_grow(container, container->n_runs, false);
if(container->n_runs > 0) {
memcpy(container->runs, buf + sizeof(uint16_t),
container->n_runs * sizeof(rle16_t));
}
return run_container_size_in_bytes(container);
}
uint32_t run_container_serialization_len(const run_container_t *container) {
return (sizeof(container->n_runs) + sizeof(container->capacity) +
sizeof(rle16_t) * container->n_runs);
}
void *run_container_deserialize(const char *buf, size_t buf_len) {
run_container_t *ptr;
if (buf_len < 8 /* n_runs + capacity */)
return (NULL);
else
buf_len -= 8;
if ((ptr = (run_container_t *)malloc(sizeof(run_container_t))) != NULL) {
size_t len;
int32_t off;
memcpy(&ptr->n_runs, buf, off = 4);
memcpy(&ptr->capacity, &buf[off], 4);
off += 4;
len = sizeof(rle16_t) * ptr->n_runs;
if (len != buf_len) {
free(ptr);
return (NULL);
}
if ((ptr->runs = (rle16_t *)malloc(len)) == NULL) {
free(ptr);
return (NULL);
}
memcpy(ptr->runs, &buf[off], len);
/* Check if returned values are monotonically increasing */
for (int32_t i = 0, j = 0; i < ptr->n_runs; i++) {
if (ptr->runs[i].value < j) {
free(ptr->runs);
free(ptr);
return (NULL);
} else
j = ptr->runs[i].value;
}
}
return (ptr);
}
bool run_container_iterate(const run_container_t *cont, uint32_t base,
roaring_iterator iterator, void *ptr) {
for (int i = 0; i < cont->n_runs; ++i) {
uint32_t run_start = base + cont->runs[i].value;
uint16_t le = cont->runs[i].length;
for (int j = 0; j <= le; ++j)
if (!iterator(run_start + j, ptr)) return false;
}
return true;
}
bool run_container_iterate64(const run_container_t *cont, uint32_t base,
roaring_iterator64 iterator, uint64_t high_bits,
void *ptr) {
for (int i = 0; i < cont->n_runs; ++i) {
uint32_t run_start = base + cont->runs[i].value;
uint16_t le = cont->runs[i].length;
for (int j = 0; j <= le; ++j)
if (!iterator(high_bits | (uint64_t)(run_start + j), ptr))
return false;
}
return true;
}
bool run_container_is_subset(const run_container_t *container1,
const run_container_t *container2) {
int i1 = 0, i2 = 0;
while (i1 < container1->n_runs && i2 < container2->n_runs) {
int start1 = container1->runs[i1].value;
int stop1 = start1 + container1->runs[i1].length;
int start2 = container2->runs[i2].value;
int stop2 = start2 + container2->runs[i2].length;
if (start1 < start2) {
return false;
} else { // start1 >= start2
if (stop1 < stop2) {
i1++;
} else if (stop1 == stop2) {
i1++;
i2++;
} else { // stop1 > stop2
i2++;
}
}
}
if (i1 == container1->n_runs) {
return true;
} else {
return false;
}
}
// TODO: write smart_append_exclusive version to match the overloaded 1 param
// Java version (or is it even used?)
// follows the Java implementation closely
// length is the rle-value. Ie, run [10,12) uses a length value 1.
void run_container_smart_append_exclusive(run_container_t *src,
const uint16_t start,
const uint16_t length) {
int old_end;
rle16_t *last_run = src->n_runs ? src->runs + (src->n_runs - 1) : NULL;
rle16_t *appended_last_run = src->runs + src->n_runs;
if (!src->n_runs ||
(start > (old_end = last_run->value + last_run->length + 1))) {
*appended_last_run = (rle16_t){.value = start, .length = length};
src->n_runs++;
return;
}
if (old_end == start) {
// we merge
last_run->length += (length + 1);
return;
}
int new_end = start + length + 1;
if (start == last_run->value) {
// wipe out previous
if (new_end < old_end) {
*last_run = (rle16_t){.value = (uint16_t)new_end,
.length = (uint16_t)(old_end - new_end - 1)};
return;
} else if (new_end > old_end) {
*last_run = (rle16_t){.value = (uint16_t)old_end,
.length = (uint16_t)(new_end - old_end - 1)};
return;
} else {
src->n_runs--;
return;
}
}
last_run->length = start - last_run->value - 1;
if (new_end < old_end) {
*appended_last_run =
(rle16_t){.value = (uint16_t)new_end,
.length = (uint16_t)(old_end - new_end - 1)};
src->n_runs++;
} else if (new_end > old_end) {
*appended_last_run =
(rle16_t){.value = (uint16_t)old_end,
.length = (uint16_t)(new_end - old_end - 1)};
src->n_runs++;
}
}
bool run_container_select(const run_container_t *container,
uint32_t *start_rank, uint32_t rank,
uint32_t *element) {
for (int i = 0; i < container->n_runs; i++) {
uint16_t length = container->runs[i].length;
if (rank <= *start_rank + length) {
uint16_t value = container->runs[i].value;
*element = value + rank - (*start_rank);
return true;
} else
*start_rank += length + 1;
}
return false;
}
int run_container_rank(const run_container_t *container, uint16_t x) {
int sum = 0;
uint32_t x32 = x;
for (int i = 0; i < container->n_runs; i++) {
uint32_t startpoint = container->runs[i].value;
uint32_t length = container->runs[i].length;
uint32_t endpoint = length + startpoint;
if (x <= endpoint) {
if (x < startpoint) break;
return sum + (x32 - startpoint) + 1;
} else {
sum += length + 1;
}
}
return sum;
}
/* end file src/containers/run.c */
/* begin file src/roaring.c */
#include <assert.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
static inline bool is_cow(const roaring_bitmap_t *r) {
return r->high_low_container.flags & ROARING_FLAG_COW;
}
static inline bool is_frozen(const roaring_bitmap_t *r) {
return r->high_low_container.flags & ROARING_FLAG_FROZEN;
}
// this is like roaring_bitmap_add, but it populates pointer arguments in such a
// way
// that we can recover the container touched, which, in turn can be used to
// accelerate some functions (when you repeatedly need to add to the same
// container)
static inline void *containerptr_roaring_bitmap_add(roaring_bitmap_t *r,
uint32_t val,
uint8_t *typecode,
int *index) {
uint16_t hb = val >> 16;
const int i = ra_get_index(&r->high_low_container, hb);
if (i >= 0) {
ra_unshare_container_at_index(&r->high_low_container, i);
void *container =
ra_get_container_at_index(&r->high_low_container, i, typecode);
uint8_t newtypecode = *typecode;
void *container2 =
container_add(container, val & 0xFFFF, *typecode, &newtypecode);
*index = i;
if (container2 != container) {
container_free(container, *typecode);
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
*typecode = newtypecode;
return container2;
} else {
return container;
}
} else {
array_container_t *newac = array_container_create();
void *container = container_add(newac, val & 0xFFFF,
ARRAY_CONTAINER_TYPE_CODE, typecode);
// we could just assume that it stays an array container
ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
container, *typecode);
*index = -i - 1;
return container;
}
}
roaring_bitmap_t *roaring_bitmap_create(void) {
roaring_bitmap_t *ans =
(roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
if (!ans) {
return NULL;
}
ra_init(&ans->high_low_container);
return ans;
}
roaring_bitmap_t *roaring_bitmap_create_with_capacity(uint32_t cap) {
roaring_bitmap_t *ans =
(roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
if (!ans) {
return NULL;
}
bool is_ok = ra_init_with_capacity(&ans->high_low_container, cap);
if (!is_ok) {
free(ans);
return NULL;
}
return ans;
}
void roaring_bitmap_add_many(roaring_bitmap_t *r, size_t n_args,
const uint32_t *vals) {
void *container = NULL; // hold value of last container touched
uint8_t typecode = 0; // typecode of last container touched
uint32_t prev = 0; // previous valued inserted
size_t i = 0; // index of value
int containerindex = 0;
if (n_args == 0) return;
uint32_t val;
memcpy(&val, vals + i, sizeof(val));
container =
containerptr_roaring_bitmap_add(r, val, &typecode, &containerindex);
prev = val;
i++;
for (; i < n_args; i++) {
memcpy(&val, vals + i, sizeof(val));
if (((prev ^ val) >> 16) ==
0) { // no need to seek the container, it is at hand
// because we already have the container at hand, we can do the
// insertion
// automatically, bypassing the roaring_bitmap_add call
uint8_t newtypecode = typecode;
void *container2 =
container_add(container, val & 0xFFFF, typecode, &newtypecode);
if (container2 != container) { // rare instance when we need to
// change the container type
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container,
containerindex, container2,
newtypecode);
typecode = newtypecode;
container = container2;
}
} else {
container = containerptr_roaring_bitmap_add(r, val, &typecode,
&containerindex);
}
prev = val;
}
}
roaring_bitmap_t *roaring_bitmap_of_ptr(size_t n_args, const uint32_t *vals) {
roaring_bitmap_t *answer = roaring_bitmap_create();
roaring_bitmap_add_many(answer, n_args, vals);
return answer;
}
roaring_bitmap_t *roaring_bitmap_of(size_t n_args, ...) {
// todo: could be greatly optimized but we do not expect this call to ever
// include long lists
roaring_bitmap_t *answer = roaring_bitmap_create();
va_list ap;
va_start(ap, n_args);
for (size_t i = 1; i <= n_args; i++) {
uint32_t val = va_arg(ap, uint32_t);
roaring_bitmap_add(answer, val);
}
va_end(ap);
return answer;
}
static inline uint32_t minimum_uint32(uint32_t a, uint32_t b) {
return (a < b) ? a : b;
}
static inline uint64_t minimum_uint64(uint64_t a, uint64_t b) {
return (a < b) ? a : b;
}
roaring_bitmap_t *roaring_bitmap_from_range(uint64_t min, uint64_t max,
uint32_t step) {
if(max >= UINT64_C(0x100000000)) {
max = UINT64_C(0x100000000);
}
if (step == 0) return NULL;
if (max <= min) return NULL;
roaring_bitmap_t *answer = roaring_bitmap_create();
if (step >= (1 << 16)) {
for (uint32_t value = (uint32_t)min; value < max; value += step) {
roaring_bitmap_add(answer, value);
}
return answer;
}
uint64_t min_tmp = min;
do {
uint32_t key = (uint32_t)min_tmp >> 16;
uint32_t container_min = min_tmp & 0xFFFF;
uint32_t container_max = (uint32_t)minimum_uint64(max - (key << 16), 1 << 16);
uint8_t type;
void *container = container_from_range(&type, container_min,
container_max, (uint16_t)step);
ra_append(&answer->high_low_container, key, container, type);
uint32_t gap = container_max - container_min + step - 1;
min_tmp += gap - (gap % step);
} while (min_tmp < max);
// cardinality of bitmap will be ((uint64_t) max - min + step - 1 ) / step
return answer;
}
void roaring_bitmap_add_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max) {
if (min > max) {
return;
}
uint32_t min_key = min >> 16;
uint32_t max_key = max >> 16;
int32_t num_required_containers = max_key - min_key + 1;
int32_t suffix_length = count_greater(ra->high_low_container.keys,
ra->high_low_container.size,
max_key);
int32_t prefix_length = count_less(ra->high_low_container.keys,
ra->high_low_container.size - suffix_length,
min_key);
int32_t common_length = ra->high_low_container.size - prefix_length - suffix_length;
if (num_required_containers > common_length) {
ra_shift_tail(&ra->high_low_container, suffix_length,
num_required_containers - common_length);
}
int32_t src = prefix_length + common_length - 1;
int32_t dst = ra->high_low_container.size - suffix_length - 1;
for (uint32_t key = max_key; key != min_key-1; key--) { // beware of min_key==0
uint32_t container_min = (min_key == key) ? (min & 0xffff) : 0;
uint32_t container_max = (max_key == key) ? (max & 0xffff) : 0xffff;
void* new_container;
uint8_t new_type;
if (src >= 0 && ra->high_low_container.keys[src] == key) {
ra_unshare_container_at_index(&ra->high_low_container, src);
new_container = container_add_range(ra->high_low_container.containers[src],
ra->high_low_container.typecodes[src],
container_min, container_max, &new_type);
if (new_container != ra->high_low_container.containers[src]) {
container_free(ra->high_low_container.containers[src],
ra->high_low_container.typecodes[src]);
}
src--;
} else {
new_container = container_from_range(&new_type, container_min,
container_max+1, 1);
}
ra_replace_key_and_container_at_index(&ra->high_low_container, dst,
key, new_container, new_type);
dst--;
}
}
void roaring_bitmap_remove_range_closed(roaring_bitmap_t *ra, uint32_t min, uint32_t max) {
if (min > max) {
return;
}
uint32_t min_key = min >> 16;
uint32_t max_key = max >> 16;
int32_t src = count_less(ra->high_low_container.keys, ra->high_low_container.size, min_key);
int32_t dst = src;
while (src < ra->high_low_container.size && ra->high_low_container.keys[src] <= max_key) {
uint32_t container_min = (min_key == ra->high_low_container.keys[src]) ? (min & 0xffff) : 0;
uint32_t container_max = (max_key == ra->high_low_container.keys[src]) ? (max & 0xffff) : 0xffff;
ra_unshare_container_at_index(&ra->high_low_container, src);
void *new_container;
uint8_t new_type;
new_container = container_remove_range(ra->high_low_container.containers[src],
ra->high_low_container.typecodes[src],
container_min, container_max,
&new_type);
if (new_container != ra->high_low_container.containers[src]) {
container_free(ra->high_low_container.containers[src],
ra->high_low_container.typecodes[src]);
}
if (new_container) {
ra_replace_key_and_container_at_index(&ra->high_low_container, dst,
ra->high_low_container.keys[src],
new_container, new_type);
dst++;
}
src++;
}
if (src > dst) {
ra_shift_tail(&ra->high_low_container, ra->high_low_container.size - src, dst - src);
}
}
void roaring_bitmap_printf(const roaring_bitmap_t *ra) {
printf("{");
for (int i = 0; i < ra->high_low_container.size; ++i) {
container_printf_as_uint32_array(
ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i],
((uint32_t)ra->high_low_container.keys[i]) << 16);
if (i + 1 < ra->high_low_container.size) printf(",");
}
printf("}");
}
void roaring_bitmap_printf_describe(const roaring_bitmap_t *ra) {
printf("{");
for (int i = 0; i < ra->high_low_container.size; ++i) {
printf("%d: %s (%d)", ra->high_low_container.keys[i],
get_full_container_name(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]),
container_get_cardinality(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]));
if (ra->high_low_container.typecodes[i] == SHARED_CONTAINER_TYPE_CODE) {
printf(
"(shared count = %" PRIu32 " )",
((shared_container_t *)(ra->high_low_container.containers[i]))
->counter);
}
if (i + 1 < ra->high_low_container.size) printf(", ");
}
printf("}");
}
typedef struct min_max_sum_s {
uint32_t min;
uint32_t max;
uint64_t sum;
} min_max_sum_t;
static bool min_max_sum_fnc(uint32_t value, void *param) {
min_max_sum_t *mms = (min_max_sum_t *)param;
if (value > mms->max) mms->max = value;
if (value < mms->min) mms->min = value;
mms->sum += value;
return true; // we always process all data points
}
/**
* (For advanced users.)
* Collect statistics about the bitmap
*/
void roaring_bitmap_statistics(const roaring_bitmap_t *ra,
roaring_statistics_t *stat) {
memset(stat, 0, sizeof(*stat));
stat->n_containers = ra->high_low_container.size;
stat->cardinality = roaring_bitmap_get_cardinality(ra);
min_max_sum_t mms;
mms.min = UINT32_C(0xFFFFFFFF);
mms.max = UINT32_C(0);
mms.sum = 0;
roaring_iterate(ra, &min_max_sum_fnc, &mms);
stat->min_value = mms.min;
stat->max_value = mms.max;
stat->sum_value = mms.sum;
for (int i = 0; i < ra->high_low_container.size; ++i) {
uint8_t truetype =
get_container_type(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]);
uint32_t card =
container_get_cardinality(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]);
uint32_t sbytes =
container_size_in_bytes(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]);
switch (truetype) {
case BITSET_CONTAINER_TYPE_CODE:
stat->n_bitset_containers++;
stat->n_values_bitset_containers += card;
stat->n_bytes_bitset_containers += sbytes;
break;
case ARRAY_CONTAINER_TYPE_CODE:
stat->n_array_containers++;
stat->n_values_array_containers += card;
stat->n_bytes_array_containers += sbytes;
break;
case RUN_CONTAINER_TYPE_CODE:
stat->n_run_containers++;
stat->n_values_run_containers += card;
stat->n_bytes_run_containers += sbytes;
break;
default:
assert(false);
__builtin_unreachable();
}
}
}
roaring_bitmap_t *roaring_bitmap_copy(const roaring_bitmap_t *r) {
roaring_bitmap_t *ans =
(roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
if (!ans) {
return NULL;
}
bool is_ok = ra_copy(&r->high_low_container, &ans->high_low_container,
is_cow(r));
if (!is_ok) {
free(ans);
return NULL;
}
roaring_bitmap_set_copy_on_write(ans, is_cow(r));
return ans;
}
bool roaring_bitmap_overwrite(roaring_bitmap_t *dest,
const roaring_bitmap_t *src) {
return ra_overwrite(&src->high_low_container, &dest->high_low_container,
is_cow(src));
}
void roaring_bitmap_free(const roaring_bitmap_t *r) {
if (!is_frozen(r)) {
ra_clear((roaring_array_t*)&r->high_low_container);
}
free((roaring_bitmap_t*)r);
}
void roaring_bitmap_clear(roaring_bitmap_t *r) {
ra_reset(&r->high_low_container);
}
void roaring_bitmap_add(roaring_bitmap_t *r, uint32_t val) {
const uint16_t hb = val >> 16;
const int i = ra_get_index(&r->high_low_container, hb);
uint8_t typecode;
if (i >= 0) {
ra_unshare_container_at_index(&r->high_low_container, i);
void *container =
ra_get_container_at_index(&r->high_low_container, i, &typecode);
uint8_t newtypecode = typecode;
void *container2 =
container_add(container, val & 0xFFFF, typecode, &newtypecode);
if (container2 != container) {
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
}
} else {
array_container_t *newac = array_container_create();
void *container = container_add(newac, val & 0xFFFF,
ARRAY_CONTAINER_TYPE_CODE, &typecode);
// we could just assume that it stays an array container
ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
container, typecode);
}
}
bool roaring_bitmap_add_checked(roaring_bitmap_t *r, uint32_t val) {
const uint16_t hb = val >> 16;
const int i = ra_get_index(&r->high_low_container, hb);
uint8_t typecode;
bool result = false;
if (i >= 0) {
ra_unshare_container_at_index(&r->high_low_container, i);
void *container =
ra_get_container_at_index(&r->high_low_container, i, &typecode);
const int oldCardinality =
container_get_cardinality(container, typecode);
uint8_t newtypecode = typecode;
void *container2 =
container_add(container, val & 0xFFFF, typecode, &newtypecode);
if (container2 != container) {
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
result = true;
} else {
const int newCardinality =
container_get_cardinality(container, newtypecode);
result = oldCardinality != newCardinality;
}
} else {
array_container_t *newac = array_container_create();
void *container = container_add(newac, val & 0xFFFF,
ARRAY_CONTAINER_TYPE_CODE, &typecode);
// we could just assume that it stays an array container
ra_insert_new_key_value_at(&r->high_low_container, -i - 1, hb,
container, typecode);
result = true;
}
return result;
}
void roaring_bitmap_remove(roaring_bitmap_t *r, uint32_t val) {
const uint16_t hb = val >> 16;
const int i = ra_get_index(&r->high_low_container, hb);
uint8_t typecode;
if (i >= 0) {
ra_unshare_container_at_index(&r->high_low_container, i);
void *container =
ra_get_container_at_index(&r->high_low_container, i, &typecode);
uint8_t newtypecode = typecode;
void *container2 =
container_remove(container, val & 0xFFFF, typecode, &newtypecode);
if (container2 != container) {
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
}
if (container_get_cardinality(container2, newtypecode) != 0) {
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
} else {
ra_remove_at_index_and_free(&r->high_low_container, i);
}
}
}
bool roaring_bitmap_remove_checked(roaring_bitmap_t *r, uint32_t val) {
const uint16_t hb = val >> 16;
const int i = ra_get_index(&r->high_low_container, hb);
uint8_t typecode;
bool result = false;
if (i >= 0) {
ra_unshare_container_at_index(&r->high_low_container, i);
void *container =
ra_get_container_at_index(&r->high_low_container, i, &typecode);
const int oldCardinality =
container_get_cardinality(container, typecode);
uint8_t newtypecode = typecode;
void *container2 =
container_remove(container, val & 0xFFFF, typecode, &newtypecode);
if (container2 != container) {
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
}
const int newCardinality =
container_get_cardinality(container2, newtypecode);
if (newCardinality != 0) {
ra_set_container_at_index(&r->high_low_container, i, container2,
newtypecode);
} else {
ra_remove_at_index_and_free(&r->high_low_container, i);
}
result = oldCardinality != newCardinality;
}
return result;
}
void roaring_bitmap_remove_many(roaring_bitmap_t *r, size_t n_args,
const uint32_t *vals) {
if (n_args == 0 || r->high_low_container.size == 0) {
return;
}
int32_t pos = -1; // position of the container used in the previous iteration
for (size_t i = 0; i < n_args; i++) {
uint16_t key = (uint16_t)(vals[i] >> 16);
if (pos < 0 || key != r->high_low_container.keys[pos]) {
pos = ra_get_index(&r->high_low_container, key);
}
if (pos >= 0) {
uint8_t new_typecode;
void *new_container;
new_container = container_remove(r->high_low_container.containers[pos],
vals[i] & 0xffff,
r->high_low_container.typecodes[pos],
&new_typecode);
if (new_container != r->high_low_container.containers[pos]) {
container_free(r->high_low_container.containers[pos],
r->high_low_container.typecodes[pos]);
ra_replace_key_and_container_at_index(&r->high_low_container,
pos, key, new_container,
new_typecode);
}
if (!container_nonzero_cardinality(new_container, new_typecode)) {
container_free(new_container, new_typecode);
ra_remove_at_index(&r->high_low_container, pos);
pos = -1;
}
}
}
}
// there should be some SIMD optimizations possible here
roaring_bitmap_t *roaring_bitmap_and(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
uint32_t neededcap = length1 > length2 ? length2 : length1;
roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c = container_and(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_append(&answer->high_low_container, s1, c,
container_result_type);
} else {
container_free(
c, container_result_type); // otherwise:memory leak!
}
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
} else { // s1 > s2
pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
}
}
return answer;
}
/**
* Compute the union of 'number' bitmaps.
*/
roaring_bitmap_t *roaring_bitmap_or_many(size_t number,
const roaring_bitmap_t **x) {
if (number == 0) {
return roaring_bitmap_create();
}
if (number == 1) {
return roaring_bitmap_copy(x[0]);
}
roaring_bitmap_t *answer =
roaring_bitmap_lazy_or(x[0], x[1], LAZY_OR_BITSET_CONVERSION);
for (size_t i = 2; i < number; i++) {
roaring_bitmap_lazy_or_inplace(answer, x[i], LAZY_OR_BITSET_CONVERSION);
}
roaring_bitmap_repair_after_lazy(answer);
return answer;
}
/**
* Compute the xor of 'number' bitmaps.
*/
roaring_bitmap_t *roaring_bitmap_xor_many(size_t number,
const roaring_bitmap_t **x) {
if (number == 0) {
return roaring_bitmap_create();
}
if (number == 1) {
return roaring_bitmap_copy(x[0]);
}
roaring_bitmap_t *answer = roaring_bitmap_lazy_xor(x[0], x[1]);
for (size_t i = 2; i < number; i++) {
roaring_bitmap_lazy_xor_inplace(answer, x[i]);
}
roaring_bitmap_repair_after_lazy(answer);
return answer;
}
// inplace and (modifies its first argument).
void roaring_bitmap_and_inplace(roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
if (x1 == x2) return;
int pos1 = 0, pos2 = 0, intersection_size = 0;
const int length1 = ra_get_size(&x1->high_low_container);
const int length2 = ra_get_size(&x2->high_low_container);
// any skipped-over or newly emptied containers in x1
// have to be freed.
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
if (s1 == s2) {
uint8_t typecode1, typecode2, typecode_result;
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&typecode1);
c1 = get_writable_copy_if_shared(c1, &typecode1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&typecode2);
void *c =
container_iand(c1, typecode1, c2, typecode2, &typecode_result);
if (c != c1) { // in this instance a new container was created, and
// we need to free the old one
container_free(c1, typecode1);
}
if (container_nonzero_cardinality(c, typecode_result)) {
ra_replace_key_and_container_at_index(&x1->high_low_container,
intersection_size, s1, c,
typecode_result);
intersection_size++;
} else {
container_free(c, typecode_result);
}
++pos1;
++pos2;
} else if (s1 < s2) {
pos1 = ra_advance_until_freeing(&x1->high_low_container, s2, pos1);
} else { // s1 > s2
pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
}
}
// if we ended early because x2 ran out, then all remaining in x1 should be
// freed
while (pos1 < length1) {
container_free(x1->high_low_container.containers[pos1],
x1->high_low_container.typecodes[pos1]);
++pos1;
}
// all containers after this have either been copied or freed
ra_downsize(&x1->high_low_container, intersection_size);
}
roaring_bitmap_t *roaring_bitmap_or(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
if (0 == length1) {
return roaring_bitmap_copy(x2);
}
if (0 == length2) {
return roaring_bitmap_copy(x1);
}
roaring_bitmap_t *answer =
roaring_bitmap_create_with_capacity(length1 + length2);
roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c = container_or(c1, container_type_1, c2, container_type_2,
&container_result_type);
// since we assume that the initial containers are non-empty, the
// result here
// can only be non-empty
ra_append(&answer->high_low_container, s1, c,
container_result_type);
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
// c1 = container_clone(c1, container_type_1);
c1 =
get_copy_of_container(c1, &container_type_1, is_cow(x1));
if (is_cow(x1)) {
ra_set_container_at_index(&x1->high_low_container, pos1, c1,
container_type_1);
}
ra_append(&answer->high_low_container, s1, c1, container_type_1);
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
// c2 = container_clone(c2, container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_append(&answer->high_low_container, s2, c2, container_type_2);
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&answer->high_low_container,
&x2->high_low_container, pos2, length2,
is_cow(x2));
} else if (pos2 == length2) {
ra_append_copy_range(&answer->high_low_container,
&x1->high_low_container, pos1, length1,
is_cow(x1));
}
return answer;
}
// inplace or (modifies its first argument).
void roaring_bitmap_or_inplace(roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
int length1 = x1->high_low_container.size;
const int length2 = x2->high_low_container.size;
if (0 == length2) return;
if (0 == length1) {
roaring_bitmap_overwrite(x1, x2);
return;
}
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
if (!container_is_full(c1, container_type_1)) {
c1 = get_writable_copy_if_shared(c1, &container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container,
pos2, &container_type_2);
void *c =
container_ior(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (c !=
c1) { // in this instance a new container was created, and
// we need to free the old one
container_free(c1, container_type_1);
}
ra_set_container_at_index(&x1->high_low_container, pos1, c,
container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
// void *c2_clone = container_clone(c2, container_type_2);
ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
container_type_2);
pos1++;
length1++;
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
pos2, length2, is_cow(x2));
}
}
roaring_bitmap_t *roaring_bitmap_xor(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
if (0 == length1) {
return roaring_bitmap_copy(x2);
}
if (0 == length2) {
return roaring_bitmap_copy(x1);
}
roaring_bitmap_t *answer =
roaring_bitmap_create_with_capacity(length1 + length2);
roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c = container_xor(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_append(&answer->high_low_container, s1, c,
container_result_type);
} else {
container_free(c, container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
c1 =
get_copy_of_container(c1, &container_type_1, is_cow(x1));
if (is_cow(x1)) {
ra_set_container_at_index(&x1->high_low_container, pos1, c1,
container_type_1);
}
ra_append(&answer->high_low_container, s1, c1, container_type_1);
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_append(&answer->high_low_container, s2, c2, container_type_2);
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&answer->high_low_container,
&x2->high_low_container, pos2, length2,
is_cow(x2));
} else if (pos2 == length2) {
ra_append_copy_range(&answer->high_low_container,
&x1->high_low_container, pos1, length1,
is_cow(x1));
}
return answer;
}
// inplace xor (modifies its first argument).
void roaring_bitmap_xor_inplace(roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
assert(x1 != x2);
uint8_t container_result_type = 0;
int length1 = x1->high_low_container.size;
const int length2 = x2->high_low_container.size;
if (0 == length2) return;
if (0 == length1) {
roaring_bitmap_overwrite(x1, x2);
return;
}
// XOR can have new containers inserted from x2, but can also
// lose containers when x1 and x2 are nonempty and identical.
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
c1 = get_writable_copy_if_shared(c1, &container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c = container_ixor(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_set_container_at_index(&x1->high_low_container, pos1, c,
container_result_type);
++pos1;
} else {
container_free(c, container_result_type);
ra_remove_at_index(&x1->high_low_container, pos1);
--length1;
}
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
container_type_2);
pos1++;
length1++;
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
pos2, length2, is_cow(x2));
}
}
roaring_bitmap_t *roaring_bitmap_andnot(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
if (0 == length1) {
roaring_bitmap_t *empty_bitmap = roaring_bitmap_create();
roaring_bitmap_set_copy_on_write(empty_bitmap, is_cow(x1) && is_cow(x2));
return empty_bitmap;
}
if (0 == length2) {
return roaring_bitmap_copy(x1);
}
roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(length1);
roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = 0;
uint16_t s2 = 0;
while (true) {
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c =
container_andnot(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_append(&answer->high_low_container, s1, c,
container_result_type);
} else {
container_free(c, container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
} else if (s1 < s2) { // s1 < s2
const int next_pos1 =
ra_advance_until(&x1->high_low_container, s2, pos1);
ra_append_copy_range(&answer->high_low_container,
&x1->high_low_container, pos1, next_pos1,
is_cow(x1));
// TODO : perhaps some of the copy_on_write should be based on
// answer rather than x1 (more stringent?). Many similar cases
pos1 = next_pos1;
if (pos1 == length1) break;
} else { // s1 > s2
pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
if (pos2 == length2) break;
}
}
if (pos2 == length2) {
ra_append_copy_range(&answer->high_low_container,
&x1->high_low_container, pos1, length1,
is_cow(x1));
}
return answer;
}
// inplace andnot (modifies its first argument).
void roaring_bitmap_andnot_inplace(roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
assert(x1 != x2);
uint8_t container_result_type = 0;
int length1 = x1->high_low_container.size;
const int length2 = x2->high_low_container.size;
int intersection_size = 0;
if (0 == length2) return;
if (0 == length1) {
roaring_bitmap_clear(x1);
return;
}
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
c1 = get_writable_copy_if_shared(c1, &container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c =
container_iandnot(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_replace_key_and_container_at_index(&x1->high_low_container,
intersection_size++, s1,
c, container_result_type);
} else {
container_free(c, container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
if (pos1 != intersection_size) {
void *c1 = ra_get_container_at_index(&x1->high_low_container,
pos1, &container_type_1);
ra_replace_key_and_container_at_index(&x1->high_low_container,
intersection_size, s1, c1,
container_type_1);
}
intersection_size++;
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 < length1) {
// all containers between intersection_size and
// pos1 are junk. However, they have either been moved
// (thus still referenced) or involved in an iandnot
// that will clean up all containers that could not be reused.
// Thus we should not free the junk containers between
// intersection_size and pos1.
if (pos1 > intersection_size) {
// left slide of remaining items
ra_copy_range(&x1->high_low_container, pos1, length1,
intersection_size);
}
// else current placement is fine
intersection_size += (length1 - pos1);
}
ra_downsize(&x1->high_low_container, intersection_size);
}
uint64_t roaring_bitmap_get_cardinality(const roaring_bitmap_t *ra) {
uint64_t card = 0;
for (int i = 0; i < ra->high_low_container.size; ++i)
card += container_get_cardinality(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]);
return card;
}
uint64_t roaring_bitmap_range_cardinality(const roaring_bitmap_t *ra,
uint64_t range_start,
uint64_t range_end) {
if (range_end > UINT32_MAX) {
range_end = UINT32_MAX + UINT64_C(1);
}
if (range_start >= range_end) {
return 0;
}
range_end--; // make range_end inclusive
// now we have: 0 <= range_start <= range_end <= UINT32_MAX
uint16_t minhb = range_start >> 16;
uint16_t maxhb = range_end >> 16;
uint64_t card = 0;
int i = ra_get_index(&ra->high_low_container, minhb);
if (i >= 0) {
if (minhb == maxhb) {
card += container_rank(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i],
range_end & 0xffff);
} else {
card += container_get_cardinality(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]);
}
if ((range_start & 0xffff) != 0) {
card -= container_rank(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i],
(range_start & 0xffff) - 1);
}
i++;
} else {
i = -i - 1;
}
for (; i < ra->high_low_container.size; i++) {
uint16_t key = ra->high_low_container.keys[i];
if (key < maxhb) {
card += container_get_cardinality(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i]);
} else if (key == maxhb) {
card += container_rank(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i],
range_end & 0xffff);
break;
} else {
break;
}
}
return card;
}
bool roaring_bitmap_is_empty(const roaring_bitmap_t *ra) {
return ra->high_low_container.size == 0;
}
void roaring_bitmap_to_uint32_array(const roaring_bitmap_t *ra, uint32_t *ans) {
ra_to_uint32_array(&ra->high_low_container, ans);
}
bool roaring_bitmap_range_uint32_array(const roaring_bitmap_t *ra, size_t offset, size_t limit, uint32_t *ans) {
return ra_range_uint32_array(&ra->high_low_container, offset, limit, ans);
}
/** convert array and bitmap containers to run containers when it is more
* efficient;
* also convert from run containers when more space efficient. Returns
* true if the result has at least one run container.
*/
bool roaring_bitmap_run_optimize(roaring_bitmap_t *r) {
bool answer = false;
for (int i = 0; i < r->high_low_container.size; i++) {
uint8_t typecode_original, typecode_after;
ra_unshare_container_at_index(
&r->high_low_container, i); // TODO: this introduces extra cloning!
void *c = ra_get_container_at_index(&r->high_low_container, i,
&typecode_original);
void *c1 = convert_run_optimize(c, typecode_original, &typecode_after);
if (typecode_after == RUN_CONTAINER_TYPE_CODE) answer = true;
ra_set_container_at_index(&r->high_low_container, i, c1,
typecode_after);
}
return answer;
}
size_t roaring_bitmap_shrink_to_fit(roaring_bitmap_t *r) {
size_t answer = 0;
for (int i = 0; i < r->high_low_container.size; i++) {
uint8_t typecode_original;
void *c = ra_get_container_at_index(&r->high_low_container, i,
&typecode_original);
answer += container_shrink_to_fit(c, typecode_original);
}
answer += ra_shrink_to_fit(&r->high_low_container);
return answer;
}
/**
* Remove run-length encoding even when it is more space efficient
* return whether a change was applied
*/
bool roaring_bitmap_remove_run_compression(roaring_bitmap_t *r) {
bool answer = false;
for (int i = 0; i < r->high_low_container.size; i++) {
uint8_t typecode_original, typecode_after;
void *c = ra_get_container_at_index(&r->high_low_container, i,
&typecode_original);
if (get_container_type(c, typecode_original) ==
RUN_CONTAINER_TYPE_CODE) {
answer = true;
if (typecode_original == SHARED_CONTAINER_TYPE_CODE) {
run_container_t *truec =
(run_container_t *)((shared_container_t *)c)->container;
int32_t card = run_container_cardinality(truec);
void *c1 = convert_to_bitset_or_array_container(
truec, card, &typecode_after);
shared_container_free((shared_container_t *)c);// will free the run container as needed
ra_set_container_at_index(&r->high_low_container, i, c1,
typecode_after);
} else {
int32_t card = run_container_cardinality((run_container_t *)c);
void *c1 = convert_to_bitset_or_array_container(
(run_container_t *)c, card, &typecode_after);
run_container_free((run_container_t *)c);
ra_set_container_at_index(&r->high_low_container, i, c1,
typecode_after);
}
}
}
return answer;
}
size_t roaring_bitmap_serialize(const roaring_bitmap_t *ra, char *buf) {
size_t portablesize = roaring_bitmap_portable_size_in_bytes(ra);
uint64_t cardinality = roaring_bitmap_get_cardinality(ra);
uint64_t sizeasarray = cardinality * sizeof(uint32_t) + sizeof(uint32_t);
if (portablesize < sizeasarray) {
buf[0] = SERIALIZATION_CONTAINER;
return roaring_bitmap_portable_serialize(ra, buf + 1) + 1;
} else {
buf[0] = SERIALIZATION_ARRAY_UINT32;
memcpy(buf + 1, &cardinality, sizeof(uint32_t));
roaring_bitmap_to_uint32_array(
ra, (uint32_t *)(buf + 1 + sizeof(uint32_t)));
return 1 + (size_t)sizeasarray;
}
}
size_t roaring_bitmap_size_in_bytes(const roaring_bitmap_t *ra) {
size_t portablesize = roaring_bitmap_portable_size_in_bytes(ra);
uint64_t sizeasarray = roaring_bitmap_get_cardinality(ra) * sizeof(uint32_t) +
sizeof(uint32_t);
return portablesize < sizeasarray ? portablesize + 1 : (size_t)sizeasarray + 1;
}
size_t roaring_bitmap_portable_size_in_bytes(const roaring_bitmap_t *ra) {
return ra_portable_size_in_bytes(&ra->high_low_container);
}
roaring_bitmap_t *roaring_bitmap_portable_deserialize_safe(const char *buf, size_t maxbytes) {
roaring_bitmap_t *ans =
(roaring_bitmap_t *)malloc(sizeof(roaring_bitmap_t));
if (ans == NULL) {
return NULL;
}
size_t bytesread;
bool is_ok = ra_portable_deserialize(&ans->high_low_container, buf, maxbytes, &bytesread);
if(is_ok) assert(bytesread <= maxbytes);
roaring_bitmap_set_copy_on_write(ans, false);
if (!is_ok) {
free(ans);
return NULL;
}
return ans;
}
roaring_bitmap_t *roaring_bitmap_portable_deserialize(const char *buf) {
return roaring_bitmap_portable_deserialize_safe(buf, SIZE_MAX);
}
size_t roaring_bitmap_portable_deserialize_size(const char *buf, size_t maxbytes) {
return ra_portable_deserialize_size(buf, maxbytes);
}
size_t roaring_bitmap_portable_serialize(const roaring_bitmap_t *ra,
char *buf) {
return ra_portable_serialize(&ra->high_low_container, buf);
}
roaring_bitmap_t *roaring_bitmap_deserialize(const void *buf) {
const char *bufaschar = (const char *)buf;
if (*(const unsigned char *)buf == SERIALIZATION_ARRAY_UINT32) {
/* This looks like a compressed set of uint32_t elements */
uint32_t card;
memcpy(&card, bufaschar + 1, sizeof(uint32_t));
const uint32_t *elems =
(const uint32_t *)(bufaschar + 1 + sizeof(uint32_t));
return roaring_bitmap_of_ptr(card, elems);
} else if (bufaschar[0] == SERIALIZATION_CONTAINER) {
return roaring_bitmap_portable_deserialize(bufaschar + 1);
} else
return (NULL);
}
bool roaring_iterate(const roaring_bitmap_t *ra, roaring_iterator iterator,
void *ptr) {
for (int i = 0; i < ra->high_low_container.size; ++i)
if (!container_iterate(ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i],
((uint32_t)ra->high_low_container.keys[i]) << 16,
iterator, ptr)) {
return false;
}
return true;
}
bool roaring_iterate64(const roaring_bitmap_t *ra, roaring_iterator64 iterator,
uint64_t high_bits, void *ptr) {
for (int i = 0; i < ra->high_low_container.size; ++i)
if (!container_iterate64(
ra->high_low_container.containers[i],
ra->high_low_container.typecodes[i],
((uint32_t)ra->high_low_container.keys[i]) << 16, iterator,
high_bits, ptr)) {
return false;
}
return true;
}
/****
* begin roaring_uint32_iterator_t
*****/
// Partially initializes the roaring iterator when it begins looking at
// a new container.
static bool iter_new_container_partial_init(roaring_uint32_iterator_t *newit) {
newit->in_container_index = 0;
newit->run_index = 0;
newit->current_value = 0;
if (newit->container_index >= newit->parent->high_low_container.size ||
newit->container_index < 0) {
newit->current_value = UINT32_MAX;
return (newit->has_value = false);
}
// assume not empty
newit->has_value = true;
// we precompute container, typecode and highbits so that successive
// iterators do not have to grab them from odd memory locations
// and have to worry about the (easily predicted) container_unwrap_shared
// call.
newit->container =
newit->parent->high_low_container.containers[newit->container_index];
newit->typecode =
newit->parent->high_low_container.typecodes[newit->container_index];
newit->highbits =
((uint32_t)
newit->parent->high_low_container.keys[newit->container_index])
<< 16;
newit->container =
container_unwrap_shared(newit->container, &(newit->typecode));
return newit->has_value;
}
static bool loadfirstvalue(roaring_uint32_iterator_t *newit) {
if (!iter_new_container_partial_init(newit))
return newit->has_value;
uint32_t wordindex;
uint64_t word; // used for bitsets
switch (newit->typecode) {
case BITSET_CONTAINER_TYPE_CODE:
wordindex = 0;
while ((word = ((const bitset_container_t *)(newit->container))
->array[wordindex]) == 0)
wordindex++; // advance
// here "word" is non-zero
newit->in_container_index = wordindex * 64 + __builtin_ctzll(word);
newit->current_value = newit->highbits | newit->in_container_index;
break;
case ARRAY_CONTAINER_TYPE_CODE:
newit->current_value =
newit->highbits |
((const array_container_t *)(newit->container))->array[0];
break;
case RUN_CONTAINER_TYPE_CODE:
newit->current_value =
newit->highbits |
(((const run_container_t *)(newit->container))->runs[0].value);
break;
default:
// if this ever happens, bug!
assert(false);
} // switch (typecode)
return true;
}
static bool loadlastvalue(roaring_uint32_iterator_t* newit) {
if (!iter_new_container_partial_init(newit))
return newit->has_value;
switch(newit->typecode) {
case BITSET_CONTAINER_TYPE_CODE: {
uint32_t wordindex = BITSET_CONTAINER_SIZE_IN_WORDS - 1;
uint64_t word;
const bitset_container_t* bitset_container = (const bitset_container_t*)newit->container;
while ((word = bitset_container->array[wordindex]) == 0)
--wordindex;
int num_leading_zeros = __builtin_clzll(word);
newit->in_container_index = (wordindex * 64) + (63 - num_leading_zeros);
newit->current_value = newit->highbits | newit->in_container_index;
break;
}
case ARRAY_CONTAINER_TYPE_CODE: {
const array_container_t* array_container = (const array_container_t*)newit->container;
newit->in_container_index = array_container->cardinality - 1;
newit->current_value = newit->highbits | array_container->array[newit->in_container_index];
break;
}
case RUN_CONTAINER_TYPE_CODE: {
const run_container_t* run_container = (const run_container_t*)newit->container;
newit->run_index = run_container->n_runs - 1;
const rle16_t* last_run = &run_container->runs[newit->run_index];
newit->current_value = newit->highbits | (last_run->value + last_run->length);
break;
}
default:
// if this ever happens, bug!
assert(false);
}
return true;
}
// prerequesite: the value should be in range of the container
static bool loadfirstvalue_largeorequal(roaring_uint32_iterator_t *newit, uint32_t val) {
// Don't have to check return value because of prerequisite
iter_new_container_partial_init(newit);
uint16_t lb = val & 0xFFFF;
switch (newit->typecode) {
case BITSET_CONTAINER_TYPE_CODE:
newit->in_container_index = bitset_container_index_equalorlarger((const bitset_container_t *)(newit->container), lb);
newit->current_value = newit->highbits | newit->in_container_index;
break;
case ARRAY_CONTAINER_TYPE_CODE:
newit->in_container_index = array_container_index_equalorlarger((const array_container_t *)(newit->container), lb);
newit->current_value =
newit->highbits |
((const array_container_t *)(newit->container))->array[newit->in_container_index];
break;
case RUN_CONTAINER_TYPE_CODE:
newit->run_index = run_container_index_equalorlarger((const run_container_t *)(newit->container), lb);
if(((const run_container_t *)(newit->container))->runs[newit->run_index].value <= lb) {
newit->current_value = val;
} else {
newit->current_value =
newit->highbits |
(((const run_container_t *)(newit->container))->runs[newit->run_index].value);
}
break;
default:
// if this ever happens, bug!
assert(false);
} // switch (typecode)
return true;
}
void roaring_init_iterator(const roaring_bitmap_t *ra,
roaring_uint32_iterator_t *newit) {
newit->parent = ra;
newit->container_index = 0;
newit->has_value = loadfirstvalue(newit);
}
void roaring_init_iterator_last(const roaring_bitmap_t *ra,
roaring_uint32_iterator_t *newit) {
newit->parent = ra;
newit->container_index = newit->parent->high_low_container.size - 1;
newit->has_value = loadlastvalue(newit);
}
roaring_uint32_iterator_t *roaring_create_iterator(const roaring_bitmap_t *ra) {
roaring_uint32_iterator_t *newit =
(roaring_uint32_iterator_t *)malloc(sizeof(roaring_uint32_iterator_t));
if (newit == NULL) return NULL;
roaring_init_iterator(ra, newit);
return newit;
}
roaring_uint32_iterator_t *roaring_copy_uint32_iterator(
const roaring_uint32_iterator_t *it) {
roaring_uint32_iterator_t *newit =
(roaring_uint32_iterator_t *)malloc(sizeof(roaring_uint32_iterator_t));
memcpy(newit, it, sizeof(roaring_uint32_iterator_t));
return newit;
}
bool roaring_move_uint32_iterator_equalorlarger(roaring_uint32_iterator_t *it, uint32_t val) {
uint16_t hb = val >> 16;
const int i = ra_get_index(& it->parent->high_low_container, hb);
if (i >= 0) {
uint32_t lowvalue = container_maximum(it->parent->high_low_container.containers[i], it->parent->high_low_container.typecodes[i]);
uint16_t lb = val & 0xFFFF;
if(lowvalue < lb ) {
it->container_index = i+1; // will have to load first value of next container
} else {// the value is necessarily within the range of the container
it->container_index = i;
it->has_value = loadfirstvalue_largeorequal(it, val);
return it->has_value;
}
} else {
// there is no matching, so we are going for the next container
it->container_index = -i-1;
}
it->has_value = loadfirstvalue(it);
return it->has_value;
}
bool roaring_advance_uint32_iterator(roaring_uint32_iterator_t *it) {
if (it->container_index >= it->parent->high_low_container.size) {
return (it->has_value = false);
}
if (it->container_index < 0) {
it->container_index = 0;
return (it->has_value = loadfirstvalue(it));
}
uint32_t wordindex; // used for bitsets
uint64_t word; // used for bitsets
switch (it->typecode) {
case BITSET_CONTAINER_TYPE_CODE:
it->in_container_index++;
wordindex = it->in_container_index / 64;
if (wordindex >= BITSET_CONTAINER_SIZE_IN_WORDS) break;
word = ((const bitset_container_t *)(it->container))
->array[wordindex] &
(UINT64_MAX << (it->in_container_index % 64));
// next part could be optimized/simplified
while ((word == 0) &&
(wordindex + 1 < BITSET_CONTAINER_SIZE_IN_WORDS)) {
wordindex++;
word = ((const bitset_container_t *)(it->container))
->array[wordindex];
}
if (word != 0) {
it->in_container_index = wordindex * 64 + __builtin_ctzll(word);
it->current_value = it->highbits | it->in_container_index;
return (it->has_value = true);
}
break;
case ARRAY_CONTAINER_TYPE_CODE:
it->in_container_index++;
if (it->in_container_index <
((const array_container_t *)(it->container))->cardinality) {
it->current_value = it->highbits |
((const array_container_t *)(it->container))
->array[it->in_container_index];
return (it->has_value = true);
}
break;
case RUN_CONTAINER_TYPE_CODE: {
if(it->current_value == UINT32_MAX) {
return (it->has_value = false); // without this, we risk an overflow to zero
}
const run_container_t* run_container = (const run_container_t*)it->container;
if (++it->current_value <= (it->highbits | (run_container->runs[it->run_index].value +
run_container->runs[it->run_index].length))) {
return (it->has_value = true);
}
if (++it->run_index < run_container->n_runs) {
// Assume the run has a value
it->current_value = it->highbits | run_container->runs[it->run_index].value;
return (it->has_value = true);
}
break;
}
default:
// if this ever happens, bug!
assert(false);
} // switch (typecode)
// moving to next container
it->container_index++;
return (it->has_value = loadfirstvalue(it));
}
bool roaring_previous_uint32_iterator(roaring_uint32_iterator_t *it) {
if (it->container_index < 0) {
return (it->has_value = false);
}
if (it->container_index >= it->parent->high_low_container.size) {
it->container_index = it->parent->high_low_container.size - 1;
return (it->has_value = loadlastvalue(it));
}
switch (it->typecode) {
case BITSET_CONTAINER_TYPE_CODE: {
if (--it->in_container_index < 0)
break;
const bitset_container_t* bitset_container = (const bitset_container_t*)it->container;
int32_t wordindex = it->in_container_index / 64;
uint64_t word = bitset_container->array[wordindex] & (UINT64_MAX >> (63 - (it->in_container_index % 64)));
while (word == 0 && --wordindex >= 0) {
word = bitset_container->array[wordindex];
}
if (word == 0)
break;
int num_leading_zeros = __builtin_clzll(word);
it->in_container_index = (wordindex * 64) + (63 - num_leading_zeros);
it->current_value = it->highbits | it->in_container_index;
return (it->has_value = true);
}
case ARRAY_CONTAINER_TYPE_CODE: {
if (--it->in_container_index < 0)
break;
const array_container_t* array_container = (const array_container_t*)it->container;
it->current_value = it->highbits | array_container->array[it->in_container_index];
return (it->has_value = true);
}
case RUN_CONTAINER_TYPE_CODE: {
if(it->current_value == 0)
return (it->has_value = false);
const run_container_t* run_container = (const run_container_t*)it->container;
if (--it->current_value >= (it->highbits | run_container->runs[it->run_index].value)) {
return (it->has_value = true);
}
if (--it->run_index < 0)
break;
it->current_value = it->highbits | (run_container->runs[it->run_index].value +
run_container->runs[it->run_index].length);
return (it->has_value = true);
}
default:
// if this ever happens, bug!
assert(false);
} // switch (typecode)
// moving to previous container
it->container_index--;
return (it->has_value = loadlastvalue(it));
}
uint32_t roaring_read_uint32_iterator(roaring_uint32_iterator_t *it, uint32_t* buf, uint32_t count) {
uint32_t ret = 0;
uint32_t num_values;
uint32_t wordindex; // used for bitsets
uint64_t word; // used for bitsets
const array_container_t* acont; //TODO remove
const run_container_t* rcont; //TODO remove
const bitset_container_t* bcont; //TODO remove
while (it->has_value && ret < count) {
switch (it->typecode) {
case BITSET_CONTAINER_TYPE_CODE:
bcont = (const bitset_container_t*)(it->container);
wordindex = it->in_container_index / 64;
word = bcont->array[wordindex] & (UINT64_MAX << (it->in_container_index % 64));
do {
while (word != 0 && ret < count) {
buf[0] = it->highbits | (wordindex * 64 + __builtin_ctzll(word));
word = word & (word - 1);
buf++;
ret++;
}
while (word == 0 && wordindex+1 < BITSET_CONTAINER_SIZE_IN_WORDS) {
wordindex++;
word = bcont->array[wordindex];
}
} while (word != 0 && ret < count);
it->has_value = (word != 0);
if (it->has_value) {
it->in_container_index = wordindex * 64 + __builtin_ctzll(word);
it->current_value = it->highbits | it->in_container_index;
}
break;
case ARRAY_CONTAINER_TYPE_CODE:
acont = (const array_container_t *)(it->container);
num_values = minimum_uint32(acont->cardinality - it->in_container_index, count - ret);
for (uint32_t i = 0; i < num_values; i++) {
buf[i] = it->highbits | acont->array[it->in_container_index + i];
}
buf += num_values;
ret += num_values;
it->in_container_index += num_values;
it->has_value = (it->in_container_index < acont->cardinality);
if (it->has_value) {
it->current_value = it->highbits | acont->array[it->in_container_index];
}
break;
case RUN_CONTAINER_TYPE_CODE:
rcont = (const run_container_t*)(it->container);
//"in_run_index" name is misleading, read it as "max_value_in_current_run"
do {
uint32_t largest_run_value = it->highbits | (rcont->runs[it->run_index].value + rcont->runs[it->run_index].length);
num_values = minimum_uint32(largest_run_value - it->current_value + 1, count - ret);
for (uint32_t i = 0; i < num_values; i++) {
buf[i] = it->current_value + i;
}
it->current_value += num_values; // this can overflow to zero: UINT32_MAX+1=0
buf += num_values;
ret += num_values;
if (it->current_value > largest_run_value || it->current_value == 0) {
it->run_index++;
if (it->run_index < rcont->n_runs) {
it->current_value = it->highbits | rcont->runs[it->run_index].value;
} else {
it->has_value = false;
}
}
} while ((ret < count) && it->has_value);
break;
default:
assert(false);
}
if (it->has_value) {
assert(ret == count);
return ret;
}
it->container_index++;
it->has_value = loadfirstvalue(it);
}
return ret;
}
void roaring_free_uint32_iterator(roaring_uint32_iterator_t *it) { free(it); }
/****
* end of roaring_uint32_iterator_t
*****/
bool roaring_bitmap_equals(const roaring_bitmap_t *ra1,
const roaring_bitmap_t *ra2) {
if (ra1->high_low_container.size != ra2->high_low_container.size) {
return false;
}
for (int i = 0; i < ra1->high_low_container.size; ++i) {
if (ra1->high_low_container.keys[i] !=
ra2->high_low_container.keys[i]) {
return false;
}
}
for (int i = 0; i < ra1->high_low_container.size; ++i) {
bool areequal = container_equals(ra1->high_low_container.containers[i],
ra1->high_low_container.typecodes[i],
ra2->high_low_container.containers[i],
ra2->high_low_container.typecodes[i]);
if (!areequal) {
return false;
}
}
return true;
}
bool roaring_bitmap_is_subset(const roaring_bitmap_t *ra1,
const roaring_bitmap_t *ra2) {
const int length1 = ra1->high_low_container.size,
length2 = ra2->high_low_container.size;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = ra_get_key_at_index(&ra1->high_low_container, pos1);
const uint16_t s2 = ra_get_key_at_index(&ra2->high_low_container, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = ra_get_container_at_index(&ra1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&ra2->high_low_container, pos2,
&container_type_2);
bool subset =
container_is_subset(c1, container_type_1, c2, container_type_2);
if (!subset) return false;
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
return false;
} else { // s1 > s2
pos2 = ra_advance_until(&ra2->high_low_container, s1, pos2);
}
}
if (pos1 == length1)
return true;
else
return false;
}
static void insert_flipped_container(roaring_array_t *ans_arr,
const roaring_array_t *x1_arr, uint16_t hb,
uint16_t lb_start, uint16_t lb_end) {
const int i = ra_get_index(x1_arr, hb);
const int j = ra_get_index(ans_arr, hb);
uint8_t ctype_in, ctype_out;
void *flipped_container = NULL;
if (i >= 0) {
void *container_to_flip =
ra_get_container_at_index(x1_arr, i, &ctype_in);
flipped_container =
container_not_range(container_to_flip, ctype_in, (uint32_t)lb_start,
(uint32_t)(lb_end + 1), &ctype_out);
if (container_get_cardinality(flipped_container, ctype_out))
ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
ctype_out);
else {
container_free(flipped_container, ctype_out);
}
} else {
flipped_container = container_range_of_ones(
(uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
ctype_out);
}
}
static void inplace_flip_container(roaring_array_t *x1_arr, uint16_t hb,
uint16_t lb_start, uint16_t lb_end) {
const int i = ra_get_index(x1_arr, hb);
uint8_t ctype_in, ctype_out;
void *flipped_container = NULL;
if (i >= 0) {
void *container_to_flip =
ra_get_container_at_index(x1_arr, i, &ctype_in);
flipped_container = container_inot_range(
container_to_flip, ctype_in, (uint32_t)lb_start,
(uint32_t)(lb_end + 1), &ctype_out);
// if a new container was created, the old one was already freed
if (container_get_cardinality(flipped_container, ctype_out)) {
ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
} else {
container_free(flipped_container, ctype_out);
ra_remove_at_index(x1_arr, i);
}
} else {
flipped_container = container_range_of_ones(
(uint32_t)lb_start, (uint32_t)(lb_end + 1), &ctype_out);
ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
ctype_out);
}
}
static void insert_fully_flipped_container(roaring_array_t *ans_arr,
const roaring_array_t *x1_arr,
uint16_t hb) {
const int i = ra_get_index(x1_arr, hb);
const int j = ra_get_index(ans_arr, hb);
uint8_t ctype_in, ctype_out;
void *flipped_container = NULL;
if (i >= 0) {
void *container_to_flip =
ra_get_container_at_index(x1_arr, i, &ctype_in);
flipped_container =
container_not(container_to_flip, ctype_in, &ctype_out);
if (container_get_cardinality(flipped_container, ctype_out))
ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
ctype_out);
else {
container_free(flipped_container, ctype_out);
}
} else {
flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
ra_insert_new_key_value_at(ans_arr, -j - 1, hb, flipped_container,
ctype_out);
}
}
static void inplace_fully_flip_container(roaring_array_t *x1_arr, uint16_t hb) {
const int i = ra_get_index(x1_arr, hb);
uint8_t ctype_in, ctype_out;
void *flipped_container = NULL;
if (i >= 0) {
void *container_to_flip =
ra_get_container_at_index(x1_arr, i, &ctype_in);
flipped_container =
container_inot(container_to_flip, ctype_in, &ctype_out);
if (container_get_cardinality(flipped_container, ctype_out)) {
ra_set_container_at_index(x1_arr, i, flipped_container, ctype_out);
} else {
container_free(flipped_container, ctype_out);
ra_remove_at_index(x1_arr, i);
}
} else {
flipped_container = container_range_of_ones(0U, 0x10000U, &ctype_out);
ra_insert_new_key_value_at(x1_arr, -i - 1, hb, flipped_container,
ctype_out);
}
}
roaring_bitmap_t *roaring_bitmap_flip(const roaring_bitmap_t *x1,
uint64_t range_start,
uint64_t range_end) {
if (range_start >= range_end) {
return roaring_bitmap_copy(x1);
}
if(range_end >= UINT64_C(0x100000000)) {
range_end = UINT64_C(0x100000000);
}
roaring_bitmap_t *ans = roaring_bitmap_create();
roaring_bitmap_set_copy_on_write(ans, is_cow(x1));
uint16_t hb_start = (uint16_t)(range_start >> 16);
const uint16_t lb_start = (uint16_t)range_start; // & 0xFFFF;
uint16_t hb_end = (uint16_t)((range_end - 1) >> 16);
const uint16_t lb_end = (uint16_t)(range_end - 1); // & 0xFFFF;
ra_append_copies_until(&ans->high_low_container, &x1->high_low_container,
hb_start, is_cow(x1));
if (hb_start == hb_end) {
insert_flipped_container(&ans->high_low_container,
&x1->high_low_container, hb_start, lb_start,
lb_end);
} else {
// start and end containers are distinct
if (lb_start > 0) {
// handle first (partial) container
insert_flipped_container(&ans->high_low_container,
&x1->high_low_container, hb_start,
lb_start, 0xFFFF);
++hb_start; // for the full containers. Can't wrap.
}
if (lb_end != 0xFFFF) --hb_end; // later we'll handle the partial block
for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
insert_fully_flipped_container(&ans->high_low_container,
&x1->high_low_container, hb);
}
// handle a partial final container
if (lb_end != 0xFFFF) {
insert_flipped_container(&ans->high_low_container,
&x1->high_low_container, hb_end + 1, 0,
lb_end);
++hb_end;
}
}
ra_append_copies_after(&ans->high_low_container, &x1->high_low_container,
hb_end, is_cow(x1));
return ans;
}
void roaring_bitmap_flip_inplace(roaring_bitmap_t *x1, uint64_t range_start,
uint64_t range_end) {
if (range_start >= range_end) {
return; // empty range
}
if(range_end >= UINT64_C(0x100000000)) {
range_end = UINT64_C(0x100000000);
}
uint16_t hb_start = (uint16_t)(range_start >> 16);
const uint16_t lb_start = (uint16_t)range_start;
uint16_t hb_end = (uint16_t)((range_end - 1) >> 16);
const uint16_t lb_end = (uint16_t)(range_end - 1);
if (hb_start == hb_end) {
inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
lb_end);
} else {
// start and end containers are distinct
if (lb_start > 0) {
// handle first (partial) container
inplace_flip_container(&x1->high_low_container, hb_start, lb_start,
0xFFFF);
++hb_start; // for the full containers. Can't wrap.
}
if (lb_end != 0xFFFF) --hb_end;
for (uint32_t hb = hb_start; hb <= hb_end; ++hb) {
inplace_fully_flip_container(&x1->high_low_container, hb);
}
// handle a partial final container
if (lb_end != 0xFFFF) {
inplace_flip_container(&x1->high_low_container, hb_end + 1, 0,
lb_end);
++hb_end;
}
}
}
roaring_bitmap_t *roaring_bitmap_lazy_or(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2,
const bool bitsetconversion) {
uint8_t container_result_type = 0;
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
if (0 == length1) {
return roaring_bitmap_copy(x2);
}
if (0 == length2) {
return roaring_bitmap_copy(x1);
}
roaring_bitmap_t *answer =
roaring_bitmap_create_with_capacity(length1 + length2);
roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c;
if (bitsetconversion && (get_container_type(c1, container_type_1) !=
BITSET_CONTAINER_TYPE_CODE) &&
(get_container_type(c2, container_type_2) !=
BITSET_CONTAINER_TYPE_CODE)) {
void *newc1 =
container_mutable_unwrap_shared(c1, &container_type_1);
newc1 = container_to_bitset(newc1, container_type_1);
container_type_1 = BITSET_CONTAINER_TYPE_CODE;
c = container_lazy_ior(newc1, container_type_1, c2,
container_type_2,
&container_result_type);
if (c != newc1) { // should not happen
container_free(newc1, container_type_1);
}
} else {
c = container_lazy_or(c1, container_type_1, c2,
container_type_2, &container_result_type);
}
// since we assume that the initial containers are non-empty,
// the
// result here
// can only be non-empty
ra_append(&answer->high_low_container, s1, c,
container_result_type);
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
c1 =
get_copy_of_container(c1, &container_type_1, is_cow(x1));
if (is_cow(x1)) {
ra_set_container_at_index(&x1->high_low_container, pos1, c1,
container_type_1);
}
ra_append(&answer->high_low_container, s1, c1, container_type_1);
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_append(&answer->high_low_container, s2, c2, container_type_2);
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&answer->high_low_container,
&x2->high_low_container, pos2, length2,
is_cow(x2));
} else if (pos2 == length2) {
ra_append_copy_range(&answer->high_low_container,
&x1->high_low_container, pos1, length1,
is_cow(x1));
}
return answer;
}
void roaring_bitmap_lazy_or_inplace(roaring_bitmap_t *x1,
const roaring_bitmap_t *x2,
const bool bitsetconversion) {
uint8_t container_result_type = 0;
int length1 = x1->high_low_container.size;
const int length2 = x2->high_low_container.size;
if (0 == length2) return;
if (0 == length1) {
roaring_bitmap_overwrite(x1, x2);
return;
}
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
if (!container_is_full(c1, container_type_1)) {
if ((bitsetconversion == false) ||
(get_container_type(c1, container_type_1) ==
BITSET_CONTAINER_TYPE_CODE)) {
c1 = get_writable_copy_if_shared(c1, &container_type_1);
} else {
// convert to bitset
void *oldc1 = c1;
uint8_t oldt1 = container_type_1;
c1 = container_mutable_unwrap_shared(c1, &container_type_1);
c1 = container_to_bitset(c1, container_type_1);
container_free(oldc1, oldt1);
container_type_1 = BITSET_CONTAINER_TYPE_CODE;
}
void *c2 = ra_get_container_at_index(&x2->high_low_container,
pos2, &container_type_2);
void *c = container_lazy_ior(c1, container_type_1, c2,
container_type_2,
&container_result_type);
if (c !=
c1) { // in this instance a new container was created, and
// we need to free the old one
container_free(c1, container_type_1);
}
ra_set_container_at_index(&x1->high_low_container, pos1, c,
container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
// void *c2_clone = container_clone(c2, container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
container_type_2);
pos1++;
length1++;
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
pos2, length2, is_cow(x2));
}
}
roaring_bitmap_t *roaring_bitmap_lazy_xor(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
if (0 == length1) {
return roaring_bitmap_copy(x2);
}
if (0 == length2) {
return roaring_bitmap_copy(x1);
}
roaring_bitmap_t *answer =
roaring_bitmap_create_with_capacity(length1 + length2);
roaring_bitmap_set_copy_on_write(answer, is_cow(x1) && is_cow(x2));
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c =
container_lazy_xor(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_append(&answer->high_low_container, s1, c,
container_result_type);
} else {
container_free(c, container_result_type);
}
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
c1 =
get_copy_of_container(c1, &container_type_1, is_cow(x1));
if (is_cow(x1)) {
ra_set_container_at_index(&x1->high_low_container, pos1, c1,
container_type_1);
}
ra_append(&answer->high_low_container, s1, c1, container_type_1);
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_append(&answer->high_low_container, s2, c2, container_type_2);
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&answer->high_low_container,
&x2->high_low_container, pos2, length2,
is_cow(x2));
} else if (pos2 == length2) {
ra_append_copy_range(&answer->high_low_container,
&x1->high_low_container, pos1, length1,
is_cow(x1));
}
return answer;
}
void roaring_bitmap_lazy_xor_inplace(roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
assert(x1 != x2);
uint8_t container_result_type = 0;
int length1 = x1->high_low_container.size;
const int length2 = x2->high_low_container.size;
if (0 == length2) return;
if (0 == length1) {
roaring_bitmap_overwrite(x1, x2);
return;
}
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
c1 = get_writable_copy_if_shared(c1, &container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
void *c =
container_lazy_ixor(c1, container_type_1, c2, container_type_2,
&container_result_type);
if (container_nonzero_cardinality(c, container_result_type)) {
ra_set_container_at_index(&x1->high_low_container, pos1, c,
container_result_type);
++pos1;
} else {
container_free(c, container_result_type);
ra_remove_at_index(&x1->high_low_container, pos1);
--length1;
}
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
// void *c2_clone = container_clone(c2, container_type_2);
c2 =
get_copy_of_container(c2, &container_type_2, is_cow(x2));
if (is_cow(x2)) {
ra_set_container_at_index(&x2->high_low_container, pos2, c2,
container_type_2);
}
ra_insert_new_key_value_at(&x1->high_low_container, pos1, s2, c2,
container_type_2);
pos1++;
length1++;
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_copy_range(&x1->high_low_container, &x2->high_low_container,
pos2, length2, is_cow(x2));
}
}
void roaring_bitmap_repair_after_lazy(roaring_bitmap_t *ra) {
for (int i = 0; i < ra->high_low_container.size; ++i) {
const uint8_t original_typecode = ra->high_low_container.typecodes[i];
void *container = ra->high_low_container.containers[i];
uint8_t new_typecode = original_typecode;
void *newcontainer =
container_repair_after_lazy(container, &new_typecode);
ra->high_low_container.containers[i] = newcontainer;
ra->high_low_container.typecodes[i] = new_typecode;
}
}
/**
* roaring_bitmap_rank returns the number of integers that are smaller or equal
* to x.
*/
uint64_t roaring_bitmap_rank(const roaring_bitmap_t *bm, uint32_t x) {
uint64_t size = 0;
uint32_t xhigh = x >> 16;
for (int i = 0; i < bm->high_low_container.size; i++) {
uint32_t key = bm->high_low_container.keys[i];
if (xhigh > key) {
size +=
container_get_cardinality(bm->high_low_container.containers[i],
bm->high_low_container.typecodes[i]);
} else if (xhigh == key) {
return size + container_rank(bm->high_low_container.containers[i],
bm->high_low_container.typecodes[i],
x & 0xFFFF);
} else {
return size;
}
}
return size;
}
/**
* roaring_bitmap_smallest returns the smallest value in the set.
* Returns UINT32_MAX if the set is empty.
*/
uint32_t roaring_bitmap_minimum(const roaring_bitmap_t *bm) {
if (bm->high_low_container.size > 0) {
void *container = bm->high_low_container.containers[0];
uint8_t typecode = bm->high_low_container.typecodes[0];
uint32_t key = bm->high_low_container.keys[0];
uint32_t lowvalue = container_minimum(container, typecode);
return lowvalue | (key << 16);
}
return UINT32_MAX;
}
/**
* roaring_bitmap_smallest returns the greatest value in the set.
* Returns 0 if the set is empty.
*/
uint32_t roaring_bitmap_maximum(const roaring_bitmap_t *bm) {
if (bm->high_low_container.size > 0) {
void *container =
bm->high_low_container.containers[bm->high_low_container.size - 1];
uint8_t typecode =
bm->high_low_container.typecodes[bm->high_low_container.size - 1];
uint32_t key =
bm->high_low_container.keys[bm->high_low_container.size - 1];
uint32_t lowvalue = container_maximum(container, typecode);
return lowvalue | (key << 16);
}
return 0;
}
bool roaring_bitmap_select(const roaring_bitmap_t *bm, uint32_t rank,
uint32_t *element) {
void *container;
uint8_t typecode;
uint16_t key;
uint32_t start_rank = 0;
int i = 0;
bool valid = false;
while (!valid && i < bm->high_low_container.size) {
container = bm->high_low_container.containers[i];
typecode = bm->high_low_container.typecodes[i];
valid =
container_select(container, typecode, &start_rank, rank, element);
i++;
}
if (valid) {
key = bm->high_low_container.keys[i - 1];
*element |= (key << 16);
return true;
} else
return false;
}
bool roaring_bitmap_intersect(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
uint64_t answer = 0;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = ra_get_key_at_index(& x1->high_low_container, pos1);
const uint16_t s2 = ra_get_key_at_index(& x2->high_low_container, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = ra_get_container_at_index(& x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(& x2->high_low_container, pos2,
&container_type_2);
if( container_intersect(c1, container_type_1, c2, container_type_2) ) return true;
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
pos1 = ra_advance_until(& x1->high_low_container, s2, pos1);
} else { // s1 > s2
pos2 = ra_advance_until(& x2->high_low_container, s1, pos2);
}
}
return answer;
}
uint64_t roaring_bitmap_and_cardinality(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
const int length1 = x1->high_low_container.size,
length2 = x2->high_low_container.size;
uint64_t answer = 0;
int pos1 = 0, pos2 = 0;
while (pos1 < length1 && pos2 < length2) {
const uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
const uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
if (s1 == s2) {
uint8_t container_type_1, container_type_2;
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
answer += container_and_cardinality(c1, container_type_1, c2,
container_type_2);
++pos1;
++pos2;
} else if (s1 < s2) { // s1 < s2
pos1 = ra_advance_until(&x1->high_low_container, s2, pos1);
} else { // s1 > s2
pos2 = ra_advance_until(&x2->high_low_container, s1, pos2);
}
}
return answer;
}
double roaring_bitmap_jaccard_index(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
return (double)inter / (double)(c1 + c2 - inter);
}
uint64_t roaring_bitmap_or_cardinality(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
return c1 + c2 - inter;
}
uint64_t roaring_bitmap_andnot_cardinality(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
return c1 - inter;
}
uint64_t roaring_bitmap_xor_cardinality(const roaring_bitmap_t *x1,
const roaring_bitmap_t *x2) {
const uint64_t c1 = roaring_bitmap_get_cardinality(x1);
const uint64_t c2 = roaring_bitmap_get_cardinality(x2);
const uint64_t inter = roaring_bitmap_and_cardinality(x1, x2);
return c1 + c2 - 2 * inter;
}
/**
* Check whether a range of values from range_start (included) to range_end (excluded) is present
*/
bool roaring_bitmap_contains_range(const roaring_bitmap_t *r, uint64_t range_start, uint64_t range_end) {
if(range_end >= UINT64_C(0x100000000)) {
range_end = UINT64_C(0x100000000);
}
if (range_start >= range_end) return true; // empty range are always contained!
if (range_end - range_start == 1) return roaring_bitmap_contains(r, (uint32_t)range_start);
uint16_t hb_rs = (uint16_t)(range_start >> 16);
uint16_t hb_re = (uint16_t)((range_end - 1) >> 16);
const int32_t span = hb_re - hb_rs;
const int32_t hlc_sz = ra_get_size(&r->high_low_container);
if (hlc_sz < span + 1) {
return false;
}
int32_t is = ra_get_index(&r->high_low_container, hb_rs);
int32_t ie = ra_get_index(&r->high_low_container, hb_re);
ie = (ie < 0 ? -ie - 1 : ie);
if ((is < 0) || ((ie - is) != span)) {
return false;
}
const uint32_t lb_rs = range_start & 0xFFFF;
const uint32_t lb_re = ((range_end - 1) & 0xFFFF) + 1;
uint8_t typecode;
void *container = ra_get_container_at_index(&r->high_low_container, is, &typecode);
if (hb_rs == hb_re) {
return container_contains_range(container, lb_rs, lb_re, typecode);
}
if (!container_contains_range(container, lb_rs, 1 << 16, typecode)) {
return false;
}
assert(ie < hlc_sz); // would indicate an algorithmic bug
container = ra_get_container_at_index(&r->high_low_container, ie, &typecode);
if (!container_contains_range(container, 0, lb_re, typecode)) {
return false;
}
for (int32_t i = is + 1; i < ie; ++i) {
container = ra_get_container_at_index(&r->high_low_container, i, &typecode);
if (!container_is_full(container, typecode) ) {
return false;
}
}
return true;
}
bool roaring_bitmap_is_strict_subset(const roaring_bitmap_t *ra1,
const roaring_bitmap_t *ra2) {
return (roaring_bitmap_get_cardinality(ra2) >
roaring_bitmap_get_cardinality(ra1) &&
roaring_bitmap_is_subset(ra1, ra2));
}
/*
* FROZEN SERIALIZATION FORMAT DESCRIPTION
*
* -- (beginning must be aligned by 32 bytes) --
* <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * num_bitset_containers]
* <run_data> rle16_t[total number of rle elements in all run containers]
* <array_data> uint16_t[total number of array elements in all array containers]
* <keys> uint16_t[num_containers]
* <counts> uint16_t[num_containers]
* <typecodes> uint8_t[num_containers]
* <header> uint32_t
*
* <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
* and the number of containers (17 bits).
*
* <counts> stores number of elements for every container.
* Its meaning depends on container type.
* For array and bitset containers, this value is the container cardinality minus one.
* For run container, it is the number of rle_t elements (n_runs).
*
* <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
* all containers of respective type.
*
* <*_data> and <keys> are kept close together because they are not accessed
* during deserilization. This may reduce IO in case of large mmaped bitmaps.
* All members have their native alignments during deserilization except <header>,
* which is not guaranteed to be aligned by 4 bytes.
*/
size_t roaring_bitmap_frozen_size_in_bytes(const roaring_bitmap_t *rb) {
const roaring_array_t *ra = &rb->high_low_container;
size_t num_bytes = 0;
for (int32_t i = 0; i < ra->size; i++) {
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE: {
num_bytes += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
break;
}
case RUN_CONTAINER_TYPE_CODE: {
const run_container_t *run =
(const run_container_t *) ra->containers[i];
num_bytes += run->n_runs * sizeof(rle16_t);
break;
}
case ARRAY_CONTAINER_TYPE_CODE: {
const array_container_t *array =
(const array_container_t *) ra->containers[i];
num_bytes += array->cardinality * sizeof(uint16_t);
break;
}
default:
__builtin_unreachable();
}
}
num_bytes += (2 + 2 + 1) * ra->size; // keys, counts, typecodes
num_bytes += 4; // header
return num_bytes;
}
inline static void *arena_alloc(char **arena, size_t num_bytes) {
char *res = *arena;
*arena += num_bytes;
return res;
}
void roaring_bitmap_frozen_serialize(const roaring_bitmap_t *rb, char *buf) {
/*
* Note: we do not require user to supply spicificly aligned buffer.
* Thus we have to use memcpy() everywhere.
*/
const roaring_array_t *ra = &rb->high_low_container;
size_t bitset_zone_size = 0;
size_t run_zone_size = 0;
size_t array_zone_size = 0;
for (int32_t i = 0; i < ra->size; i++) {
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE: {
bitset_zone_size +=
BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
break;
}
case RUN_CONTAINER_TYPE_CODE: {
const run_container_t *run =
(const run_container_t *) ra->containers[i];
run_zone_size += run->n_runs * sizeof(rle16_t);
break;
}
case ARRAY_CONTAINER_TYPE_CODE: {
const array_container_t *array =
(const array_container_t *) ra->containers[i];
array_zone_size += array->cardinality * sizeof(uint16_t);
break;
}
default:
__builtin_unreachable();
}
}
uint64_t *bitset_zone = (uint64_t *)arena_alloc(&buf, bitset_zone_size);
rle16_t *run_zone = (rle16_t *)arena_alloc(&buf, run_zone_size);
uint16_t *array_zone = (uint16_t *)arena_alloc(&buf, array_zone_size);
uint16_t *key_zone = (uint16_t *)arena_alloc(&buf, 2*ra->size);
uint16_t *count_zone = (uint16_t *)arena_alloc(&buf, 2*ra->size);
uint8_t *typecode_zone = (uint8_t *)arena_alloc(&buf, ra->size);
uint32_t *header_zone = (uint32_t *)arena_alloc(&buf, 4);
for (int32_t i = 0; i < ra->size; i++) {
uint16_t count;
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE: {
const bitset_container_t *bitset =
(const bitset_container_t *) ra->containers[i];
memcpy(bitset_zone, bitset->array,
BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t));
bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
if (bitset->cardinality != BITSET_UNKNOWN_CARDINALITY) {
count = bitset->cardinality - 1;
} else {
count = bitset_container_compute_cardinality(bitset) - 1;
}
break;
}
case RUN_CONTAINER_TYPE_CODE: {
const run_container_t *run =
(const run_container_t *) ra->containers[i];
size_t num_bytes = run->n_runs * sizeof(rle16_t);
memcpy(run_zone, run->runs, num_bytes);
run_zone += run->n_runs;
count = run->n_runs;
break;
}
case ARRAY_CONTAINER_TYPE_CODE: {
const array_container_t *array =
(const array_container_t *) ra->containers[i];
size_t num_bytes = array->cardinality * sizeof(uint16_t);
memcpy(array_zone, array->array, num_bytes);
array_zone += array->cardinality;
count = array->cardinality - 1;
break;
}
default:
__builtin_unreachable();
}
memcpy(&count_zone[i], &count, 2);
}
memcpy(key_zone, ra->keys, ra->size * sizeof(uint16_t));
memcpy(typecode_zone, ra->typecodes, ra->size * sizeof(uint8_t));
uint32_t header = ((uint32_t)ra->size << 15) | FROZEN_COOKIE;
memcpy(header_zone, &header, 4);
}
const roaring_bitmap_t *
roaring_bitmap_frozen_view(const char *buf, size_t length) {
if ((uintptr_t)buf % 32 != 0) {
return NULL;
}
// cookie and num_containers
if (length < 4) {
return NULL;
}
uint32_t header;
memcpy(&header, buf + length - 4, 4); // header may be misaligned
if ((header & 0x7FFF) != FROZEN_COOKIE) {
return NULL;
}
int32_t num_containers = (header >> 15);
// typecodes, counts and keys
if (length < 4 + (size_t)num_containers * (1 + 2 + 2)) {
return NULL;
}
uint16_t *keys = (uint16_t *)(buf + length - 4 - num_containers * 5);
uint16_t *counts = (uint16_t *)(buf + length - 4 - num_containers * 3);
uint8_t *typecodes = (uint8_t *)(buf + length - 4 - num_containers * 1);
// {bitset,array,run}_zone
int32_t num_bitset_containers = 0;
int32_t num_run_containers = 0;
int32_t num_array_containers = 0;
size_t bitset_zone_size = 0;
size_t run_zone_size = 0;
size_t array_zone_size = 0;
for (int32_t i = 0; i < num_containers; i++) {
switch (typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE:
num_bitset_containers++;
bitset_zone_size += BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
break;
case RUN_CONTAINER_TYPE_CODE:
num_run_containers++;
run_zone_size += counts[i] * sizeof(rle16_t);
break;
case ARRAY_CONTAINER_TYPE_CODE:
num_array_containers++;
array_zone_size += (counts[i] + UINT32_C(1)) * sizeof(uint16_t);
break;
default:
return NULL;
}
}
if (length != bitset_zone_size + run_zone_size + array_zone_size +
5 * num_containers + 4) {
return NULL;
}
uint64_t *bitset_zone = (uint64_t*) (buf);
rle16_t *run_zone = (rle16_t*) (buf + bitset_zone_size);
uint16_t *array_zone = (uint16_t*) (buf + bitset_zone_size + run_zone_size);
size_t alloc_size = 0;
alloc_size += sizeof(roaring_bitmap_t);
alloc_size += num_containers * sizeof(void *);
alloc_size += num_bitset_containers * sizeof(bitset_container_t);
alloc_size += num_run_containers * sizeof(run_container_t);
alloc_size += num_array_containers * sizeof(array_container_t);
char *arena = (char *)malloc(alloc_size);
if (arena == NULL) {
return NULL;
}
roaring_bitmap_t *rb = (roaring_bitmap_t *)
arena_alloc(&arena, sizeof(roaring_bitmap_t));
rb->high_low_container.flags = ROARING_FLAG_FROZEN;
rb->high_low_container.allocation_size = num_containers;
rb->high_low_container.size = num_containers;
rb->high_low_container.keys = (uint16_t *)keys;
rb->high_low_container.typecodes = (uint8_t *)typecodes;
rb->high_low_container.containers =
(void **)arena_alloc(&arena, sizeof(void*) * num_containers);
for (int32_t i = 0; i < num_containers; i++) {
switch (typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE: {
bitset_container_t *bitset = (bitset_container_t *)
arena_alloc(&arena, sizeof(bitset_container_t));
bitset->array = bitset_zone;
bitset->cardinality = counts[i] + UINT32_C(1);
rb->high_low_container.containers[i] = bitset;
bitset_zone += BITSET_CONTAINER_SIZE_IN_WORDS;
break;
}
case RUN_CONTAINER_TYPE_CODE: {
run_container_t *run = (run_container_t *)
arena_alloc(&arena, sizeof(run_container_t));
run->capacity = counts[i];
run->n_runs = counts[i];
run->runs = run_zone;
rb->high_low_container.containers[i] = run;
run_zone += run->n_runs;
break;
}
case ARRAY_CONTAINER_TYPE_CODE: {
array_container_t *array = (array_container_t *)
arena_alloc(&arena, sizeof(array_container_t));
array->capacity = counts[i] + UINT32_C(1);
array->cardinality = counts[i] + UINT32_C(1);
array->array = array_zone;
rb->high_low_container.containers[i] = array;
array_zone += counts[i] + UINT32_C(1);
break;
}
default:
free(arena);
return NULL;
}
}
return rb;
}
/* end file src/roaring.c */
/* begin file src/roaring_array.c */
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
// Convention: [0,ra->size) all elements are initialized
// [ra->size, ra->allocation_size) is junk and contains nothing needing freeing
static bool realloc_array(roaring_array_t *ra, int32_t new_capacity) {
// because we combine the allocations, it is not possible to use realloc
/*ra->keys =
(uint16_t *)realloc(ra->keys, sizeof(uint16_t) * new_capacity);
ra->containers =
(void **)realloc(ra->containers, sizeof(void *) * new_capacity);
ra->typecodes =
(uint8_t *)realloc(ra->typecodes, sizeof(uint8_t) * new_capacity);
if (!ra->keys || !ra->containers || !ra->typecodes) {
free(ra->keys);
free(ra->containers);
free(ra->typecodes);
return false;
}*/
if ( new_capacity == 0 ) {
free(ra->containers);
ra->containers = NULL;
ra->keys = NULL;
ra->typecodes = NULL;
ra->allocation_size = 0;
return true;
}
const size_t memoryneeded =
new_capacity * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t));
void *bigalloc = malloc(memoryneeded);
if (!bigalloc) return false;
void *oldbigalloc = ra->containers;
void **newcontainers = (void **)bigalloc;
uint16_t *newkeys = (uint16_t *)(newcontainers + new_capacity);
uint8_t *newtypecodes = (uint8_t *)(newkeys + new_capacity);
assert((char *)(newtypecodes + new_capacity) ==
(char *)bigalloc + memoryneeded);
if(ra->size > 0) {
memcpy(newcontainers, ra->containers, sizeof(void *) * ra->size);
memcpy(newkeys, ra->keys, sizeof(uint16_t) * ra->size);
memcpy(newtypecodes, ra->typecodes, sizeof(uint8_t) * ra->size);
}
ra->containers = newcontainers;
ra->keys = newkeys;
ra->typecodes = newtypecodes;
ra->allocation_size = new_capacity;
free(oldbigalloc);
return true;
}
bool ra_init_with_capacity(roaring_array_t *new_ra, uint32_t cap) {
if (!new_ra) return false;
ra_init(new_ra);
if (cap > INT32_MAX) { return false; }
if(cap > 0) {
void *bigalloc =
malloc(cap * (sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t)));
if( bigalloc == NULL ) return false;
new_ra->containers = (void **)bigalloc;
new_ra->keys = (uint16_t *)(new_ra->containers + cap);
new_ra->typecodes = (uint8_t *)(new_ra->keys + cap);
// Narrowing is safe because of above check
new_ra->allocation_size = (int32_t)cap;
}
return true;
}
int ra_shrink_to_fit(roaring_array_t *ra) {
int savings = (ra->allocation_size - ra->size) *
(sizeof(uint16_t) + sizeof(void *) + sizeof(uint8_t));
if (!realloc_array(ra, ra->size)) {
return 0;
}
ra->allocation_size = ra->size;
return savings;
}
void ra_init(roaring_array_t *new_ra) {
if (!new_ra) { return; }
new_ra->keys = NULL;
new_ra->containers = NULL;
new_ra->typecodes = NULL;
new_ra->allocation_size = 0;
new_ra->size = 0;
new_ra->flags = 0;
}
bool ra_copy(const roaring_array_t *source, roaring_array_t *dest,
bool copy_on_write) {
if (!ra_init_with_capacity(dest, source->size)) return false;
dest->size = source->size;
dest->allocation_size = source->size;
if(dest->size > 0) {
memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t));
}
// we go through the containers, turning them into shared containers...
if (copy_on_write) {
for (int32_t i = 0; i < dest->size; ++i) {
source->containers[i] = get_copy_of_container(
source->containers[i], &source->typecodes[i], copy_on_write);
}
// we do a shallow copy to the other bitmap
if(dest->size > 0) {
memcpy(dest->containers, source->containers,
dest->size * sizeof(void *));
memcpy(dest->typecodes, source->typecodes,
dest->size * sizeof(uint8_t));
}
} else {
if(dest->size > 0) {
memcpy(dest->typecodes, source->typecodes,
dest->size * sizeof(uint8_t));
}
for (int32_t i = 0; i < dest->size; i++) {
dest->containers[i] =
container_clone(source->containers[i], source->typecodes[i]);
if (dest->containers[i] == NULL) {
for (int32_t j = 0; j < i; j++) {
container_free(dest->containers[j], dest->typecodes[j]);
}
ra_clear_without_containers(dest);
return false;
}
}
}
return true;
}
bool ra_overwrite(const roaring_array_t *source, roaring_array_t *dest,
bool copy_on_write) {
ra_clear_containers(dest); // we are going to overwrite them
if (dest->allocation_size < source->size) {
if (!realloc_array(dest, source->size)) {
return false;
}
}
dest->size = source->size;
memcpy(dest->keys, source->keys, dest->size * sizeof(uint16_t));
// we go through the containers, turning them into shared containers...
if (copy_on_write) {
for (int32_t i = 0; i < dest->size; ++i) {
source->containers[i] = get_copy_of_container(
source->containers[i], &source->typecodes[i], copy_on_write);
}
// we do a shallow copy to the other bitmap
memcpy(dest->containers, source->containers,
dest->size * sizeof(void *));
memcpy(dest->typecodes, source->typecodes,
dest->size * sizeof(uint8_t));
} else {
memcpy(dest->typecodes, source->typecodes,
dest->size * sizeof(uint8_t));
for (int32_t i = 0; i < dest->size; i++) {
dest->containers[i] =
container_clone(source->containers[i], source->typecodes[i]);
if (dest->containers[i] == NULL) {
for (int32_t j = 0; j < i; j++) {
container_free(dest->containers[j], dest->typecodes[j]);
}
ra_clear_without_containers(dest);
return false;
}
}
}
return true;
}
void ra_clear_containers(roaring_array_t *ra) {
for (int32_t i = 0; i < ra->size; ++i) {
container_free(ra->containers[i], ra->typecodes[i]);
}
}
void ra_reset(roaring_array_t *ra) {
ra_clear_containers(ra);
ra->size = 0;
ra_shrink_to_fit(ra);
}
void ra_clear_without_containers(roaring_array_t *ra) {
free(ra->containers); // keys and typecodes are allocated with containers
ra->size = 0;
ra->allocation_size = 0;
ra->containers = NULL;
ra->keys = NULL;
ra->typecodes = NULL;
}
void ra_clear(roaring_array_t *ra) {
ra_clear_containers(ra);
ra_clear_without_containers(ra);
}
bool extend_array(roaring_array_t *ra, int32_t k) {
int32_t desired_size = ra->size + k;
assert(desired_size <= MAX_CONTAINERS);
if (desired_size > ra->allocation_size) {
int32_t new_capacity =
(ra->size < 1024) ? 2 * desired_size : 5 * desired_size / 4;
if (new_capacity > MAX_CONTAINERS) {
new_capacity = MAX_CONTAINERS;
}
return realloc_array(ra, new_capacity);
}
return true;
}
void ra_append(roaring_array_t *ra, uint16_t key, void *container,
uint8_t typecode) {
extend_array(ra, 1);
const int32_t pos = ra->size;
ra->keys[pos] = key;
ra->containers[pos] = container;
ra->typecodes[pos] = typecode;
ra->size++;
}
void ra_append_copy(roaring_array_t *ra, const roaring_array_t *sa,
uint16_t index, bool copy_on_write) {
extend_array(ra, 1);
const int32_t pos = ra->size;
// old contents is junk not needing freeing
ra->keys[pos] = sa->keys[index];
// the shared container will be in two bitmaps
if (copy_on_write) {
sa->containers[index] = get_copy_of_container(
sa->containers[index], &sa->typecodes[index], copy_on_write);
ra->containers[pos] = sa->containers[index];
ra->typecodes[pos] = sa->typecodes[index];
} else {
ra->containers[pos] =
container_clone(sa->containers[index], sa->typecodes[index]);
ra->typecodes[pos] = sa->typecodes[index];
}
ra->size++;
}
void ra_append_copies_until(roaring_array_t *ra, const roaring_array_t *sa,
uint16_t stopping_key, bool copy_on_write) {
for (int32_t i = 0; i < sa->size; ++i) {
if (sa->keys[i] >= stopping_key) break;
ra_append_copy(ra, sa, i, copy_on_write);
}
}
void ra_append_copy_range(roaring_array_t *ra, const roaring_array_t *sa,
int32_t start_index, int32_t end_index,
bool copy_on_write) {
extend_array(ra, end_index - start_index);
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
ra->keys[pos] = sa->keys[i];
if (copy_on_write) {
sa->containers[i] = get_copy_of_container(
sa->containers[i], &sa->typecodes[i], copy_on_write);
ra->containers[pos] = sa->containers[i];
ra->typecodes[pos] = sa->typecodes[i];
} else {
ra->containers[pos] =
container_clone(sa->containers[i], sa->typecodes[i]);
ra->typecodes[pos] = sa->typecodes[i];
}
ra->size++;
}
}
void ra_append_copies_after(roaring_array_t *ra, const roaring_array_t *sa,
uint16_t before_start, bool copy_on_write) {
int start_location = ra_get_index(sa, before_start);
if (start_location >= 0)
++start_location;
else
start_location = -start_location - 1;
ra_append_copy_range(ra, sa, start_location, sa->size, copy_on_write);
}
void ra_append_move_range(roaring_array_t *ra, roaring_array_t *sa,
int32_t start_index, int32_t end_index) {
extend_array(ra, end_index - start_index);
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
ra->keys[pos] = sa->keys[i];
ra->containers[pos] = sa->containers[i];
ra->typecodes[pos] = sa->typecodes[i];
ra->size++;
}
}
void ra_append_range(roaring_array_t *ra, roaring_array_t *sa,
int32_t start_index, int32_t end_index,
bool copy_on_write) {
extend_array(ra, end_index - start_index);
for (int32_t i = start_index; i < end_index; ++i) {
const int32_t pos = ra->size;
ra->keys[pos] = sa->keys[i];
if (copy_on_write) {
sa->containers[i] = get_copy_of_container(
sa->containers[i], &sa->typecodes[i], copy_on_write);
ra->containers[pos] = sa->containers[i];
ra->typecodes[pos] = sa->typecodes[i];
} else {
ra->containers[pos] =
container_clone(sa->containers[i], sa->typecodes[i]);
ra->typecodes[pos] = sa->typecodes[i];
}
ra->size++;
}
}
uint16_t ra_get_key_at_index(const roaring_array_t *ra, uint16_t i) {
return ra->keys[i];
}
// everything skipped over is freed
int32_t ra_advance_until_freeing(roaring_array_t *ra, uint16_t x, int32_t pos) {
while (pos < ra->size && ra->keys[pos] < x) {
container_free(ra->containers[pos], ra->typecodes[pos]);
++pos;
}
return pos;
}
void ra_insert_new_key_value_at(roaring_array_t *ra, int32_t i, uint16_t key,
void *container, uint8_t typecode) {
extend_array(ra, 1);
// May be an optimization opportunity with DIY memmove
memmove(&(ra->keys[i + 1]), &(ra->keys[i]),
sizeof(uint16_t) * (ra->size - i));
memmove(&(ra->containers[i + 1]), &(ra->containers[i]),
sizeof(void *) * (ra->size - i));
memmove(&(ra->typecodes[i + 1]), &(ra->typecodes[i]),
sizeof(uint8_t) * (ra->size - i));
ra->keys[i] = key;
ra->containers[i] = container;
ra->typecodes[i] = typecode;
ra->size++;
}
// note: Java routine set things to 0, enabling GC.
// Java called it "resize" but it was always used to downsize.
// Allowing upsize would break the conventions about
// valid containers below ra->size.
void ra_downsize(roaring_array_t *ra, int32_t new_length) {
assert(new_length <= ra->size);
ra->size = new_length;
}
void ra_remove_at_index(roaring_array_t *ra, int32_t i) {
memmove(&(ra->containers[i]), &(ra->containers[i + 1]),
sizeof(void *) * (ra->size - i - 1));
memmove(&(ra->keys[i]), &(ra->keys[i + 1]),
sizeof(uint16_t) * (ra->size - i - 1));
memmove(&(ra->typecodes[i]), &(ra->typecodes[i + 1]),
sizeof(uint8_t) * (ra->size - i - 1));
ra->size--;
}
void ra_remove_at_index_and_free(roaring_array_t *ra, int32_t i) {
container_free(ra->containers[i], ra->typecodes[i]);
ra_remove_at_index(ra, i);
}
// used in inplace andNot only, to slide left the containers from
// the mutated RoaringBitmap that are after the largest container of
// the argument RoaringBitmap. In use it should be followed by a call to
// downsize.
//
void ra_copy_range(roaring_array_t *ra, uint32_t begin, uint32_t end,
uint32_t new_begin) {
assert(begin <= end);
assert(new_begin < begin);
const int range = end - begin;
// We ensure to previously have freed overwritten containers
// that are not copied elsewhere
memmove(&(ra->containers[new_begin]), &(ra->containers[begin]),
sizeof(void *) * range);
memmove(&(ra->keys[new_begin]), &(ra->keys[begin]),
sizeof(uint16_t) * range);
memmove(&(ra->typecodes[new_begin]), &(ra->typecodes[begin]),
sizeof(uint8_t) * range);
}
void ra_shift_tail(roaring_array_t *ra, int32_t count, int32_t distance) {
if (distance > 0) {
extend_array(ra, distance);
}
int32_t srcpos = ra->size - count;
int32_t dstpos = srcpos + distance;
memmove(&(ra->keys[dstpos]), &(ra->keys[srcpos]),
sizeof(uint16_t) * count);
memmove(&(ra->containers[dstpos]), &(ra->containers[srcpos]),
sizeof(void *) * count);
memmove(&(ra->typecodes[dstpos]), &(ra->typecodes[srcpos]),
sizeof(uint8_t) * count);
ra->size += distance;
}
void ra_to_uint32_array(const roaring_array_t *ra, uint32_t *ans) {
size_t ctr = 0;
for (int32_t i = 0; i < ra->size; ++i) {
int num_added = container_to_uint32_array(
ans + ctr, ra->containers[i], ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
ctr += num_added;
}
}
bool ra_range_uint32_array(const roaring_array_t *ra, size_t offset, size_t limit, uint32_t *ans) {
size_t ctr = 0;
size_t dtr = 0;
size_t t_limit = 0;
bool first = false;
size_t first_skip = 0;
uint32_t *t_ans = NULL;
size_t cur_len = 0;
for (int i = 0; i < ra->size; ++i) {
const void *container = container_unwrap_shared(ra->containers[i], &ra->typecodes[i]);
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE:
t_limit = ((const bitset_container_t *)container)->cardinality;
break;
case ARRAY_CONTAINER_TYPE_CODE:
t_limit = ((const array_container_t *)container)->cardinality;
break;
case RUN_CONTAINER_TYPE_CODE:
t_limit = run_container_cardinality((const run_container_t *)container);
break;
case SHARED_CONTAINER_TYPE_CODE:
default:
__builtin_unreachable();
}
if (ctr + t_limit - 1 >= offset && ctr < offset + limit){
if (!first){
//first_skip = t_limit - (ctr + t_limit - offset);
first_skip = offset - ctr;
first = true;
t_ans = (uint32_t *)malloc(sizeof(*t_ans) * (first_skip + limit));
if(t_ans == NULL) {
return false;
}
memset(t_ans, 0, sizeof(*t_ans) * (first_skip + limit)) ;
cur_len = first_skip + limit;
}
if (dtr + t_limit > cur_len){
uint32_t * append_ans = (uint32_t *)malloc(sizeof(*append_ans) * (cur_len + t_limit));
if(append_ans == NULL) {
if(t_ans != NULL) free(t_ans);
return false;
}
memset(append_ans, 0, sizeof(*append_ans) * (cur_len + t_limit));
cur_len = cur_len + t_limit;
memcpy(append_ans, t_ans, dtr * sizeof(uint32_t));
free(t_ans);
t_ans = append_ans;
}
switch (ra->typecodes[i]) {
case BITSET_CONTAINER_TYPE_CODE:
container_to_uint32_array(
t_ans + dtr, (const bitset_container_t *)container, ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
break;
case ARRAY_CONTAINER_TYPE_CODE:
container_to_uint32_array(
t_ans + dtr, (const array_container_t *)container, ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
break;
case RUN_CONTAINER_TYPE_CODE:
container_to_uint32_array(
t_ans + dtr, (const run_container_t *)container, ra->typecodes[i],
((uint32_t)ra->keys[i]) << 16);
break;
case SHARED_CONTAINER_TYPE_CODE:
default:
__builtin_unreachable();
}
dtr += t_limit;
}
ctr += t_limit;
if (dtr-first_skip >= limit) break;
}
if(t_ans != NULL) {
memcpy(ans, t_ans+first_skip, limit * sizeof(uint32_t));
free(t_ans);
}
return true;
}
bool ra_has_run_container(const roaring_array_t *ra) {
for (int32_t k = 0; k < ra->size; ++k) {
if (get_container_type(ra->containers[k], ra->typecodes[k]) ==
RUN_CONTAINER_TYPE_CODE)
return true;
}
return false;
}
uint32_t ra_portable_header_size(const roaring_array_t *ra) {
if (ra_has_run_container(ra)) {
if (ra->size <
NO_OFFSET_THRESHOLD) { // for small bitmaps, we omit the offsets
return 4 + (ra->size + 7) / 8 + 4 * ra->size;
}
return 4 + (ra->size + 7) / 8 +
8 * ra->size; // - 4 because we pack the size with the cookie
} else {
return 4 + 4 + 8 * ra->size;
}
}
size_t ra_portable_size_in_bytes(const roaring_array_t *ra) {
size_t count = ra_portable_header_size(ra);
for (int32_t k = 0; k < ra->size; ++k) {
count += container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
}
return count;
}
size_t ra_portable_serialize(const roaring_array_t *ra, char *buf) {
char *initbuf = buf;
uint32_t startOffset = 0;
bool hasrun = ra_has_run_container(ra);
if (hasrun) {
uint32_t cookie = SERIAL_COOKIE | ((ra->size - 1) << 16);
memcpy(buf, &cookie, sizeof(cookie));
buf += sizeof(cookie);
uint32_t s = (ra->size + 7) / 8;
uint8_t *bitmapOfRunContainers = (uint8_t *)calloc(s, 1);
assert(bitmapOfRunContainers != NULL); // todo: handle
for (int32_t i = 0; i < ra->size; ++i) {
if (get_container_type(ra->containers[i], ra->typecodes[i]) ==
RUN_CONTAINER_TYPE_CODE) {
bitmapOfRunContainers[i / 8] |= (1 << (i % 8));
}
}
memcpy(buf, bitmapOfRunContainers, s);
buf += s;
free(bitmapOfRunContainers);
if (ra->size < NO_OFFSET_THRESHOLD) {
startOffset = 4 + 4 * ra->size + s;
} else {
startOffset = 4 + 8 * ra->size + s;
}
} else { // backwards compatibility
uint32_t cookie = SERIAL_COOKIE_NO_RUNCONTAINER;
memcpy(buf, &cookie, sizeof(cookie));
buf += sizeof(cookie);
memcpy(buf, &ra->size, sizeof(ra->size));
buf += sizeof(ra->size);
startOffset = 4 + 4 + 4 * ra->size + 4 * ra->size;
}
for (int32_t k = 0; k < ra->size; ++k) {
memcpy(buf, &ra->keys[k], sizeof(ra->keys[k]));
buf += sizeof(ra->keys[k]);
// get_cardinality returns a value in [1,1<<16], subtracting one
// we get [0,1<<16 - 1] which fits in 16 bits
uint16_t card = (uint16_t)(
container_get_cardinality(ra->containers[k], ra->typecodes[k]) - 1);
memcpy(buf, &card, sizeof(card));
buf += sizeof(card);
}
if ((!hasrun) || (ra->size >= NO_OFFSET_THRESHOLD)) {
// writing the containers offsets
for (int32_t k = 0; k < ra->size; k++) {
memcpy(buf, &startOffset, sizeof(startOffset));
buf += sizeof(startOffset);
startOffset =
startOffset +
container_size_in_bytes(ra->containers[k], ra->typecodes[k]);
}
}
for (int32_t k = 0; k < ra->size; ++k) {
buf += container_write(ra->containers[k], ra->typecodes[k], buf);
}
return buf - initbuf;
}
// Quickly checks whether there is a serialized bitmap at the pointer,
// not exceeding size "maxbytes" in bytes. This function does not allocate
// memory dynamically.
//
// This function returns 0 if and only if no valid bitmap is found.
// Otherwise, it returns how many bytes are occupied.
//
size_t ra_portable_deserialize_size(const char *buf, const size_t maxbytes) {
size_t bytestotal = sizeof(int32_t);// for cookie
if(bytestotal > maxbytes) return 0;
uint32_t cookie;
memcpy(&cookie, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
return 0;
}
int32_t size;
if ((cookie & 0xFFFF) == SERIAL_COOKIE)
size = (cookie >> 16) + 1;
else {
bytestotal += sizeof(int32_t);
if(bytestotal > maxbytes) return 0;
memcpy(&size, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
}
if (size > (1<<16)) {
return 0; // logically impossible
}
char *bitmapOfRunContainers = NULL;
bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
if (hasrun) {
int32_t s = (size + 7) / 8;
bytestotal += s;
if(bytestotal > maxbytes) return 0;
bitmapOfRunContainers = (char *)buf;
buf += s;
}
bytestotal += size * 2 * sizeof(uint16_t);
if(bytestotal > maxbytes) return 0;
uint16_t *keyscards = (uint16_t *)buf;
buf += size * 2 * sizeof(uint16_t);
if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
// skipping the offsets
bytestotal += size * 4;
if(bytestotal > maxbytes) return 0;
buf += size * 4;
}
// Reading the containers
for (int32_t k = 0; k < size; ++k) {
uint16_t tmp;
memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp));
uint32_t thiscard = tmp + 1;
bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
bool isrun = false;
if(hasrun) {
if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
isbitmap = false;
isrun = true;
}
}
if (isbitmap) {
size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
bytestotal += containersize;
if(bytestotal > maxbytes) return 0;
buf += containersize;
} else if (isrun) {
bytestotal += sizeof(uint16_t);
if(bytestotal > maxbytes) return 0;
uint16_t n_runs;
memcpy(&n_runs, buf, sizeof(uint16_t));
buf += sizeof(uint16_t);
size_t containersize = n_runs * sizeof(rle16_t);
bytestotal += containersize;
if(bytestotal > maxbytes) return 0;
buf += containersize;
} else {
size_t containersize = thiscard * sizeof(uint16_t);
bytestotal += containersize;
if(bytestotal > maxbytes) return 0;
buf += containersize;
}
}
return bytestotal;
}
// this function populates answer from the content of buf (reading up to maxbytes bytes).
// The function returns false if a properly serialized bitmap cannot be found.
// if it returns true, readbytes is populated by how many bytes were read, we have that *readbytes <= maxbytes.
bool ra_portable_deserialize(roaring_array_t *answer, const char *buf, const size_t maxbytes, size_t * readbytes) {
*readbytes = sizeof(int32_t);// for cookie
if(*readbytes > maxbytes) {
fprintf(stderr, "Ran out of bytes while reading first 4 bytes.\n");
return false;
}
uint32_t cookie;
memcpy(&cookie, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
if ((cookie & 0xFFFF) != SERIAL_COOKIE &&
cookie != SERIAL_COOKIE_NO_RUNCONTAINER) {
fprintf(stderr, "I failed to find one of the right cookies. Found %" PRIu32 "\n",
cookie);
return false;
}
int32_t size;
if ((cookie & 0xFFFF) == SERIAL_COOKIE)
size = (cookie >> 16) + 1;
else {
*readbytes += sizeof(int32_t);
if(*readbytes > maxbytes) {
fprintf(stderr, "Ran out of bytes while reading second part of the cookie.\n");
return false;
}
memcpy(&size, buf, sizeof(int32_t));
buf += sizeof(uint32_t);
}
if (size > (1<<16)) {
fprintf(stderr, "You cannot have so many containers, the data must be corrupted: %" PRId32 "\n",
size);
return false; // logically impossible
}
const char *bitmapOfRunContainers = NULL;
bool hasrun = (cookie & 0xFFFF) == SERIAL_COOKIE;
if (hasrun) {
int32_t s = (size + 7) / 8;
*readbytes += s;
if(*readbytes > maxbytes) {// data is corrupted?
fprintf(stderr, "Ran out of bytes while reading run bitmap.\n");
return false;
}
bitmapOfRunContainers = buf;
buf += s;
}
uint16_t *keyscards = (uint16_t *)buf;
*readbytes += size * 2 * sizeof(uint16_t);
if(*readbytes > maxbytes) {
fprintf(stderr, "Ran out of bytes while reading key-cardinality array.\n");
return false;
}
buf += size * 2 * sizeof(uint16_t);
bool is_ok = ra_init_with_capacity(answer, size);
if (!is_ok) {
fprintf(stderr, "Failed to allocate memory for roaring array. Bailing out.\n");
return false;
}
for (int32_t k = 0; k < size; ++k) {
uint16_t tmp;
memcpy(&tmp, keyscards + 2*k, sizeof(tmp));
answer->keys[k] = tmp;
}
if ((!hasrun) || (size >= NO_OFFSET_THRESHOLD)) {
*readbytes += size * 4;
if(*readbytes > maxbytes) {// data is corrupted?
fprintf(stderr, "Ran out of bytes while reading offsets.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// skipping the offsets
buf += size * 4;
}
// Reading the containers
for (int32_t k = 0; k < size; ++k) {
uint16_t tmp;
memcpy(&tmp, keyscards + 2*k+1, sizeof(tmp));
uint32_t thiscard = tmp + 1;
bool isbitmap = (thiscard > DEFAULT_MAX_SIZE);
bool isrun = false;
if(hasrun) {
if((bitmapOfRunContainers[k / 8] & (1 << (k % 8))) != 0) {
isbitmap = false;
isrun = true;
}
}
if (isbitmap) {
// we check that the read is allowed
size_t containersize = BITSET_CONTAINER_SIZE_IN_WORDS * sizeof(uint64_t);
*readbytes += containersize;
if(*readbytes > maxbytes) {
fprintf(stderr, "Running out of bytes while reading a bitset container.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// it is now safe to read
bitset_container_t *c = bitset_container_create();
if(c == NULL) {// memory allocation failure
fprintf(stderr, "Failed to allocate memory for a bitset container.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
answer->size++;
buf += bitset_container_read(thiscard, c, buf);
answer->containers[k] = c;
answer->typecodes[k] = BITSET_CONTAINER_TYPE_CODE;
} else if (isrun) {
// we check that the read is allowed
*readbytes += sizeof(uint16_t);
if(*readbytes > maxbytes) {
fprintf(stderr, "Running out of bytes while reading a run container (header).\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
uint16_t n_runs;
memcpy(&n_runs, buf, sizeof(uint16_t));
size_t containersize = n_runs * sizeof(rle16_t);
*readbytes += containersize;
if(*readbytes > maxbytes) {// data is corrupted?
fprintf(stderr, "Running out of bytes while reading a run container.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// it is now safe to read
run_container_t *c = run_container_create();
if(c == NULL) {// memory allocation failure
fprintf(stderr, "Failed to allocate memory for a run container.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
answer->size++;
buf += run_container_read(thiscard, c, buf);
answer->containers[k] = c;
answer->typecodes[k] = RUN_CONTAINER_TYPE_CODE;
} else {
// we check that the read is allowed
size_t containersize = thiscard * sizeof(uint16_t);
*readbytes += containersize;
if(*readbytes > maxbytes) {// data is corrupted?
fprintf(stderr, "Running out of bytes while reading an array container.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
// it is now safe to read
array_container_t *c =
array_container_create_given_capacity(thiscard);
if(c == NULL) {// memory allocation failure
fprintf(stderr, "Failed to allocate memory for an array container.\n");
ra_clear(answer);// we need to clear the containers already allocated, and the roaring array
return false;
}
answer->size++;
buf += array_container_read(thiscard, c, buf);
answer->containers[k] = c;
answer->typecodes[k] = ARRAY_CONTAINER_TYPE_CODE;
}
}
return true;
}
/* end file src/roaring_array.c */
/* begin file src/roaring_priority_queue.c */
struct roaring_pq_element_s {
uint64_t size;
bool is_temporary;
roaring_bitmap_t *bitmap;
};
typedef struct roaring_pq_element_s roaring_pq_element_t;
struct roaring_pq_s {
roaring_pq_element_t *elements;
uint64_t size;
};
typedef struct roaring_pq_s roaring_pq_t;
static inline bool compare(roaring_pq_element_t *t1, roaring_pq_element_t *t2) {
return t1->size < t2->size;
}
static void pq_add(roaring_pq_t *pq, roaring_pq_element_t *t) {
uint64_t i = pq->size;
pq->elements[pq->size++] = *t;
while (i > 0) {
uint64_t p = (i - 1) >> 1;
roaring_pq_element_t ap = pq->elements[p];
if (!compare(t, &ap)) break;
pq->elements[i] = ap;
i = p;
}
pq->elements[i] = *t;
}
static void pq_free(roaring_pq_t *pq) {
free(pq->elements);
pq->elements = NULL; // paranoid
free(pq);
}
static void percolate_down(roaring_pq_t *pq, uint32_t i) {
uint32_t size = (uint32_t)pq->size;
uint32_t hsize = size >> 1;
roaring_pq_element_t ai = pq->elements[i];
while (i < hsize) {
uint32_t l = (i << 1) + 1;
uint32_t r = l + 1;
roaring_pq_element_t bestc = pq->elements[l];
if (r < size) {
if (compare(pq->elements + r, &bestc)) {
l = r;
bestc = pq->elements[r];
}
}
if (!compare(&bestc, &ai)) {
break;
}
pq->elements[i] = bestc;
i = l;
}
pq->elements[i] = ai;
}
static roaring_pq_t *create_pq(const roaring_bitmap_t **arr, uint32_t length) {
roaring_pq_t *answer = (roaring_pq_t *)malloc(sizeof(roaring_pq_t));
answer->elements =
(roaring_pq_element_t *)malloc(sizeof(roaring_pq_element_t) * length);
answer->size = length;
for (uint32_t i = 0; i < length; i++) {
answer->elements[i].bitmap = (roaring_bitmap_t *)arr[i];
answer->elements[i].is_temporary = false;
answer->elements[i].size =
roaring_bitmap_portable_size_in_bytes(arr[i]);
}
for (int32_t i = (length >> 1); i >= 0; i--) {
percolate_down(answer, i);
}
return answer;
}
static roaring_pq_element_t pq_poll(roaring_pq_t *pq) {
roaring_pq_element_t ans = *pq->elements;
if (pq->size > 1) {
pq->elements[0] = pq->elements[--pq->size];
percolate_down(pq, 0);
} else
--pq->size;
// memmove(pq->elements,pq->elements+1,(pq->size-1)*sizeof(roaring_pq_element_t));--pq->size;
return ans;
}
// this function consumes and frees the inputs
static roaring_bitmap_t *lazy_or_from_lazy_inputs(roaring_bitmap_t *x1,
roaring_bitmap_t *x2) {
uint8_t container_result_type = 0;
const int length1 = ra_get_size(&x1->high_low_container),
length2 = ra_get_size(&x2->high_low_container);
if (0 == length1) {
roaring_bitmap_free(x1);
return x2;
}
if (0 == length2) {
roaring_bitmap_free(x2);
return x1;
}
uint32_t neededcap = length1 > length2 ? length2 : length1;
roaring_bitmap_t *answer = roaring_bitmap_create_with_capacity(neededcap);
int pos1 = 0, pos2 = 0;
uint8_t container_type_1, container_type_2;
uint16_t s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
uint16_t s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
while (true) {
if (s1 == s2) {
// todo: unsharing can be inefficient as it may create a clone where
// none
// is needed, but it has the benefit of being easy to reason about.
ra_unshare_container_at_index(&x1->high_low_container, pos1);
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
assert(container_type_1 != SHARED_CONTAINER_TYPE_CODE);
ra_unshare_container_at_index(&x2->high_low_container, pos2);
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
assert(container_type_2 != SHARED_CONTAINER_TYPE_CODE);
void *c;
if ((container_type_2 == BITSET_CONTAINER_TYPE_CODE) &&
(container_type_1 != BITSET_CONTAINER_TYPE_CODE)) {
c = container_lazy_ior(c2, container_type_2, c1,
container_type_1,
&container_result_type);
container_free(c1, container_type_1);
if (c != c2) {
container_free(c2, container_type_2);
}
} else {
c = container_lazy_ior(c1, container_type_1, c2,
container_type_2,
&container_result_type);
container_free(c2, container_type_2);
if (c != c1) {
container_free(c1, container_type_1);
}
}
// since we assume that the initial containers are non-empty, the
// result here
// can only be non-empty
ra_append(&answer->high_low_container, s1, c,
container_result_type);
++pos1;
++pos2;
if (pos1 == length1) break;
if (pos2 == length2) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
} else if (s1 < s2) { // s1 < s2
void *c1 = ra_get_container_at_index(&x1->high_low_container, pos1,
&container_type_1);
ra_append(&answer->high_low_container, s1, c1, container_type_1);
pos1++;
if (pos1 == length1) break;
s1 = ra_get_key_at_index(&x1->high_low_container, pos1);
} else { // s1 > s2
void *c2 = ra_get_container_at_index(&x2->high_low_container, pos2,
&container_type_2);
ra_append(&answer->high_low_container, s2, c2, container_type_2);
pos2++;
if (pos2 == length2) break;
s2 = ra_get_key_at_index(&x2->high_low_container, pos2);
}
}
if (pos1 == length1) {
ra_append_move_range(&answer->high_low_container,
&x2->high_low_container, pos2, length2);
} else if (pos2 == length2) {
ra_append_move_range(&answer->high_low_container,
&x1->high_low_container, pos1, length1);
}
ra_clear_without_containers(&x1->high_low_container);
ra_clear_without_containers(&x2->high_low_container);
free(x1);
free(x2);
return answer;
}
/**
* Compute the union of 'number' bitmaps using a heap. This can
* sometimes be faster than roaring_bitmap_or_many which uses
* a naive algorithm. Caller is responsible for freeing the
* result.
*/
roaring_bitmap_t *roaring_bitmap_or_many_heap(uint32_t number,
const roaring_bitmap_t **x) {
if (number == 0) {
return roaring_bitmap_create();
}
if (number == 1) {
return roaring_bitmap_copy(x[0]);
}
roaring_pq_t *pq = create_pq(x, number);
while (pq->size > 1) {
roaring_pq_element_t x1 = pq_poll(pq);
roaring_pq_element_t x2 = pq_poll(pq);
if (x1.is_temporary && x2.is_temporary) {
roaring_bitmap_t *newb =
lazy_or_from_lazy_inputs(x1.bitmap, x2.bitmap);
// should normally return a fresh new bitmap *except* that
// it can return x1.bitmap or x2.bitmap in degenerate cases
bool temporary = !((newb == x1.bitmap) && (newb == x2.bitmap));
uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb);
roaring_pq_element_t newelement = {
.size = bsize, .is_temporary = temporary, .bitmap = newb};
pq_add(pq, &newelement);
} else if (x2.is_temporary) {
roaring_bitmap_lazy_or_inplace(x2.bitmap, x1.bitmap, false);
x2.size = roaring_bitmap_portable_size_in_bytes(x2.bitmap);
pq_add(pq, &x2);
} else if (x1.is_temporary) {
roaring_bitmap_lazy_or_inplace(x1.bitmap, x2.bitmap, false);
x1.size = roaring_bitmap_portable_size_in_bytes(x1.bitmap);
pq_add(pq, &x1);
} else {
roaring_bitmap_t *newb =
roaring_bitmap_lazy_or(x1.bitmap, x2.bitmap, false);
uint64_t bsize = roaring_bitmap_portable_size_in_bytes(newb);
roaring_pq_element_t newelement = {
.size = bsize, .is_temporary = true, .bitmap = newb};
pq_add(pq, &newelement);
}
}
roaring_pq_element_t X = pq_poll(pq);
roaring_bitmap_t *answer = X.bitmap;
roaring_bitmap_repair_after_lazy(answer);
pq_free(pq);
return answer;
}
/* end file src/roaring_priority_queue.c */