2021-10-07 03:15:25 +00:00
|
|
|
/* gskglglyphlibrary.c
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
*
|
|
|
|
* Copyright 2020 Christian Hergert <chergert@redhat.com>
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
* SPDX-License-Identifier: LGPL-2.1-or-later
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#include <gdk/gdkglcontextprivate.h>
|
2021-09-22 00:01:41 +00:00
|
|
|
#include <gdk/gdkmemoryformatprivate.h>
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
#include <gdk/gdkprofilerprivate.h>
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
#include "gskglcommandqueueprivate.h"
|
|
|
|
#include "gskgldriverprivate.h"
|
|
|
|
#include "gskglglyphlibraryprivate.h"
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
#define MAX_GLYPH_SIZE 128
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
G_DEFINE_TYPE (GskGLGlyphLibrary, gsk_gl_glyph_library, GSK_TYPE_GL_TEXTURE_LIBRARY)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLGlyphLibrary *
|
|
|
|
gsk_gl_glyph_library_new (GskGLDriver *driver)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
g_return_val_if_fail (GSK_IS_GL_DRIVER (driver), NULL);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
return g_object_new (GSK_TYPE_GL_GLYPH_LIBRARY,
|
|
|
|
"driver", driver,
|
|
|
|
NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static guint
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_key_hash (gconstpointer data)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
const GskGLGlyphKey *key = data;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
/* We do not store the hash within the key because GHashTable will already
|
|
|
|
* store the hash value for us and so this is called only a single time per
|
2021-10-07 03:15:25 +00:00
|
|
|
* cached item. This saves an extra 4 bytes per GskGLGlyphKey which means on
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
* 64-bit, we fit nicely within 2 pointers (the smallest allocation size
|
|
|
|
* for GSlice).
|
|
|
|
*/
|
|
|
|
|
|
|
|
return GPOINTER_TO_UINT (key->font) ^
|
|
|
|
key->glyph ^
|
|
|
|
(key->xshift << 24) ^
|
|
|
|
(key->yshift << 26) ^
|
|
|
|
key->scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_key_equal (gconstpointer v1,
|
|
|
|
gconstpointer v2)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
return memcmp (v1, v2, sizeof (GskGLGlyphKey)) == 0;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_key_free (gpointer data)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLGlyphKey *key = data;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
g_clear_object (&key->font);
|
2021-10-07 03:15:25 +00:00
|
|
|
g_slice_free (GskGLGlyphKey, key);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_value_free (gpointer data)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
g_slice_free (GskGLGlyphValue, data);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
2021-03-19 00:54:48 +00:00
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_begin_frame (GskGLTextureLibrary *library,
|
|
|
|
gint64 frame_id,
|
|
|
|
GPtrArray *removed_atlases)
|
2021-03-19 00:54:48 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLGlyphLibrary *self = (GskGLGlyphLibrary *)library;
|
2021-03-19 00:54:48 +00:00
|
|
|
|
|
|
|
memset (self->front, 0, sizeof self->front);
|
|
|
|
}
|
|
|
|
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_finalize (GObject *object)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLGlyphLibrary *self = (GskGLGlyphLibrary *)object;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
g_clear_pointer (&self->surface_data, g_free);
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
G_OBJECT_CLASS (gsk_gl_glyph_library_parent_class)->finalize (object);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_class_init (GskGLGlyphLibraryClass *klass)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
|
|
|
GObjectClass *object_class = G_OBJECT_CLASS (klass);
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLTextureLibraryClass *library_class = GSK_GL_TEXTURE_LIBRARY_CLASS (klass);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
object_class->finalize = gsk_gl_glyph_library_finalize;
|
2021-03-19 00:54:48 +00:00
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
library_class->begin_frame = gsk_gl_glyph_library_begin_frame;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_init (GskGLGlyphLibrary *self)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLTextureLibrary *tl = (GskGLTextureLibrary *)self;
|
2021-07-24 13:50:43 +00:00
|
|
|
|
|
|
|
tl->max_entry_size = MAX_GLYPH_SIZE;
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_texture_library_set_funcs (tl,
|
|
|
|
gsk_gl_glyph_key_hash,
|
|
|
|
gsk_gl_glyph_key_equal,
|
|
|
|
gsk_gl_glyph_key_free,
|
|
|
|
gsk_gl_glyph_value_free);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static cairo_surface_t *
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_create_surface (GskGLGlyphLibrary *self,
|
|
|
|
int stride,
|
|
|
|
int width,
|
|
|
|
int height,
|
|
|
|
int uwidth,
|
|
|
|
int uheight)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
|
|
|
cairo_surface_t *surface;
|
|
|
|
gsize n_bytes;
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
g_assert (GSK_IS_GL_GLYPH_LIBRARY (self));
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
g_assert (width > 0);
|
|
|
|
g_assert (height > 0);
|
|
|
|
|
|
|
|
n_bytes = stride * height;
|
|
|
|
|
|
|
|
if G_LIKELY (n_bytes > self->surface_data_len)
|
|
|
|
{
|
|
|
|
self->surface_data = g_realloc (self->surface_data, n_bytes);
|
|
|
|
self->surface_data_len = n_bytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
memset (self->surface_data, 0, n_bytes);
|
|
|
|
surface = cairo_image_surface_create_for_data (self->surface_data,
|
|
|
|
CAIRO_FORMAT_ARGB32,
|
|
|
|
width, height, stride);
|
2021-09-17 23:07:55 +00:00
|
|
|
cairo_surface_set_device_scale (surface, width / (double)uwidth, height / (double)uheight);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
return surface;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
render_glyph (cairo_surface_t *surface,
|
2021-10-07 03:15:25 +00:00
|
|
|
const GskGLGlyphKey *key,
|
|
|
|
const GskGLGlyphValue *value)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
|
|
|
cairo_t *cr;
|
2021-11-20 16:13:52 +00:00
|
|
|
PangoGlyphString glyph_string;
|
|
|
|
PangoGlyphInfo glyph_info;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
g_assert (surface != NULL);
|
|
|
|
|
|
|
|
cr = cairo_create (surface);
|
|
|
|
cairo_set_source_rgba (cr, 1, 1, 1, 1);
|
|
|
|
|
2021-11-20 16:13:52 +00:00
|
|
|
glyph_info.glyph = key->glyph;
|
|
|
|
glyph_info.geometry.width = value->ink_rect.width * 1024;
|
|
|
|
glyph_info.geometry.x_offset = 0.25 * key->xshift - value->ink_rect.x * 1024;
|
|
|
|
glyph_info.geometry.y_offset = 0.25 * key->yshift - value->ink_rect.y * 1024;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
2021-11-20 16:13:52 +00:00
|
|
|
glyph_string.num_glyphs = 1;
|
|
|
|
glyph_string.glyphs = &glyph_info;
|
|
|
|
|
|
|
|
pango_cairo_show_glyph_string (cr, key->font, &glyph_string);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
cairo_destroy (cr);
|
|
|
|
|
|
|
|
cairo_surface_flush (surface);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_upload_glyph (GskGLGlyphLibrary *self,
|
|
|
|
const GskGLGlyphKey *key,
|
|
|
|
const GskGLGlyphValue *value,
|
|
|
|
int x,
|
|
|
|
int y,
|
|
|
|
int width,
|
|
|
|
int height,
|
|
|
|
int uwidth,
|
|
|
|
int uheight)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLTextureLibrary *tl = (GskGLTextureLibrary *)self;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
G_GNUC_UNUSED gint64 start_time = GDK_PROFILER_CURRENT_TIME;
|
|
|
|
cairo_surface_t *surface;
|
|
|
|
guchar *pixel_data;
|
|
|
|
guchar *free_data = NULL;
|
|
|
|
guint gl_format;
|
|
|
|
guint gl_type;
|
|
|
|
guint texture_id;
|
|
|
|
gsize stride;
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
g_assert (GSK_IS_GL_GLYPH_LIBRARY (self));
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
g_assert (key != NULL);
|
|
|
|
g_assert (value != NULL);
|
|
|
|
|
|
|
|
stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, width);
|
|
|
|
|
|
|
|
gdk_gl_context_push_debug_group_printf (gdk_gl_context_get_current (),
|
|
|
|
"Uploading glyph %d",
|
|
|
|
key->glyph);
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
surface = gsk_gl_glyph_library_create_surface (self, stride, width, height, uwidth, uheight);
|
2021-11-20 16:13:52 +00:00
|
|
|
render_glyph (surface, key, value);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
texture_id = GSK_GL_TEXTURE_ATLAS_ENTRY_TEXTURE (value);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
g_assert (texture_id > 0);
|
|
|
|
|
|
|
|
glPixelStorei (GL_UNPACK_ROW_LENGTH, stride / 4);
|
|
|
|
glBindTexture (GL_TEXTURE_2D, texture_id);
|
|
|
|
|
|
|
|
if G_UNLIKELY (gdk_gl_context_get_use_es (gdk_gl_context_get_current ()))
|
|
|
|
{
|
|
|
|
pixel_data = free_data = g_malloc (width * height * 4);
|
|
|
|
gdk_memory_convert (pixel_data,
|
|
|
|
width * 4,
|
2021-09-22 00:01:41 +00:00
|
|
|
GDK_MEMORY_R8G8B8A8_PREMULTIPLIED,
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
cairo_image_surface_get_data (surface),
|
|
|
|
width * 4,
|
|
|
|
GDK_MEMORY_DEFAULT,
|
|
|
|
width, height);
|
|
|
|
gl_format = GL_RGBA;
|
|
|
|
gl_type = GL_UNSIGNED_BYTE;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
pixel_data = cairo_image_surface_get_data (surface);
|
|
|
|
gl_format = GL_BGRA;
|
|
|
|
gl_type = GL_UNSIGNED_INT_8_8_8_8_REV;
|
|
|
|
}
|
|
|
|
|
|
|
|
glTexSubImage2D (GL_TEXTURE_2D, 0, x, y, width, height,
|
|
|
|
gl_format, gl_type, pixel_data);
|
|
|
|
glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);
|
|
|
|
|
|
|
|
cairo_surface_destroy (surface);
|
|
|
|
g_free (free_data);
|
|
|
|
|
|
|
|
gdk_gl_context_pop_debug_group (gdk_gl_context_get_current ());
|
|
|
|
|
2021-07-24 13:50:43 +00:00
|
|
|
tl->driver->command_queue->n_uploads++;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
if (gdk_profiler_is_running ())
|
|
|
|
{
|
|
|
|
char message[64];
|
|
|
|
g_snprintf (message, sizeof message, "Size %dx%d", width, height);
|
|
|
|
gdk_profiler_add_mark (start_time, GDK_PROFILER_CURRENT_TIME-start_time, "Upload Glyph", message);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
gboolean
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_add (GskGLGlyphLibrary *self,
|
|
|
|
GskGLGlyphKey *key,
|
|
|
|
const GskGLGlyphValue **out_value)
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
{
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLTextureLibrary *tl = (GskGLTextureLibrary *)self;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
PangoRectangle ink_rect;
|
2021-10-07 03:15:25 +00:00
|
|
|
GskGLGlyphValue *value;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
int width;
|
|
|
|
int height;
|
|
|
|
guint packed_x;
|
|
|
|
guint packed_y;
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
g_assert (GSK_IS_GL_GLYPH_LIBRARY (self));
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
g_assert (key != NULL);
|
|
|
|
g_assert (out_value != NULL);
|
|
|
|
|
|
|
|
pango_font_get_glyph_extents (key->font, key->glyph, &ink_rect, NULL);
|
|
|
|
pango_extents_to_pixels (&ink_rect, NULL);
|
|
|
|
|
2021-09-17 23:07:55 +00:00
|
|
|
ink_rect.x -= 1;
|
|
|
|
ink_rect.width += 2;
|
|
|
|
ink_rect.y -= 1;
|
|
|
|
ink_rect.height += 2;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
2021-05-15 13:00:50 +00:00
|
|
|
width = (int) ceil (ink_rect.width * key->scale / 1024.0);
|
|
|
|
height = (int) ceil (ink_rect.height * key->scale / 1024.0);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
value = gsk_gl_texture_library_pack (tl,
|
|
|
|
key,
|
|
|
|
sizeof *value,
|
|
|
|
width,
|
|
|
|
height,
|
|
|
|
1,
|
|
|
|
&packed_x, &packed_y);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
memcpy (&value->ink_rect, &ink_rect, sizeof ink_rect);
|
|
|
|
|
|
|
|
if (key->scale > 0 && width > 0 && height > 0)
|
2021-10-07 03:15:25 +00:00
|
|
|
gsk_gl_glyph_library_upload_glyph (self,
|
|
|
|
key,
|
|
|
|
value,
|
|
|
|
packed_x + 1,
|
|
|
|
packed_y + 1,
|
|
|
|
width,
|
|
|
|
height,
|
|
|
|
ink_rect.width,
|
|
|
|
ink_rect.height);
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
|
|
|
|
*out_value = value;
|
|
|
|
|
2021-10-07 03:15:25 +00:00
|
|
|
return GSK_GL_TEXTURE_ATLAS_ENTRY_TEXTURE (value) != 0;
|
gsk: add OpenGL based GskNglRenderer
The primary goal here was to cleanup the current GL renderer to make
maintenance easier going forward. Furthermore, it tracks state to allow
us to implement more advanced renderer features going forward.
Reordering
This renderer will reorder batches by render target to reduce the number
of times render targets are changed.
In the future, we could also reorder by program within the render target
if we can determine that vertices do not overlap.
Uniform Snapshots
To allow for reordering of batches all uniforms need to be tracked for
the programs. This allows us to create the full uniform state when the
batch has been moved into a new position.
Some care was taken as it can be performance sensitive.
Attachment Snapshots
Similar to uniform snapshots, we need to know all of the texture
attachments so that we can rebind them when necessary.
Render Jobs
To help isolate the process of creating GL commands from the renderer
abstraction a render job abstraction was added. This could be extended
in the future if we decided to do tiling.
Command Queue
Render jobs create batches using the command queue. The command queue
will snapshot uniform and attachment state so that it can reorder
batches right before executing them.
Currently, the only reordering done is to ensure that we only visit
each render target once. We could extend this by tracking vertices,
attachments, and others.
This code currently uses an inline array helper to reduce overhead
from GArray which was showing up on profiles. It could be changed to
use GdkArray without too much work, but had roughly double the
instructions. Cycle counts have not yet been determined.
GLSL Programs
This was simplified to use XMACROS so that we can just extend one file
(gskglprograms.defs) instead of multiple places. The programs are added
as fields in the driver for easy access.
Driver
The driver manages textures, render targets, access to atlases,
programs, and more. There is one driver per display, by using the
shared GL context.
Some work could be done here to batch uploads so that we make fewer
calls to upload when sending icon theme data to the GPU. We'd need
to keep a copy of the atlas data for such purposes.
2020-12-19 01:36:59 +00:00
|
|
|
}
|