Merge branch 'shadertoy-demo' into 'master'

gtk-demo: Add shadertoy demo

See merge request GNOME/gtk!2540
This commit is contained in:
Matthias Clasen 2020-09-08 23:47:54 +00:00
commit 3921476504
10 changed files with 1819 additions and 0 deletions

View File

@ -0,0 +1,345 @@
// Originally from: https://www.shadertoy.com/view/wsjBD3
// License CC0: A battered alien planet
// Been experimenting with space inspired shaders
#define PI 3.141592654
#define TAU (2.0*PI)
#define TOLERANCE 0.00001
#define MAX_ITER 65
#define MIN_DISTANCE 0.01
#define MAX_DISTANCE 9.0
const vec3 skyCol1 = vec3(0.35, 0.45, 0.6);
const vec3 skyCol2 = vec3(0.4, 0.7, 1.0);
const vec3 skyCol3 = pow(skyCol1, vec3(0.25));
const vec3 sunCol1 = vec3(1.0,0.6,0.4);
const vec3 sunCol2 = vec3(1.0,0.9,0.7);
const vec3 smallSunCol1 = vec3(1.0,0.5,0.25)*0.5;
const vec3 smallSunCol2 = vec3(1.0,0.5,0.25)*0.5;
const vec3 mountainColor = 1.0*sqrt(vec3(0.95, 0.65, 0.45));
const float cellWidth = 1.0;
const vec4 planet = vec4(80.0, -20.0, 100.0, 50.0)*1000.0;
void rot(inout vec2 p, float a) {
float c = cos(a);
float s = sin(a);
p = vec2(p.x*c + p.y*s, -p.x*s + p.y*c);
}
vec2 mod2(inout vec2 p, vec2 size) {
vec2 c = floor((p + size*0.5)/size);
p = mod(p + size*0.5,size) - size*0.5;
return c;
}
float circle(vec2 p, float r) {
return length(p) - r;
}
float egg(vec2 p, float ra, float rb) {
const float k = sqrt(3.0);
p.x = abs(p.x);
float r = ra - rb;
return ((p.y<0.0) ? length(vec2(p.x, p.y )) - r :
(k*(p.x+r)<p.y) ? length(vec2(p.x, p.y-k*r)) :
length(vec2(p.x+r,p.y )) - 2.0*r) - rb;
}
vec2 hash(vec2 p) {
p = vec2(dot (p, vec2 (127.1, 311.7)), dot (p, vec2 (269.5, 183.3)));
return -1. + 2.*fract (sin (p)*43758.5453123);
}
vec2 raySphere(vec3 ro, vec3 rd, vec4 sphere) {
vec3 center = sphere.xyz;
float radius = sphere.w;
vec3 m = ro - center.xyz;
float b = dot(m, rd);
float c = dot(m, m) - radius*radius;
if(c > 0.0 && b > 0.0) return vec2(-1.0, -1.0);
float discr = b * b - c;
if(discr < 0.0) return vec2(-1.0);
float normalMultiplier = 1.0;
float s = sqrt(discr);
float t0 = -b - s;
float t1 = -b + s;;
return vec2(t0, t1);
}
float noise1(vec2 p) {
vec2 n = mod2(p, vec2(cellWidth));
vec2 hh = hash(sqrt(2.0)*(n+1000.0));
hh.x *= hh.y;
float r = 0.225*cellWidth;
float d = circle(p, 2.0*r);
float h = hh.x*smoothstep(0.0, r, -d);
return h*0.25;
}
float noise2(vec2 p) {
vec2 n = mod2(p, vec2(cellWidth));
vec2 hh = hash(sqrt(2.0)*(n+1000.0));
hh.x *= hh.y;
rot(p, TAU*hh.y);
float r = 0.45*cellWidth;
// float d = circle(p, 1.0*r);
float d = egg(p, 0.75*r, 0.5*r*abs(hh.y));
float h = (hh.x)*smoothstep(0.0, r, -2.0*d);
return h*0.275;
}
float height(vec2 p, float dd, int mx) {
const float aa = 0.45;
const float ff = 2.03;
const float tt = 1.2;
const float oo = 3.93;
const float near = 0.25;
const float far = 0.65;
float a = 1.0;
float o = 0.2;
float s = 0.0;
float d = 0.0;
int i = 0;
for (; i < 4;++i) {
float nn = a*noise2(p);
s += nn;
d += abs(a);
p += o;
a *= aa;
p *= ff;
o *= oo;
rot(p, tt);
}
float lod = s/d;
float rdd = dd/MAX_DISTANCE;
mx = int(mix(float(4), float(mx), step(rdd, far)));
for (; i < mx; ++i) {
float nn = a*noise1(p);
s += nn;
d += abs(a);
p += o;
a *= aa;
p *= ff;
o *= oo;
rot(p, tt);
}
float hid = (s/d);
return mix(hid, lod, smoothstep(near, far, rdd));
}
float loheight(vec2 p, float d) {
return height(p, d, 0);
}
float height(vec2 p, float d) {
return height(p, d, 6);
}
float hiheight(vec2 p, float d) {
return height(p, d, 8);
}
vec3 normal(vec2 p, float d) {
vec2 eps = vec2(0.00125, 0.0);
vec3 n;
n.x = (hiheight(p - eps.xy, d) - hiheight(p + eps.xy, d));
n.y = 2.0*eps.x;
n.z = (hiheight(p - eps.yx, d) - hiheight(p + eps.yx, d));
return normalize(n);
}
const float stepLength[] = float[](0.9, 0.25);
float march(vec3 ro, vec3 rd, out int max_iter) {
float dt = 0.1;
float d = MIN_DISTANCE;
int currentStep = 0;
float lastd = d;
for (int i = 0; i < MAX_ITER; ++i)
{
vec3 p = ro + d*rd;
float h = height(p.xz, d);
if (d > MAX_DISTANCE) {
max_iter = i;
return MAX_DISTANCE;
}
float hd = p.y - h;
if (hd < TOLERANCE) {
++currentStep;
if (currentStep >= stepLength.length()) {
max_iter = i;
return d;
}
d = lastd;
continue;
}
float sl = stepLength[currentStep];
dt = max(hd, TOLERANCE)*sl + 0.0025*d;
lastd = d;
d += dt;
}
max_iter = MAX_ITER;
return MAX_DISTANCE;
}
vec3 sunDirection() {
return normalize(vec3(-0.5, 0.085, 1.0));
}
vec3 smallSunDirection() {
return normalize(vec3(-0.2, -0.05, 1.0));
}
float psin(float f) {
return 0.5 + 0.5*sin(f);
}
vec3 skyColor(vec3 ro, vec3 rd) {
vec3 sunDir = sunDirection();
vec3 smallSunDir = smallSunDirection();
float sunDot = max(dot(rd, sunDir), 0.0);
float smallSunDot = max(dot(rd, smallSunDir), 0.0);
float angle = atan(rd.y, length(rd.xz))*2.0/PI;
vec3 skyCol = mix(mix(skyCol1, skyCol2, max(0.0, angle)), skyCol3, clamp(-angle*2.0, 0.0, 1.0));
vec3 sunCol = 0.5*sunCol1*pow(sunDot, 20.0) + 8.0*sunCol2*pow(sunDot, 2000.0);
vec3 smallSunCol = 0.5*smallSunCol1*pow(smallSunDot, 200.0) + 8.0*smallSunCol2*pow(smallSunDot, 20000.0);
vec3 dust = pow(sunCol2*mountainColor, vec3(1.75))*smoothstep(0.05, -0.1, rd.y)*0.5;
vec2 si = raySphere(ro, rd, planet);
vec3 planetSurface = ro + si.x*rd;
vec3 planetNormal = normalize(planetSurface - planet.xyz);
float planetDiff = max(dot(planetNormal, sunDir), 0.0);
float planetBorder = max(dot(planetNormal, -rd), 0.0);
float planetLat = (planetSurface.x+planetSurface.y)*0.0005;
vec3 planetCol = mix(1.3*vec3(0.9, 0.8, 0.7), 0.3*vec3(0.9, 0.8, 0.7), pow(psin(planetLat+1.0)*psin(sqrt(2.0)*planetLat+2.0)*psin(sqrt(3.5)*planetLat+3.0), 0.5));
vec3 final = vec3(0.0);
final += step(0.0, si.x)*pow(planetDiff, 0.75)*planetCol*smoothstep(-0.075, 0.0, rd.y)*smoothstep(0.0, 0.1, planetBorder);
final += skyCol + sunCol + smallSunCol + dust;
return final;
}
vec3 getColor(vec3 ro, vec3 rd) {
int max_iter = 0;
vec3 skyCol = skyColor(ro, rd);
vec3 col = vec3(0);
float d = march(ro, rd, max_iter);
if (d < MAX_DISTANCE) {
vec3 sunDir = sunDirection();
vec3 osunDir = sunDir*vec3(-1.0, .0, -1.0);
vec3 p = ro + d*rd;
vec3 normal = normal(p.xz, d);
float amb = 0.2;
float dif1 = max(0.0, dot(sunDir, normal));
vec3 shd1 = sunCol2*mix(amb, 1.0, pow(dif1, 0.75));
float dif2 = max(0.0, dot(osunDir, normal));
vec3 shd2 = sunCol1*mix(amb, 1.0, pow(dif2, 0.75));
vec3 ref = reflect(rd, normal);
vec3 rcol = skyColor(p, ref);
col = mountainColor*amb*skyCol3;
col += mix(shd1, shd2, -0.5)*mountainColor;
float fre = max(dot(normal, -rd), 0.0);
fre = pow(1.0 - fre, 5.0);
col += rcol*fre*0.5;
col += (1.0*p.y);
col = tanh(col);
col = mix(col, skyCol, smoothstep(0.5*MAX_DISTANCE, 1.0*MAX_DISTANCE, d));
} else {
col = skyCol;
}
// col += vec3(1.1, 0.0, 0.0)* smoothstep(0.25, 1.0,(float(max_iter)/float(MAX_ITER)));
return col;
}
vec3 getSample1(vec2 p, float time) {
float off = 0.5*iTime;
vec3 ro = vec3(0.5, 1.0-0.25, -2.0 + off);
vec3 la = ro + vec3(0.0, -0.30, 2.0);
vec3 ww = normalize(la - ro);
vec3 uu = normalize(cross(vec3(0.0,1.0,0.0), ww));
vec3 vv = normalize(cross(ww, uu));
vec3 rd = normalize(p.x*uu + p.y*vv + 2.0*ww);
vec3 col = getColor(ro, rd) ;
return col;
}
vec3 getSample2(vec2 p, float time) {
p.y-=time*0.25;
float h = height(p, 0.0);
vec3 n = normal(p, 0.0);
vec3 lp = vec3(10.0, -1.2, 0.0);
vec3 ld = normalize(vec3(p.x, h, p.y)- lp);
float d = max(dot(ld, n), 0.0);
vec3 col = vec3(0.0);
col = vec3(1.0)*(h+0.1);
col += vec3(1.5)*pow(d, 0.75);
return col;
}
void mainImage(out vec4 fragColor, vec2 fragCoord) {
vec2 q = fragCoord.xy/iResolution.xy;
vec2 p = -1.0 + 2.0*q;
p.x *= iResolution.x/iResolution.y;
vec3 col = getSample1(p, iTime);
fragColor = vec4(col, 1.0);
}

224
demos/gtk-demo/cogs.glsl Normal file
View File

@ -0,0 +1,224 @@
// Originally from: https://www.shadertoy.com/view/3ljyDD
// License CC0: Hexagonal tiling + cog wheels
// Nothing fancy, just hexagonal tiling + cog wheels
#define PI 3.141592654
#define TAU (2.0*PI)
#define MROT(a) mat2(cos(a), sin(a), -sin(a), cos(a))
float hash(in vec2 co) {
return fract(sin(dot(co.xy ,vec2(12.9898,58.233))) * 13758.5453);
}
float pcos(float a) {
return 0.5 + 0.5*cos(a);
}
void rot(inout vec2 p, float a) {
float c = cos(a);
float s = sin(a);
p = vec2(c*p.x + s*p.y, -s*p.x + c*p.y);
}
float modPolar(inout vec2 p, float repetitions) {
float angle = 2.0*PI/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = vec2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2.0)) c = abs(c);
return c;
}
float pmin(float a, float b, float k) {
float h = clamp( 0.5+0.5*(b-a)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
const vec2 sz = vec2(1.0, sqrt(3.0));
const vec2 hsz = 0.5*sz;
const float smallCount = 16.0;
vec2 hextile(inout vec2 p) {
// See Art of Code: Hexagonal Tiling Explained!
// https://www.youtube.com/watch?v=VmrIDyYiJBA
vec2 p1 = mod(p, sz)-hsz;
vec2 p2 = mod(p - hsz*1.0, sz)-hsz;
vec2 p3 = mix(p2, p1, vec2(length(p1) < length(p2)));
vec2 n = p3 - p;
p = p3;
return n;
}
float circle(vec2 p, float r) {
return length(p) - r;
}
float box(vec2 p, vec2 b) {
vec2 d = abs(p)-b;
return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
}
float unevenCapsule(vec2 p, float r1, float r2, float h) {
p.x = abs(p.x);
float b = (r1-r2)/h;
float a = sqrt(1.0-b*b);
float k = dot(p,vec2(-b,a));
if( k < 0.0 ) return length(p) - r1;
if( k > a*h ) return length(p-vec2(0.0,h)) - r2;
return dot(p, vec2(a,b) ) - r1;
}
float cogwheel(vec2 p, float innerRadius, float outerRadius, float cogs, float holes) {
float cogWidth = 0.25*innerRadius*TAU/cogs;
float d0 = circle(p, innerRadius);
vec2 icp = p;
modPolar(icp, holes);
icp -= vec2(innerRadius*0.55, 0.0);
float d1 = circle(icp, innerRadius*0.25);
vec2 cp = p;
modPolar(cp, cogs);
cp -= vec2(innerRadius, 0.0);
float d2 = unevenCapsule(cp.yx, cogWidth, cogWidth*0.75, (outerRadius-innerRadius));
float d3 = circle(p, innerRadius*0.20);
float d = 1E6;
d = min(d, d0);
d = pmin(d, d2, 0.5*cogWidth);
d = min(d, d2);
d = max(d, -d1);
d = max(d, -d3);
return d;
}
float ccell1(vec2 p, float r) {
float d = 1E6;
const float bigCount = 60.0;
vec2 cp0 = p;
rot(cp0, -iTime*TAU/bigCount);
float d0 = cogwheel(cp0, 0.36, 0.38, bigCount, 5.0);
vec2 cp1 = p;
float nm = modPolar(cp1, 6.0);
cp1 -= vec2(0.5, 0.0);
rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount);
float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0);
d = min(d, d0);
d = min(d, d1);
return d;
}
float ccell2(vec2 p, float r) {
float d = 1E6;
vec2 cp0 = p;
float nm = modPolar(cp0, 6.0);
vec2 cp1 = cp0;
const float off = 0.275;
const float count = smallCount + 2.0;
cp0 -= vec2(off, 0.0);
rot(cp0, 0.+TAU*nm/2.0 - iTime*TAU/count);
float d0 = cogwheel(cp0, 0.09, 0.105, count, 5.0);
cp1 -= vec2(0.5, 0.0);
rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount);
float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0);
float l = length(p);
float d2 = l - (off+0.055);
float d3 = d2 + 0.020;;
vec2 tp0 = p;
modPolar(tp0, 60.0);
tp0.x -= off;
float d4 = box(tp0, vec2(0.0125, 0.005));
float ctime = -(iTime*0.05 + r)*TAU;
vec2 tp1 = p;
rot(tp1, ctime*12.0);
tp1.x -= 0.13;
float d5 = box(tp1, vec2(0.125, 0.005));
vec2 tp2 = p;
rot(tp2, ctime);
tp2.x -= 0.13*0.5;
float d6 = box(tp2, vec2(0.125*0.5, 0.0075));
float d7 = l - 0.025;
float d8 = l - 0.0125;
d = min(d, d0);
d = min(d, d1);
d = min(d, d2);
d = max(d, -d3);
d = min(d, d4);
d = min(d, d5);
d = min(d, d6);
d = min(d, d7);
d = max(d, -d8);
return d;
}
float df(vec2 p, float scale, inout vec2 nn) {
p /= scale;
nn = hextile(p);
nn = round(nn);
float r = hash(nn);
float d;;
if (r < 0.5) {
d = ccell1(p, r);
} else {
d = ccell2(p, r);
}
return d*scale;
}
vec3 postProcess(vec3 col, vec2 q) {
//col = saturate(col);
col=pow(clamp(col,0.0,1.0),vec3(0.75));
col=col*0.6+0.4*col*col*(3.0-2.0*col); // contrast
col=mix(col, vec3(dot(col, vec3(0.33))), -0.4); // satuation
col*=0.5+0.5*pow(19.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.7); // vigneting
return col;
}
void mainImage(out vec4 fragColor, vec2 fragCoord) {
vec2 q = fragCoord/iResolution.xy;
vec2 p = -1.0 + 2.0*q;
p.x *= iResolution.x/iResolution.y;
float tm = iTime*0.1;
p += vec2(cos(tm), sin(tm*sqrt(0.5)));
float z = mix(0.5, 1.0, pcos(tm*sqrt(0.3)));
float aa = 4.0 / iResolution.y;
vec2 nn = vec2(0.0);
float d = df(p, z, nn);
vec3 col = vec3(160.0)/vec3(255.0);
vec3 baseCol = vec3(0.3);
vec4 logoCol = vec4(baseCol, 1.0)*smoothstep(-aa, 0.0, -d);
col = mix(col, logoCol.xyz, pow(logoCol.w, 8.0));
col += 0.4*pow(abs(sin(20.0*d)), 0.6);
col = postProcess(col, q);
fragColor = vec4(col, 1.0);
}

View File

@ -121,6 +121,15 @@
<file>gtkgears.c</file>
<file>gtkgears.h</file>
</gresource>
<gresource prefix="/shadertoy">
<file>gtkshadertoy.c</file>
<file>gtkshadertoy.h</file>
<file>alienplanet.glsl</file>
<file>mandelbrot.glsl</file>
<file>neon.glsl</file>
<file>cogs.glsl</file>
<file>glowingstars.glsl</file>
</gresource>
<gresource prefix="/iconscroll">
<file>iconscroll.ui</file>
</gresource>
@ -260,6 +269,7 @@
<file>scale.c</file>
<file>search_entry.c</file>
<file>search_entry2.c</file>
<file>shadertoy.c</file>
<file>shortcuts.c</file>
<file>shortcut_triggers.c</file>
<file>sizegroup.c</file>

View File

@ -0,0 +1,174 @@
// Originally from: https://www.shadertoy.com/view/ttBcRV
// License CC0: Flying through glowing stars
// The result of playing around trying to improve an old shader
#define PI 3.141592654
#define TAU (2.0*PI)
#define TIME iTime
#define RESOLUTION iResolution
#define LESS(a,b,c) mix(a,b,step(0.,c))
#define SABS(x,k) LESS((.5/(k))*(x)*(x)+(k)*.5,abs(x),abs(x)-(k))
#define MROT(a) mat2(cos(a), sin(a), -sin(a), cos(a))
vec3 hsv2rgb(vec3 c) {
const vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
float hash(in vec3 co) {
return fract(sin(dot(co, vec3(12.9898,58.233, 12.9898+58.233))) * 13758.5453);
}
float starn(vec2 p, float r, int n, float m) {
// From IQ: https://www.shadertoy.com/view/3tSGDy
// https://iquilezles.org/www/articles/distfunctions2d/distfunctions2d.htm
// Minor tweak to use SABS over abs to smooth inner corners
// SABS: https://www.shadertoy.com/view/Ws2SDK
// next 4 lines can be precomputed for a given shape
float an = 3.141593/float(n);
float en = 3.141593/m; // m is between 2 and n
vec2 acs = vec2(cos(an),sin(an));
vec2 ecs = vec2(cos(en),sin(en)); // ecs=vec2(0,1) for regular polygon,
float bn = mod(atan(p.x,p.y),2.0*an) - an;
p = length(p)*vec2(cos(bn),SABS(sin(bn), 0.15));
p -= r*acs;
p += ecs*clamp( -dot(p,ecs), 0.0, r*acs.y/ecs.y);
return length(p)*sign(p.x);
}
vec4 alphaBlend(vec4 back, vec4 front) {
vec3 xyz = mix(back.xyz*back.w, front.xyz, front.w);
float w = mix(back.w, 1.0, front.w);
return vec4(xyz, w);
}
void rot(inout vec2 p, float a) {
float c = cos(a);
float s = sin(a);
p = vec2(c*p.x + s*p.y, -s*p.x + c*p.y);
}
vec3 offset(float z) {
float a = z;
vec2 p = -0.075*(vec2(cos(a), sin(a*sqrt(2.0))) + vec2(cos(a*sqrt(0.75)), sin(a*sqrt(0.5))));
return vec3(p, z);
}
vec3 doffset(float z) {
float eps = 0.05;
return 0.5*(offset(z + eps) - offset(z - eps))/eps;
}
vec3 ddoffset(float z) {
float eps = 0.05;
return 0.5*(doffset(z + eps) - doffset(z - eps))/eps;
}
vec4 planeCol(vec3 ro, vec3 rd, float n, vec3 pp) {
const float s = 0.5;
vec2 p = pp.xy;
float z = pp.z;
vec2 dpy = dFdy(p);
float aa = length(dpy);
p -= (1.0+5.0*(pp.z - ro.z))*offset(z).xy;
p *= s;
float r = hash(vec3(floor(p+0.5), n));
p = fract(p+0.5)-0.5;
rot(p, ((TAU*r+n)*0.25));
float d = starn(p, 0.20, 3 + 2*int(3.0*r), 3.0);
d -= 0.06;
d/=s;
float ds = -d+0.03;
vec3 cols = hsv2rgb(vec3(337.0/360.0+0.1*sin(n*0.3), 0.8, 0.54+0.2*sin(n*0.3)));
float ts = 1.0 - smoothstep(-aa, 0.0, ds);
vec4 cs = vec4(cols, ts*0.93);
float db = abs(d) - (0.06);
db = abs(db) - 0.03;
db = abs(db) - 0.00;
db = max(db, -d+0.03);
vec3 colb = vec3(1.0, 0.7, 0.5);
float tb = exp(-(db)*30.0*(1.0 - 10.0*aa));
vec4 cb = vec4(1.5*colb, tb);
vec4 ct = alphaBlend(cs, cb);
return ct;
}
vec3 color(vec3 ww, vec3 uu, vec3 vv, vec3 ro, vec2 p) {
vec3 rd = normalize(p.x*uu + p.y*vv + (2.0-tanh(length(p)))*ww);
vec4 col = vec4(vec3(0.0), 1.0);
const float planeDist = 1.0;
const int furthest = 6;
const int fadeFrom = furthest-3;
float nz = floor(ro.z / planeDist);
for (int i = furthest; i >= 1; --i) {
float pz = planeDist*nz + planeDist*float(i);
float pd = (pz - ro.z)/rd.z;
if (pd > 0.0) {
vec3 pp = ro + rd*pd;
vec4 pcol = planeCol(ro, rd, nz+float(i), pp);
float fadeIn = 1.0-smoothstep(planeDist*float(fadeFrom), planeDist*float(furthest), pp.z-ro.z);
pcol.xyz *= sqrt(fadeIn);
col = alphaBlend(col, pcol);
}
}
return col.xyz*col.w;
}
vec3 postProcess(vec3 col, vec2 q) {
col=pow(clamp(col,0.0,1.0),vec3(0.75));
col=col*0.6+0.4*col*col*(3.0-2.0*col);
col=mix(col, vec3(dot(col, vec3(0.33))), -0.4);
col*=0.5+0.5*pow(19.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.7);
return col;
}
vec3 effect(vec2 p, vec2 q) {
float tm = TIME*0.65;
vec3 ro = offset(tm);
vec3 dro = doffset(tm);
vec3 ddro = ddoffset(tm);
vec3 ww = normalize(dro);
vec3 uu = normalize(cross(vec3(0.0,1.0,0.0)+1.5*ddro, ww));
vec3 vv = normalize(cross(ww, uu));
vec3 col = color(ww, uu, vv, ro, p);
col = postProcess(col, q);
const float fadeIn = 2.0;
return col*smoothstep(0.0, fadeIn, TIME);
}
void mainImage(out vec4 fragColor, vec2 fragCoord) {
vec2 q = fragCoord/RESOLUTION.xy;
vec2 p = -1. + 2. * q;
p.x *= RESOLUTION.x/RESOLUTION.y;
vec3 col = effect(p, q);
fragColor = vec4(col, 1.0);
}

View File

@ -0,0 +1,524 @@
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <epoxy/gl.h>
#include "gtkshadertoy.h"
const char *default_image_shader =
"void mainImage(out vec4 fragColor, in vec2 fragCoord) {\n"
" // Normalized pixel coordinates (from 0 to 1)\n"
" vec2 uv = fragCoord/iResolution.xy;\n"
"\n"
" // Time varying pixel color\n"
" vec3 col = 0.5 + 0.5*cos(iTime+uv.xyx+vec3(0,2,4));\n"
"\n"
" if (distance(iMouse.xy, fragCoord.xy) <= 10.0) {\n"
" col = vec3(0.0);\n"
" }\n"
"\n"
" // Output to screen\n"
" fragColor = vec4(col,1.0);\n"
"}\n";
const char *shadertoy_vertex_shader =
"#version 150 core\n"
"\n"
"uniform vec3 iResolution;\n"
"\n"
"in vec2 position;\n"
"out vec2 fragCoord;\n"
"\n"
"void main() {\n"
" gl_Position = vec4(position, 0.0, 1.0);\n"
"\n"
" // Convert from OpenGL coordinate system (with origin in center\n"
" // of screen) to Shadertoy/texture coordinate system (with origin\n"
" // in lower left corner)\n"
" fragCoord = (gl_Position.xy + vec2(1.0)) / vec2(2.0) * iResolution.xy;\n"
"}\n";
const char *fragment_prefix =
"#version 150 core\n"
"\n"
"uniform vec3 iResolution; // viewport resolution (in pixels)\n"
"uniform float iTime; // shader playback time (in seconds)\n"
"uniform float iTimeDelta; // render time (in seconds)\n"
"uniform int iFrame; // shader playback frame\n"
"uniform float iChannelTime[4]; // channel playback time (in seconds)\n"
"uniform vec3 iChannelResolution[4]; // channel resolution (in pixels)\n"
"uniform vec4 iMouse; // mouse pixel coords. xy: current (if MLB down), zw: click\n"
"uniform sampler2D iChannel0;\n"
"uniform sampler2D iChannel1;\n"
"uniform sampler2D iChannel2;\n"
"uniform sampler2D iChannel3;\n"
"uniform vec4 iDate; // (year, month, day, time in seconds)\n"
"uniform float iSampleRate; // sound sample rate (i.e., 44100)\n"
"\n"
"in vec2 fragCoord;\n"
"out vec4 fragColor;\n";
// Fragment shader suffix
const char *fragment_suffix =
" void main() {\n"
" mainImage(fragColor, fragCoord);\n"
" }\n";
typedef struct {
char *image_shader;
gboolean image_shader_dirty;
gboolean error_set;
/* Vertex buffers */
GLuint vao;
GLuint buffer;
/* Active program */
GLuint program;
/* Location of uniforms for program */
GLuint resolution_location;
GLuint time_location;
GLuint timedelta_location;
GLuint frame_location;
GLuint mouse_location;
/* Current uniform values */
float resolution[3];
float time;
float timedelta;
float mouse[4];
int frame;
/* Animation data */
gint64 first_frame_time;
gint64 first_frame;
guint tick;
} GtkShadertoyPrivate;
G_DEFINE_TYPE_WITH_PRIVATE (GtkShadertoy, gtk_shadertoy, GTK_TYPE_GL_AREA)
static gboolean gtk_shadertoy_render (GtkGLArea *area,
GdkGLContext *context);
static void gtk_shadertoy_reshape (GtkGLArea *area,
int width,
int height);
static void gtk_shadertoy_realize (GtkWidget *widget);
static void gtk_shadertoy_unrealize (GtkWidget *widget);
static gboolean gtk_shadertoy_tick (GtkWidget *widget,
GdkFrameClock *frame_clock,
gpointer user_data);
GtkWidget *
gtk_shadertoy_new (void)
{
return g_object_new (gtk_shadertoy_get_type (), NULL);
}
static void
drag_begin_cb (GtkGestureDrag *drag,
double x,
double y,
gpointer user_data)
{
GtkShadertoy *shadertoy = GTK_SHADERTOY (user_data);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
int height = gtk_widget_get_height (GTK_WIDGET (shadertoy));
int scale = gtk_widget_get_scale_factor (GTK_WIDGET (shadertoy));
priv->mouse[0] = x * scale;
priv->mouse[1] = (height - y) * scale;
priv->mouse[2] = priv->mouse[0];
priv->mouse[3] = priv->mouse[1];
}
static void
drag_update_cb (GtkGestureDrag *drag,
double dx,
double dy,
gpointer user_data)
{
GtkShadertoy *shadertoy = GTK_SHADERTOY (user_data);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
int width = gtk_widget_get_width (GTK_WIDGET (shadertoy));
int height = gtk_widget_get_height (GTK_WIDGET (shadertoy));
int scale = gtk_widget_get_scale_factor (GTK_WIDGET (shadertoy));
double x, y;
gtk_gesture_drag_get_start_point (drag, &x, &y);
x += dx;
y += dy;
if (x >= 0 && x < width &&
y >= 0 && y < height)
{
priv->mouse[0] = x * scale;
priv->mouse[1] = (height - y) * scale;
}
}
static void
drag_end_cb (GtkGestureDrag *drag,
gdouble dx,
gdouble dy,
gpointer user_data)
{
GtkShadertoy *shadertoy = GTK_SHADERTOY (user_data);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
priv->mouse[2] = -priv->mouse[2];
priv->mouse[3] = -priv->mouse[3];
}
static void
gtk_shadertoy_init (GtkShadertoy *shadertoy)
{
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
GtkGesture *drag;
priv->image_shader = g_strdup (default_image_shader);
priv->tick = gtk_widget_add_tick_callback (GTK_WIDGET (shadertoy), gtk_shadertoy_tick, shadertoy, NULL);
drag = gtk_gesture_drag_new ();
gtk_widget_add_controller (GTK_WIDGET (shadertoy), GTK_EVENT_CONTROLLER (drag));
g_signal_connect (drag, "drag-begin", (GCallback)drag_begin_cb, shadertoy);
g_signal_connect (drag, "drag-update", (GCallback)drag_update_cb, shadertoy);
g_signal_connect (drag, "drag-end", (GCallback)drag_end_cb, shadertoy);
}
static void
gtk_shadertoy_finalize (GObject *obj)
{
GtkShadertoy *shadertoy = GTK_SHADERTOY (obj);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
gtk_widget_remove_tick_callback (GTK_WIDGET (shadertoy), priv->tick);
g_free (priv->image_shader);
G_OBJECT_CLASS (gtk_shadertoy_parent_class)->finalize (obj);
}
static void
gtk_shadertoy_class_init (GtkShadertoyClass *klass)
{
GTK_GL_AREA_CLASS (klass)->render = gtk_shadertoy_render;
GTK_GL_AREA_CLASS (klass)->resize = gtk_shadertoy_reshape;
GTK_WIDGET_CLASS (klass)->realize = gtk_shadertoy_realize;
GTK_WIDGET_CLASS (klass)->unrealize = gtk_shadertoy_unrealize;
G_OBJECT_CLASS (klass)->finalize = gtk_shadertoy_finalize;
}
/* new window size or exposure */
static void
gtk_shadertoy_reshape (GtkGLArea *area, int width, int height)
{
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private ((GtkShadertoy *) area);
priv->resolution[0] = width;
priv->resolution[1] = height;
priv->resolution[2] = 1.0; /* screen aspect ratio */
/* Set the viewport */
glViewport (0, 0, (GLint) width, (GLint) height);
}
static GLuint
create_shader (int type,
const char *src,
GError **error)
{
GLuint shader;
int status;
shader = glCreateShader (type);
glShaderSource (shader, 1, &src, NULL);
glCompileShader (shader);
glGetShaderiv (shader, GL_COMPILE_STATUS, &status);
if (status == GL_FALSE)
{
int log_len;
char *buffer;
glGetShaderiv (shader, GL_INFO_LOG_LENGTH, &log_len);
buffer = g_malloc (log_len + 1);
glGetShaderInfoLog (shader, log_len, NULL, buffer);
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_COMPILATION_FAILED,
"Compile failure in %s shader:\n%s",
type == GL_VERTEX_SHADER ? "vertex" : "fragment",
buffer);
g_free (buffer);
glDeleteShader (shader);
return 0;
}
return shader;
}
static gboolean
init_shaders (GtkShadertoy *shadertoy,
const char *vertex_source,
const char *fragment_source,
GError **error)
{
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
GLuint vertex, fragment;
GLuint program = 0;
int status;
gboolean res = TRUE;
vertex = create_shader (GL_VERTEX_SHADER, vertex_source, error);
if (vertex == 0)
return FALSE;
fragment = create_shader (GL_FRAGMENT_SHADER, fragment_source, error);
if (fragment == 0)
{
glDeleteShader (vertex);
return FALSE;
}
program = glCreateProgram ();
glAttachShader (program, vertex);
glAttachShader (program, fragment);
glLinkProgram (program);
glGetProgramiv (program, GL_LINK_STATUS, &status);
if (status == GL_FALSE)
{
int log_len;
char *buffer;
glGetProgramiv (program, GL_INFO_LOG_LENGTH, &log_len);
buffer = g_malloc (log_len + 1);
glGetProgramInfoLog (program, log_len, NULL, buffer);
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_LINK_FAILED,
"Linking failure:\n%s", buffer);
res = FALSE;
g_free (buffer);
glDeleteProgram (program);
goto out;
}
if (priv->program != 0)
glDeleteProgram (priv->program);
priv->program = program;
priv->resolution_location = glGetUniformLocation (program, "iResolution");
priv->time_location = glGetUniformLocation (program, "iTime");
priv->timedelta_location = glGetUniformLocation (program, "iTimeDelta");
priv->frame_location = glGetUniformLocation (program, "iFrame");
priv->mouse_location = glGetUniformLocation (program, "iMouse");
glDetachShader (program, vertex);
glDetachShader (program, fragment);
out:
/* These are now owned by the program and can be deleted */
glDeleteShader (vertex);
glDeleteShader (fragment);
return res;
}
static void
gtk_shadertoy_realize_shader (GtkShadertoy *shadertoy)
{
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
char *fragment_shader;
GError *error = NULL;
fragment_shader = g_strconcat (fragment_prefix, priv->image_shader, fragment_suffix, NULL);
if (!init_shaders (shadertoy, shadertoy_vertex_shader, fragment_shader, &error))
{
priv->error_set = TRUE;
gtk_gl_area_set_error (GTK_GL_AREA (shadertoy), error);
g_error_free (error);
}
g_free (fragment_shader);
/* Start new shader at time zero */
priv->first_frame_time = 0;
priv->first_frame = 0;
priv->image_shader_dirty = FALSE;
}
static gboolean
gtk_shadertoy_render (GtkGLArea *area,
GdkGLContext *context)
{
GtkShadertoy *shadertoy = GTK_SHADERTOY (area);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
if (gtk_gl_area_get_error (area) != NULL)
return FALSE;
if (priv->image_shader_dirty)
gtk_shadertoy_realize_shader (shadertoy);
/* Clear the viewport */
glClearColor (0.0, 0.0, 0.0, 1.0);
glClear (GL_COLOR_BUFFER_BIT);
glUseProgram (priv->program);
/* Update uniforms */
if (priv->resolution_location != -1)
glUniform3fv (priv->resolution_location, 1, priv->resolution);
if (priv->time_location != -1)
glUniform1f (priv->time_location, priv->time);
if (priv->timedelta_location != -1)
glUniform1f (priv->timedelta_location, priv->timedelta);
if (priv->frame_location != -1)
glUniform1i (priv->frame_location, priv->frame);
if (priv->mouse_location != -1)
glUniform4fv (priv->mouse_location, 1, priv->mouse);
/* Use the vertices in our buffer */
glBindBuffer (GL_ARRAY_BUFFER, priv->buffer);
glEnableVertexAttribArray (0);
glVertexAttribPointer (0, 4, GL_FLOAT, GL_FALSE, 0, 0);
glDrawArrays (GL_TRIANGLES, 0, 6);
/* We finished using the buffers and program */
glDisableVertexAttribArray (0);
glBindBuffer (GL_ARRAY_BUFFER, 0);
glUseProgram (0);
/* Flush the contents of the pipeline */
glFlush ();
return TRUE;
}
const char *
gtk_shadertoy_get_image_shader (GtkShadertoy *shadertoy)
{
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
return priv->image_shader;
}
void
gtk_shadertoy_set_image_shader (GtkShadertoy *shadertoy,
const char *shader)
{
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
g_free (priv->image_shader);
priv->image_shader = g_strdup (shader);
/* Don't override error we didn't set it ourselves */
if (priv->error_set)
{
gtk_gl_area_set_error (GTK_GL_AREA (shadertoy), NULL);
priv->error_set = FALSE;
}
priv->image_shader_dirty = TRUE;
}
static void
gtk_shadertoy_realize (GtkWidget *widget)
{
GtkGLArea *glarea = GTK_GL_AREA (widget);
GtkShadertoy *shadertoy = GTK_SHADERTOY (widget);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
/* Draw two triangles across whole screen */
const GLfloat vertex_data[] = {
-1.0f, -1.0f, 0.f, 1.f,
-1.0f, 1.0f, 0.f, 1.f,
1.0f, 1.0f, 0.f, 1.f,
-1.0f, -1.0f, 0.f, 1.f,
1.0f, 1.0f, 0.f, 1.f,
1.0f, -1.0f, 0.f, 1.f,
};
GTK_WIDGET_CLASS (gtk_shadertoy_parent_class)->realize (widget);
gtk_gl_area_make_current (glarea);
if (gtk_gl_area_get_error (glarea) != NULL)
return;
glGenVertexArrays (1, &priv->vao);
glBindVertexArray (priv->vao);
glGenBuffers (1, &priv->buffer);
glBindBuffer (GL_ARRAY_BUFFER, priv->buffer);
glBufferData (GL_ARRAY_BUFFER, sizeof (vertex_data), vertex_data, GL_STATIC_DRAW);
glBindBuffer (GL_ARRAY_BUFFER, 0);
gtk_shadertoy_realize_shader (shadertoy);
}
static void
gtk_shadertoy_unrealize (GtkWidget *widget)
{
GtkGLArea *glarea = GTK_GL_AREA (widget);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private ((GtkShadertoy *) widget);
gtk_gl_area_make_current (glarea);
if (gtk_gl_area_get_error (glarea) == NULL)
{
if (priv->buffer != 0)
glDeleteBuffers (1, &priv->buffer);
if (priv->vao != 0)
glDeleteVertexArrays (1, &priv->vao);
if (priv->program != 0)
glDeleteProgram (priv->program);
}
GTK_WIDGET_CLASS (gtk_shadertoy_parent_class)->unrealize (widget);
}
static gboolean
gtk_shadertoy_tick (GtkWidget *widget,
GdkFrameClock *frame_clock,
gpointer user_data)
{
GtkShadertoy *shadertoy = GTK_SHADERTOY (widget);
GtkShadertoyPrivate *priv = gtk_shadertoy_get_instance_private (shadertoy);
gint64 frame_time;
gint64 frame;
float previous_time;
frame = gdk_frame_clock_get_frame_counter (frame_clock);
frame_time = gdk_frame_clock_get_frame_time (frame_clock);
if (priv->first_frame_time == 0)
{
priv->first_frame_time = frame_time;
priv->first_frame = frame;
previous_time = 0;
}
else
previous_time = priv->time;
priv->time = (frame_time - priv->first_frame_time) / 1000000.0f;
priv->frame = frame - priv->first_frame;
priv->timedelta = priv->time - previous_time;
gtk_widget_queue_draw (widget);
return G_SOURCE_CONTINUE;
}

View File

@ -0,0 +1,34 @@
#ifndef __GTK_SHADERTOY_H__
#define __GTK_SHADERTOY_H__
#include <gtk/gtk.h>
G_BEGIN_DECLS
#define GTK_TYPE_SHADERTOY (gtk_shadertoy_get_type ())
#define GTK_SHADERTOY(inst) (G_TYPE_CHECK_INSTANCE_CAST ((inst), \
GTK_TYPE_SHADERTOY, \
GtkShadertoy))
#define GTK_IS_SHADERTOY(inst) (G_TYPE_CHECK_INSTANCE_TYPE ((inst), \
GTK_TYPE_SHADERTOY))
typedef struct _GtkShadertoy GtkShadertoy;
typedef struct _GtkShadertoyClass GtkShadertoyClass;
struct _GtkShadertoy {
GtkGLArea parent;
};
struct _GtkShadertoyClass {
GtkGLAreaClass parent_class;
};
GType gtk_shadertoy_get_type (void) G_GNUC_CONST;
GtkWidget *gtk_shadertoy_new (void);
const char *gtk_shadertoy_get_image_shader (GtkShadertoy *shadertoy);
void gtk_shadertoy_set_image_shader (GtkShadertoy *shadertoy,
const char *shader);
G_END_DECLS
#endif /* __GTK_SHADERTOY_H__ */

View File

@ -0,0 +1,95 @@
// Originally from: https://www.shadertoy.com/view/wdBfDK
// License: CC0
#define MANDELBROT_ZOOM_START 0.0
#define MANDELBROT_ITER 240
void pR(inout vec2 p, in float a) {
p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
}
vec2 pMod2(inout vec2 p, in vec2 size) {
vec2 c = floor((p + size*0.5)/size);
p = mod(p + size*0.5,size) - size*0.5;
return c;
}
vec3 mandelbrot(float time, vec2 p, out float ii) {
vec3 col = vec3(0.0);
float ztime = (time - MANDELBROT_ZOOM_START)*step(MANDELBROT_ZOOM_START, time);
float zoo = 0.64 + 0.36*cos(.07*ztime);
float coa = cos(0.15*(1.0-zoo)*ztime);
float sia = sin(0.15*(1.0-zoo)*ztime);
zoo = pow(zoo,8.0);
vec2 xy = vec2( p.x*coa-p.y*sia, p.x*sia+p.y*coa);
vec2 c = vec2(-.745,.186) + xy*zoo;
const float B = 10.0;
float l = 0.0;
vec2 z = vec2(0.0);
vec2 zc = vec2(1.0);
pR(zc, ztime);
float d = 1e20;
int i = 0;
for(int j = 0; j < MANDELBROT_ITER; ++j) {
float re2 = z.x*z.x;
float im2 = z.y*z.y;
float reim= z.x*z.y;
if(re2 + im2 > (B*B)) break;
z = vec2(re2 - im2, 2.0*reim) + c;
vec2 zm = z;
vec2 n = pMod2(zm, vec2(4));
vec2 pp = zm - zc;
float dd = dot(pp, pp);
d = min(d, dd);
l += 1.0;
i = j;
}
ii = float(i)/float(MANDELBROT_ITER);
float sl = l - log2(log2(dot(z,z))) + 4.0;
vec3 dc = vec3(pow(max(1.0 - d, 0.0), 20.0));
vec3 gc = 0.5 + 0.5*cos(3.0 + sl*0.15 + vec3(0.1,0.5,0.9));
return gc + dc*smoothstep(28.8, 29.0, ztime);
}
void mainImage(out vec4 fragColor, in vec2 fragCoord) {
float s = 2.0/iResolution.y;
vec2 o1 = vec2(1.0/8.0, 3.0/8.0)*s;
vec2 o2 = vec2(-3.0/8.0, 1.0/8.0)*s;
vec2 p = (-iResolution.xy + 2.0*fragCoord.xy)/iResolution.y;
float ii = 0.0;
vec3 col = mandelbrot(iTime, p+o1, ii);
// "smart" AA? Is that a good idea?
vec2 dii2 = vec2(dFdx(ii), dFdy(ii));
float dii = length(dii2);
if(abs(dii) > 0.01) {
col += mandelbrot(iTime, p-o1, ii);
col += mandelbrot(iTime, p+o2, ii);
col += mandelbrot(iTime, p-o2, ii);
col *=0.25;
// col = vec3(1.0, 0.0, 0.0);
}
fragColor = vec4(col, 1.0);
}

View File

@ -70,6 +70,7 @@ demos = files([
'scale.c',
'search_entry.c',
'search_entry2.c',
'shadertoy.c',
'shortcuts.c',
'shortcut_triggers.c',
'sidebar.c',
@ -98,6 +99,7 @@ extra_demo_sources = files(['main.c',
'gtkfishbowl.c',
'fontplane.c',
'gtkgears.c',
'gtkshadertoy.c',
'puzzlepiece.c',
'bluroverlay.c',
'demoimage.c',

220
demos/gtk-demo/neon.glsl Normal file
View File

@ -0,0 +1,220 @@
// Originally from: https://www.shadertoy.com/view/WlByzy
// License CC0: Neonwave style road, sun and city
// The result of a bit of experimenting with neonwave style colors.
#define PI 3.141592654
#define TAU (2.0*PI)
#define TIME iTime
#define RESOLUTION iResolution
vec3 hsv2rgb(vec3 c) {
const vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
float hash(in float co) {
return fract(sin(co*12.9898) * 13758.5453);
}
float hash(in vec2 co) {
return fract(sin(dot(co.xy ,vec2(12.9898,58.233))) * 13758.5453);
}
float psin(float a) {
return 0.5 + 0.5*sin(a);
}
float mod1(inout float p, float size) {
float halfsize = size*0.5;
float c = floor((p + halfsize)/size);
p = mod(p + halfsize, size) - halfsize;
return c;
}
float circle(vec2 p, float r) {
return length(p) - r;
}
float box(vec2 p, vec2 b) {
vec2 d = abs(p)-b;
return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
}
float planex(vec2 p, float w) {
return abs(p.y) - w;
}
float planey(vec2 p, float w) {
return abs(p.x) - w;
}
float pmin(float a, float b, float k) {
float h = clamp( 0.5+0.5*(b-a)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
float pmax(float a, float b, float k) {
return -pmin(-a, -b, k);
}
float sun(vec2 p) {
const float ch = 0.0125;
vec2 sp = p;
vec2 cp = p;
mod1(cp.y, ch*6.0);
float d0 = circle(sp, 0.5);
float d1 = planex(cp, ch);
float d2 = p.y+ch*3.0;
float d = d0;
d = pmax(d, -max(d1, d2), ch*2.0);
return d;
}
float city(vec2 p) {
float sd = circle(p, 0.5);
float cd = 1E6;
const float count = 5.0;
const float width = 0.1;
for (float i = 0.0; i < count; ++i) {
vec2 pp = p;
pp.x += i*width/count;
float nn = mod1(pp.x, width);
float rr = hash(nn+sqrt(3.0)*i);
float dd = box(pp-vec2(0.0, -0.5), vec2(0.02, 0.35*(1.0-smoothstep(0.0, 5.0, abs(nn)))*rr+0.1));
cd = min(cd, dd);
}
return max(sd,cd);
}
vec3 sunEffect(vec2 p) {
float aa = 4.0 / RESOLUTION.y;
vec3 col = vec3(0.1);
vec3 skyCol1 = hsv2rgb(vec3(283.0/360.0, 0.83, 0.16));
vec3 skyCol2 = hsv2rgb(vec3(297.0/360.0, 0.79, 0.43));
col = mix(skyCol1, skyCol2, pow(clamp(0.5*(1.0+p.y+0.1*sin(4.0*p.x+TIME*0.5)), 0.0, 1.0), 4.0));
p.y -= 0.375;
float ds = sun(p);
float dc = city(p);
float dd = circle(p, 0.5);
vec3 sunCol = mix(vec3(1.0, 1.0, 0.0), vec3(1.0, 0.0, 1.0), clamp(0.5 - 1.0*p.y, 0.0, 1.0));
vec3 glareCol = sqrt(sunCol);
vec3 cityCol = sunCol*sunCol;
col += glareCol*(exp(-30.0*ds))*step(0.0, ds);
float t1 = smoothstep(0.0, 0.075, -dd);
float t2 = smoothstep(0.0, 0.3, -dd);
col = mix(col, sunCol, smoothstep(-aa, 0.0, -ds));
col = mix(col, glareCol, smoothstep(-aa, 0.0, -dc)*t1);
col += vec3(0.0, 0.25, 0.0)*(exp(-90.0*dc))*step(0.0, dc)*t2;
// col += 0.3*psin(d*400);
return col;
}
float ground(vec2 p) {
p.y += TIME*80.0;
p *= 0.075;
vec2 gp = p;
gp = fract(gp) - vec2(0.5);
float d0 = abs(gp.x);
float d1 = abs(gp.y);
float d2 = circle(gp, 0.05);
const float rw = 2.5;
const float sw = 0.0125;
vec2 rp = p;
mod1(rp.y, 12.0);
float d3 = abs(rp.x) - rw;
float d4 = abs(d3) - sw*2.0;
float d5 = box(rp, vec2(sw*2.0, 2.0));
vec2 sp = p;
mod1(sp.y, 4.0);
sp.x = abs(sp.x);
sp -= vec2(rw - 0.125, 0.0);
float d6 = box(sp, vec2(sw, 1.0));
float d = d0;
d = pmin(d, d1, 0.1);
d = max(d, -d3);
d = min(d, d4);
d = min(d, d5);
d = min(d, d6);
return d;
}
vec3 groundEffect(vec2 p) {
vec3 ro = vec3(0.0, 20.0, 0.0);
vec3 ww = normalize(vec3(0.0, -0.025, 1.0));
vec3 uu = normalize(cross(vec3(0.0,1.0,0.0), ww));
vec3 vv = normalize(cross(ww,uu));
vec3 rd = normalize(p.x*uu + p.y*vv + 2.5*ww);
float distg = (-9.0 - ro.y)/rd.y;
const vec3 shineCol = 0.75*vec3(0.5, 0.75, 1.0);
const vec3 gridCol = vec3(1.0);
vec3 col = vec3(0.0);
if (distg > 0.0) {
vec3 pg = ro + rd*distg;
float aa = length(dFdx(pg))*0.0002*RESOLUTION.x;
float dg = ground(pg.xz);
col = mix(col, gridCol, smoothstep(-aa, 0.0, -(dg+0.0175)));
col += shineCol*(exp(-10.0*clamp(dg, 0.0, 1.0)));
col = clamp(col, 0.0, 1.0);
// col += 0.3*psin(dg*100);
col *= pow(1.0-smoothstep(ro.y*3.0, 220.0+ro.y*2.0, distg), 2.0);
}
return col;
}
vec3 postProcess(vec3 col, vec2 q) {
col = clamp(col,0.0,1.0);
// col=pow(col,vec3(0.75));
col=col*0.6+0.4*col*col*(3.0-2.0*col);
col=mix(col, vec3(dot(col, vec3(0.33))), -0.4);
col*=0.5+0.5*pow(19.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.7);
return col;
}
vec3 effect(vec2 p, vec2 q) {
vec3 col = vec3(0.0);
vec2 off = vec2(0.0, 0.0);
col += sunEffect(p+off);
col += groundEffect(p+off);
col = postProcess(col, q);
return col;
}
void mainImage(out vec4 fragColor, vec2 fragCoord) {
vec2 q = fragCoord/iResolution.xy;
vec2 p = -1. + 2. * q;
p.x *= RESOLUTION.x / RESOLUTION.y;
vec3 col = effect(p, q);
fragColor = vec4(col, 1.0);
}

191
demos/gtk-demo/shadertoy.c Normal file
View File

@ -0,0 +1,191 @@
/* OpenGL/Shadertoy
*
* Generate pixels using a custom fragment shader.
*
* The names of the uniforms are compatible with the shaders on shadertoy.com, so
* many of the shaders there work here too.
*/
#include <math.h>
#include <gtk/gtk.h>
#include <epoxy/gl.h>
#include "gtkshadertoy.h"
static GtkWidget *demo_window = NULL;
static GtkWidget *shadertoy = NULL;
static GtkTextBuffer *textbuffer = NULL;
static void
run (void)
{
GtkTextIter start, end;
char *text;
gtk_text_buffer_get_bounds (textbuffer, &start, &end);
text = gtk_text_buffer_get_text (textbuffer, &start, &end, FALSE);
gtk_shadertoy_set_image_shader (GTK_SHADERTOY (shadertoy), text);
g_free (text);
}
static void
run_clicked_cb (GtkWidget *button,
gpointer user_data)
{
run ();
}
static void
load_clicked_cb (GtkWidget *button,
gpointer user_data)
{
const char *path = user_data;
GBytes *initial_shader;
initial_shader = g_resources_lookup_data (path, 0, NULL);
gtk_text_buffer_set_text (textbuffer, g_bytes_get_data (initial_shader, NULL), -1);
g_bytes_unref (initial_shader);
run ();
}
static void
clear_clicked_cb (GtkWidget *button,
gpointer user_data)
{
gtk_text_buffer_set_text (textbuffer, "", 0);
}
static void
close_window (GtkWidget *widget)
{
/* Reset the state */
demo_window = NULL;
shadertoy = NULL;
textbuffer = NULL;
}
static GtkWidget *
new_shadertoy (const char *path)
{
GBytes *shader;
GtkWidget *toy;
toy = gtk_shadertoy_new ();
shader = g_resources_lookup_data (path, 0, NULL);
gtk_shadertoy_set_image_shader (GTK_SHADERTOY (toy),
g_bytes_get_data (shader, NULL));
g_bytes_unref (shader);
return toy;
}
static GtkWidget *
new_button (const char *path)
{
GtkWidget *button, *toy;
button = gtk_button_new ();
g_signal_connect (button, "clicked", G_CALLBACK (load_clicked_cb), (char *)path);
toy = new_shadertoy (path);
gtk_widget_set_size_request (toy, 64, 36);
gtk_button_set_child (GTK_BUTTON (button), toy);
return button;
}
static GtkWidget *
create_shadertoy_window (GtkWidget *do_widget)
{
GtkWidget *window, *box, *hbox, *button, *textview, *sw, *aspect, *centerbox;
window = gtk_window_new ();
gtk_window_set_display (GTK_WINDOW (window), gtk_widget_get_display (do_widget));
gtk_window_set_title (GTK_WINDOW (window), "Shadertoy");
gtk_window_set_default_size (GTK_WINDOW (window), 640, 600);
g_signal_connect (window, "destroy", G_CALLBACK (close_window), NULL);
box = gtk_box_new (GTK_ORIENTATION_VERTICAL, FALSE);
gtk_widget_set_margin_start (box, 12);
gtk_widget_set_margin_end (box, 12);
gtk_widget_set_margin_top (box, 12);
gtk_widget_set_margin_bottom (box, 12);
gtk_box_set_spacing (GTK_BOX (box), 6);
gtk_window_set_child (GTK_WINDOW (window), box);
aspect = gtk_aspect_frame_new (0.5, 0.5, 1.77777, FALSE);
gtk_widget_set_hexpand (aspect, TRUE);
gtk_widget_set_vexpand (aspect, TRUE);
gtk_box_append (GTK_BOX (box), aspect);
shadertoy = new_shadertoy ("/shadertoy/alienplanet.glsl");
gtk_aspect_frame_set_child (GTK_ASPECT_FRAME (aspect), shadertoy);
sw = gtk_scrolled_window_new ();
gtk_scrolled_window_set_min_content_height (GTK_SCROLLED_WINDOW (sw), 250);
gtk_scrolled_window_set_has_frame (GTK_SCROLLED_WINDOW (sw), TRUE);
gtk_scrolled_window_set_policy (GTK_SCROLLED_WINDOW (sw),
GTK_POLICY_AUTOMATIC,
GTK_POLICY_AUTOMATIC);
gtk_widget_set_hexpand (sw, TRUE);
gtk_box_append (GTK_BOX (box), sw);
textview = gtk_text_view_new ();
gtk_text_view_set_monospace (GTK_TEXT_VIEW (textview), TRUE);
gtk_scrolled_window_set_child (GTK_SCROLLED_WINDOW (sw), textview);
textbuffer = gtk_text_view_get_buffer (GTK_TEXT_VIEW (textview));
gtk_text_buffer_set_text (textbuffer,
gtk_shadertoy_get_image_shader (GTK_SHADERTOY (shadertoy)),
-1);
centerbox = gtk_center_box_new ();
gtk_box_append (GTK_BOX (box), centerbox);
hbox = gtk_box_new (GTK_ORIENTATION_HORIZONTAL, FALSE);
gtk_box_set_spacing (GTK_BOX (hbox), 6);
gtk_center_box_set_start_widget (GTK_CENTER_BOX (centerbox), hbox);
button = gtk_button_new_from_icon_name ("media-playback-start-symbolic");
g_signal_connect (button, "clicked", G_CALLBACK (run_clicked_cb), NULL);
gtk_box_append (GTK_BOX (hbox), button);
button = gtk_button_new_from_icon_name ("edit-clear-all-symbolic");
g_signal_connect (button, "clicked", G_CALLBACK (clear_clicked_cb), NULL);
gtk_box_append (GTK_BOX (hbox), button);
hbox = gtk_box_new (GTK_ORIENTATION_HORIZONTAL, FALSE);
gtk_box_set_spacing (GTK_BOX (hbox), 6);
gtk_center_box_set_end_widget (GTK_CENTER_BOX (centerbox), hbox);
button = new_button ("/shadertoy/alienplanet.glsl");
gtk_box_append (GTK_BOX (hbox), button);
button = new_button ("/shadertoy/mandelbrot.glsl");
gtk_box_append (GTK_BOX (hbox), button);
button = new_button ("/shadertoy/neon.glsl");
gtk_box_append (GTK_BOX (hbox), button);
button = new_button ("/shadertoy/cogs.glsl");
gtk_box_append (GTK_BOX (hbox), button);
button = new_button ("/shadertoy/glowingstars.glsl");
gtk_box_append (GTK_BOX (hbox), button);
return window;
}
GtkWidget *
do_shadertoy (GtkWidget *do_widget)
{
if (!demo_window)
demo_window = create_shadertoy_window (do_widget);
if (!gtk_widget_get_visible (demo_window))
gtk_widget_show (demo_window);
else
gtk_window_destroy (GTK_WINDOW (demo_window));
return demo_window;
}