gsk: Drop the gl renderer

ngl supports all the same platforms as gl
now, and has seen more improvements in the
last cycle.
This commit is contained in:
Matthias Clasen 2021-08-20 22:50:41 -04:00
parent f1f197e3b9
commit e9e373913e
53 changed files with 8 additions and 10747 deletions

View File

@ -24,7 +24,6 @@
#include "gtkrendererpaintableprivate.h"
#include "gsk/gskrendernodeparserprivate.h"
#include "gsk/gl/gskglrenderer.h"
#include "gsk/ngl/gsknglrenderer.h"
#ifdef GDK_WINDOWING_BROADWAY
#include "gsk/broadway/gskbroadwayrenderer.h"
@ -778,12 +777,9 @@ node_editor_window_realize (GtkWidget *widget)
NULL,
"Default");
#endif
node_editor_window_add_renderer (self,
gsk_gl_renderer_new (),
"OpenGL");
node_editor_window_add_renderer (self,
gsk_ngl_renderer_new (),
"NGL");
"OpenGL");
#ifdef GDK_RENDERING_VULKAN
node_editor_window_add_renderer (self,
gsk_vulkan_renderer_new (),

View File

@ -1,317 +0,0 @@
#pragma once
#define SANITY_CHECKS 0
#define rounded_rect_top_left(r) (GRAPHENE_RECT_INIT(r->bounds.origin.x, \
r->bounds.origin.y, \
r->corner[0].width, r->corner[0].height))
#define rounded_rect_top_right(r) (GRAPHENE_RECT_INIT(r->bounds.origin.x + r->bounds.size.width - r->corner[1].width, \
r->bounds.origin.y, \
r->corner[1].width, r->corner[1].height))
#define rounded_rect_bottom_right(r) (GRAPHENE_RECT_INIT(r->bounds.origin.x + r->bounds.size.width - r->corner[2].width, \
r->bounds.origin.y + r->bounds.size.height - r->corner[2].height, \
r->corner[2].width, r->corner[2].height))
#define rounded_rect_bottom_left(r) (GRAPHENE_RECT_INIT(r->bounds.origin.x, \
r->bounds.origin.y + r->bounds.size.height - r->corner[2].height, \
r->corner[3].width, r->corner[3].height))
#define rounded_rect_corner0(r) rounded_rect_top_left(r)
#define rounded_rect_corner1(r) rounded_rect_top_right(r)
#define rounded_rect_corner2(r) rounded_rect_bottom_right(r)
#define rounded_rect_corner3(r) rounded_rect_bottom_left(r)
#define rounded_rect_corner(r, i) (rounded_rect_corner ##i(r))
#define graphene_size_non_zero(s) (s->width > 0 && s->height > 0)
#define rounded_rect_has_corner(r, i) (r->corner[i].width > 0 && r->corner[i].height > 0)
#define rect_contains_point(r, _x, _y) (_x >= (r)->origin.x && _x <= (r)->origin.x + (r)->size.width && \
_y >= (r)->origin.y && _y <= (r)->origin.y + (r)->size.height)
enum {
NINE_SLICE_TOP_LEFT = 0,
NINE_SLICE_TOP_CENTER = 1,
NINE_SLICE_TOP_RIGHT = 2,
NINE_SLICE_LEFT_CENTER = 3,
NINE_SLICE_CENTER = 4,
NINE_SLICE_RIGHT_CENTER = 5,
NINE_SLICE_BOTTOM_LEFT = 6,
NINE_SLICE_BOTTOM_CENTER = 7,
NINE_SLICE_BOTTOM_RIGHT = 8,
};
#define NINE_SLICE_SIZE 9 /* Hah. */
typedef struct
{
int texture_id;
float x;
float y;
float x2;
float y2;
} TextureRegion;
static inline bool G_GNUC_PURE
slice_is_visible (const cairo_rectangle_int_t *r)
{
return (r->width > 0 && r->height > 0);
}
static inline void
nine_slice_rounded_rect (const GskRoundedRect *rect,
cairo_rectangle_int_t *out_rects)
{
const graphene_point_t *origin = &rect->bounds.origin;
const graphene_size_t *size = &rect->bounds.size;
const int top_height = ceilf (MAX (rect->corner[GSK_CORNER_TOP_LEFT].height,
rect->corner[GSK_CORNER_TOP_RIGHT].height));
const int bottom_height = ceilf (MAX (rect->corner[GSK_CORNER_BOTTOM_LEFT].height,
rect->corner[GSK_CORNER_BOTTOM_RIGHT].height));
const int right_width = ceilf (MAX (rect->corner[GSK_CORNER_TOP_RIGHT].width,
rect->corner[GSK_CORNER_BOTTOM_RIGHT].width));
const int left_width = ceilf (MAX (rect->corner[GSK_CORNER_TOP_LEFT].width,
rect->corner[GSK_CORNER_BOTTOM_LEFT].width));
/* Top left */
out_rects[0] = (cairo_rectangle_int_t) {
origin->x, origin->y,
left_width, top_height,
};
/* Top center */
out_rects[1] = (cairo_rectangle_int_t) {
origin->x + size->width / 2.0 - 0.5, origin->y,
1, top_height,
};
/* Top right */
out_rects[2] = (cairo_rectangle_int_t) {
origin->x + size->width - right_width, origin->y,
right_width, top_height
};
/* Left center */
out_rects[3] = (cairo_rectangle_int_t) {
origin->x, origin->y + size->height / 2,
left_width, 1,
};
/* center */
out_rects[4] = (cairo_rectangle_int_t) {
origin->x + size->width / 2.0 - 0.5,
origin->y + size->height / 2.0 - 0.5,
1, 1
};
/* Right center */
out_rects[5] = (cairo_rectangle_int_t) {
origin->x + size->width - right_width,
origin->y + (size->height / 2.0) - 0.5,
right_width,
1,
};
/* Bottom Left */
out_rects[6] = (cairo_rectangle_int_t) {
origin->x, origin->y + size->height - bottom_height,
left_width, bottom_height,
};
/* Bottom center */
out_rects[7] = (cairo_rectangle_int_t) {
origin->x + (size->width / 2.0) - 0.5,
origin->y + size->height - bottom_height,
1, bottom_height,
};
/* Bottom right */
out_rects[8] = (cairo_rectangle_int_t) {
origin->x + size->width - right_width,
origin->y + size->height - bottom_height,
right_width, bottom_height,
};
#if SANITY_CHECKS
g_assert_cmpfloat (size->width, >=, left_width + right_width);
g_assert_cmpfloat (size->height, >=, top_height + bottom_height);
#endif
}
static inline void
nine_slice_grow (cairo_rectangle_int_t *slices,
const int amount)
{
/* top left */
slices[0].x -= amount;
slices[0].y -= amount;
if (amount > slices[0].width)
slices[0].width += amount * 2;
else
slices[0].width += amount;
if (amount > slices[0].height)
slices[0].height += amount * 2;
else
slices[0].height += amount;
/* Top center */
slices[1].y -= amount;
if (amount > slices[1].height)
slices[1].height += amount * 2;
else
slices[1].height += amount;
/* top right */
slices[2].y -= amount;
if (amount > slices[2].width)
{
slices[2].x -= amount;
slices[2].width += amount * 2;
}
else
{
slices[2].width += amount;
}
if (amount > slices[2].height)
slices[2].height += amount * 2;
else
slices[2].height += amount;
slices[3].x -= amount;
if (amount > slices[3].width)
slices[3].width += amount * 2;
else
slices[3].width += amount;
/* Leave Britney^Wcenter alone */
if (amount > slices[5].width)
{
slices[5].x -= amount;
slices[5].width += amount * 2;
}
else
{
slices[5].width += amount;
}
/* Bottom left */
slices[6].x -= amount;
if (amount > slices[6].width)
{
slices[6].width += amount * 2;
}
else
{
slices[6].width += amount;
}
if (amount > slices[6].height)
{
slices[6].y -= amount;
slices[6].height += amount * 2;
}
else
{
slices[6].height += amount;
}
/* Bottom center */
if (amount > slices[7].height)
{
slices[7].y -= amount;
slices[7].height += amount * 2;
}
else
{
slices[7].height += amount;
}
if (amount > slices[8].width)
{
slices[8].x -= amount;
slices[8].width += amount * 2;
}
else
{
slices[8].width += amount;
}
if (amount > slices[8].height)
{
slices[8].y -= amount;
slices[8].height += amount * 2;
}
else
{
slices[8].height += amount;
}
#if SANITY_CHECKS
{
for (int i = 0; i < 9; i ++)
{
g_assert_cmpint (slices[i].x, >=, 0);
g_assert_cmpint (slices[i].y, >=, 0);
g_assert_cmpint (slices[i].width, >=, 0);
g_assert_cmpint (slices[i].height, >=, 0);
}
/* Rows don't overlap */
for (int i = 0; i < 3; i++)
{
g_assert_cmpint (slices[i * 3 + 0].x + slices[i * 3 + 0].width, <, slices[i * 3 + 1].x);
}
}
#endif
}
static inline void
nine_slice_to_texture_coords (const cairo_rectangle_int_t *slices,
const int texture_width,
const int texture_height,
TextureRegion *out_regions)
{
const float fw = (float)texture_width;
const float fh = (float)texture_height;
int i;
for (i = 0; i < 9; i++)
{
out_regions[i] = (TextureRegion) {
0, /* Texture id */
slices[i].x / fw,
1.0 - ((slices[i].y + slices[i].height) / fh),
(slices[i].x + slices[i].width) / fw,
1.0 - (slices[i].y / fh),
};
}
#if SANITY_CHECKS
{
for (i = 0; i < 9; i++)
{
const TextureRegion *r = &out_regions[i];
g_assert_cmpfloat (r->x, >=, 0);
g_assert_cmpfloat (r->x, <=, 1);
g_assert_cmpfloat (r->y, >=, 0);
g_assert_cmpfloat (r->y, <=, 1);
g_assert_cmpfloat (r->x, <, r->x2);
g_assert_cmpfloat (r->y, <, r->y2);
}
}
#endif
}

View File

@ -1,849 +0,0 @@
#include "config.h"
#include "gskgldriverprivate.h"
#include "gskdebugprivate.h"
#include "gskprofilerprivate.h"
#include "gdk/gdkglcontextprivate.h"
#include "gdk/gdktextureprivate.h"
#include "gdk/gdkgltextureprivate.h"
#include "gdkmemorytextureprivate.h"
#include <gdk/gdk.h>
#include <epoxy/gl.h>
typedef struct {
GLuint fbo_id;
GLuint depth_stencil_id;
} Fbo;
typedef struct {
GLuint texture_id;
int width;
int height;
GLuint min_filter;
GLuint mag_filter;
Fbo fbo;
GdkTexture *user;
guint in_use : 1;
guint permanent : 1;
/* TODO: Make this optional and not for every texture... */
TextureSlice *slices;
guint n_slices;
} Texture;
struct _GskGLDriver
{
GObject parent_instance;
GdkGLContext *gl_context;
GskProfiler *profiler;
struct {
GQuark created_textures;
GQuark reused_textures;
GQuark surface_uploads;
} counters;
Fbo default_fbo;
GHashTable *textures; /* texture_id -> Texture */
GHashTable *pointer_textures; /* pointer -> texture_id */
const Texture *bound_source_texture;
int max_texture_size;
gboolean in_frame : 1;
};
G_DEFINE_TYPE (GskGLDriver, gsk_gl_driver, G_TYPE_OBJECT)
static void
upload_gdk_texture (GdkTexture *source_texture,
int target,
int x_offset,
int y_offset,
int width,
int height)
{
cairo_surface_t *surface = NULL;
GdkMemoryFormat data_format;
const guchar *data;
gsize data_stride;
gsize bpp;
g_return_if_fail (source_texture != NULL);
g_return_if_fail (x_offset + width <= gdk_texture_get_width (source_texture));
g_return_if_fail (y_offset + height <= gdk_texture_get_height (source_texture));
/* Note: GdkGLTextures are already handled before we reach this and reused as-is */
if (GDK_IS_MEMORY_TEXTURE (source_texture))
{
GdkMemoryTexture *memory_texture = GDK_MEMORY_TEXTURE (source_texture);
data = gdk_memory_texture_get_data (memory_texture);
data_format = gdk_memory_texture_get_format (memory_texture);
data_stride = gdk_memory_texture_get_stride (memory_texture);
}
else
{
/* Fall back to downloading to a surface */
surface = gdk_texture_download_surface (source_texture);
cairo_surface_flush (surface);
data = cairo_image_surface_get_data (surface);
data_format = GDK_MEMORY_DEFAULT;
data_stride = cairo_image_surface_get_stride (surface);
}
bpp = gdk_memory_format_bytes_per_pixel (data_format);
gdk_gl_context_upload_texture (gdk_gl_context_get_current (),
data + x_offset * bpp + y_offset * data_stride,
width, height, data_stride,
data_format, target);
if (surface)
cairo_surface_destroy (surface);
}
static Texture *
texture_new (void)
{
return g_slice_new0 (Texture);
}
static inline void
fbo_clear (const Fbo *f)
{
if (f->depth_stencil_id != 0)
glDeleteRenderbuffers (1, &f->depth_stencil_id);
glDeleteFramebuffers (1, &f->fbo_id);
}
static void
texture_free (gpointer data)
{
Texture *t = data;
guint i;
if (t->user)
gdk_texture_clear_render_data (t->user);
if (t->fbo.fbo_id != 0)
fbo_clear (&t->fbo);
if (t->texture_id != 0)
{
glDeleteTextures (1, &t->texture_id);
}
else
{
g_assert_cmpint (t->n_slices, >, 0);
for (i = 0; i < t->n_slices; i ++)
glDeleteTextures (1, &t->slices[i].texture_id);
}
g_slice_free (Texture, t);
}
static void
gsk_gl_driver_set_texture_parameters (GskGLDriver *self,
int min_filter,
int mag_filter)
{
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, min_filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, mag_filter);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
static void
gsk_gl_driver_finalize (GObject *gobject)
{
GskGLDriver *self = GSK_GL_DRIVER (gobject);
gdk_gl_context_make_current (self->gl_context);
g_clear_pointer (&self->textures, g_hash_table_unref);
g_clear_pointer (&self->pointer_textures, g_hash_table_unref);
g_clear_object (&self->profiler);
if (self->gl_context == gdk_gl_context_get_current ())
gdk_gl_context_clear_current ();
G_OBJECT_CLASS (gsk_gl_driver_parent_class)->finalize (gobject);
}
static void
gsk_gl_driver_class_init (GskGLDriverClass *klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
gobject_class->finalize = gsk_gl_driver_finalize;
}
static void
gsk_gl_driver_init (GskGLDriver *self)
{
self->textures = g_hash_table_new_full (NULL, NULL, NULL, texture_free);
self->max_texture_size = -1;
#ifdef G_ENABLE_DEBUG
self->profiler = gsk_profiler_new ();
self->counters.created_textures = gsk_profiler_add_counter (self->profiler,
"created_textures",
"Textures created this frame",
TRUE);
self->counters.reused_textures = gsk_profiler_add_counter (self->profiler,
"reused_textures",
"Textures reused this frame",
TRUE);
self->counters.surface_uploads = gsk_profiler_add_counter (self->profiler,
"surface_uploads",
"Texture uploads from surfaces this frame",
TRUE);
#endif
}
GskGLDriver *
gsk_gl_driver_new (GdkGLContext *context)
{
GskGLDriver *self;
g_return_val_if_fail (GDK_IS_GL_CONTEXT (context), NULL);
self = (GskGLDriver *) g_object_new (GSK_TYPE_GL_DRIVER, NULL);
self->gl_context = context;
return self;
}
void
gsk_gl_driver_begin_frame (GskGLDriver *self)
{
g_return_if_fail (GSK_IS_GL_DRIVER (self));
g_return_if_fail (!self->in_frame);
self->in_frame = TRUE;
if (self->max_texture_size < 0)
{
glGetIntegerv (GL_MAX_TEXTURE_SIZE, (GLint *) &self->max_texture_size);
GSK_NOTE (OPENGL, g_message ("GL max texture size: %d", self->max_texture_size));
}
glBindFramebuffer (GL_FRAMEBUFFER, 0);
glActiveTexture (GL_TEXTURE0);
glBindTexture (GL_TEXTURE_2D, 0);
glActiveTexture (GL_TEXTURE0 + 1);
glBindTexture (GL_TEXTURE_2D, 0);
glBindVertexArray (0);
glUseProgram (0);
glActiveTexture (GL_TEXTURE0);
#ifdef G_ENABLE_DEBUG
gsk_profiler_reset (self->profiler);
#endif
}
gboolean
gsk_gl_driver_in_frame (GskGLDriver *self)
{
return self->in_frame;
}
void
gsk_gl_driver_end_frame (GskGLDriver *self)
{
g_return_if_fail (GSK_IS_GL_DRIVER (self));
g_return_if_fail (self->in_frame);
self->bound_source_texture = NULL;
self->default_fbo.fbo_id = 0;
#ifdef G_ENABLE_DEBUG
GSK_NOTE (OPENGL,
g_message ("Textures created: %" G_GINT64_FORMAT "\n"
" Textures reused: %" G_GINT64_FORMAT "\n"
" Surface uploads: %" G_GINT64_FORMAT,
gsk_profiler_counter_get (self->profiler, self->counters.created_textures),
gsk_profiler_counter_get (self->profiler, self->counters.reused_textures),
gsk_profiler_counter_get (self->profiler, self->counters.surface_uploads)));
#endif
GSK_NOTE (OPENGL,
g_message ("*** Frame end: textures=%d",
g_hash_table_size (self->textures)));
self->in_frame = FALSE;
}
int
gsk_gl_driver_collect_textures (GskGLDriver *self)
{
GHashTableIter iter;
gpointer value_p = NULL;
int old_size;
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), 0);
g_return_val_if_fail (!self->in_frame, 0);
old_size = g_hash_table_size (self->textures);
g_hash_table_iter_init (&iter, self->textures);
while (g_hash_table_iter_next (&iter, NULL, &value_p))
{
Texture *t = value_p;
if (t->user || t->permanent)
continue;
if (t->in_use)
{
t->in_use = FALSE;
if (t->fbo.fbo_id != 0)
{
fbo_clear (&t->fbo);
t->fbo.fbo_id = 0;
}
}
else
{
/* Remove from self->pointer_textures. */
/* TODO: Is there a better way for this? */
if (self->pointer_textures)
{
GHashTableIter pointer_iter;
gpointer value;
gpointer p;
g_hash_table_iter_init (&pointer_iter, self->pointer_textures);
while (g_hash_table_iter_next (&pointer_iter, &p, &value))
{
if (GPOINTER_TO_INT (value) == t->texture_id)
{
g_hash_table_iter_remove (&pointer_iter);
break;
}
}
}
g_hash_table_iter_remove (&iter);
}
}
return old_size - g_hash_table_size (self->textures);
}
GdkGLContext *
gsk_gl_driver_get_gl_context (GskGLDriver *self)
{
return self->gl_context;
}
int
gsk_gl_driver_get_max_texture_size (GskGLDriver *self)
{
if (self->max_texture_size < 0)
{
if (gdk_gl_context_get_use_es (self->gl_context))
return 2048;
return 1024;
}
return self->max_texture_size;
}
static Texture *
gsk_gl_driver_get_texture (GskGLDriver *self,
int texture_id)
{
Texture *t;
if (g_hash_table_lookup_extended (self->textures, GINT_TO_POINTER (texture_id), NULL, (gpointer *) &t))
return t;
return NULL;
}
static Texture *
create_texture (GskGLDriver *self,
float fwidth,
float fheight)
{
guint texture_id;
Texture *t;
int width = ceilf (fwidth);
int height = ceilf (fheight);
g_assert (width > 0);
g_assert (height > 0);
if (width > self->max_texture_size ||
height > self->max_texture_size)
{
g_critical ("Texture %d x %d is bigger than supported texture limit of %d; clipping...",
width, height,
self->max_texture_size);
width = MIN (width, self->max_texture_size);
height = MIN (height, self->max_texture_size);
}
glGenTextures (1, &texture_id);
t = texture_new ();
t->texture_id = texture_id;
t->width = width;
t->height = height;
t->min_filter = GL_NEAREST;
t->mag_filter = GL_NEAREST;
t->in_use = TRUE;
g_hash_table_insert (self->textures, GINT_TO_POINTER (texture_id), t);
#ifdef G_ENABLE_DEBUG
gsk_profiler_counter_inc (self->profiler, self->counters.created_textures);
#endif
return t;
}
static void
gsk_gl_driver_release_texture (gpointer data)
{
Texture *t = data;
t->user = NULL;
}
void
gsk_gl_driver_slice_texture (GskGLDriver *self,
GdkTexture *texture,
TextureSlice **out_slices,
guint *out_n_slices)
{
const int max_texture_size = gsk_gl_driver_get_max_texture_size (self) / 4; // XXX Too much?
const int cols = (texture->width / max_texture_size) + 1;
const int rows = (texture->height / max_texture_size) + 1;
int col, row;
int x = 0, y = 0; /* Position in the texture */
TextureSlice *slices;
Texture *tex;
g_assert (texture->width > max_texture_size || texture->height > max_texture_size);
tex = gdk_texture_get_render_data (texture, self);
if (tex != NULL)
{
g_assert (tex->n_slices > 0);
*out_slices = tex->slices;
*out_n_slices = tex->n_slices;
return;
}
slices = g_new0 (TextureSlice, cols * rows);
for (col = 0; col < cols; col ++)
{
const int slice_width = MIN (max_texture_size, texture->width - x);
for (row = 0; row < rows; row ++)
{
const int slice_height = MIN (max_texture_size, texture->height - y);
const int slice_index = (col * rows) + row;
guint texture_id;
glGenTextures (1, &texture_id);
#ifdef G_ENABLE_DEBUG
gsk_profiler_counter_inc (self->profiler, self->counters.created_textures);
#endif
glBindTexture (GL_TEXTURE_2D, texture_id);
gsk_gl_driver_set_texture_parameters (self, GL_NEAREST, GL_NEAREST);
upload_gdk_texture (texture, GL_TEXTURE_2D, x, y, slice_width, slice_height);
#ifdef G_ENABLE_DEBUG
gsk_profiler_counter_inc (self->profiler, self->counters.surface_uploads);
#endif
slices[slice_index].rect = (GdkRectangle){x, y, slice_width, slice_height};
slices[slice_index].texture_id = texture_id;
y += slice_height;
}
y = 0;
x += slice_width;
}
/* Allocate one Texture for the entire thing. */
tex = texture_new ();
tex->width = texture->width;
tex->height = texture->height;
tex->min_filter = GL_NEAREST;
tex->mag_filter = GL_NEAREST;
tex->in_use = TRUE;
tex->slices = slices;
tex->n_slices = cols * rows;
/* Use texture_free as destroy notify here since we are not inserting this Texture
* into self->textures! */
gdk_texture_set_render_data (texture, self, tex, texture_free);
*out_slices = slices;
*out_n_slices = cols * rows;
}
int
gsk_gl_driver_get_texture_for_texture (GskGLDriver *self,
GdkTexture *texture,
int min_filter,
int mag_filter)
{
Texture *t;
GdkTexture *downloaded_texture = NULL;
GdkTexture *source_texture;
if (GDK_IS_GL_TEXTURE (texture))
{
GdkGLTexture *gl_texture = (GdkGLTexture *) texture;
GdkGLContext *texture_context = gdk_gl_texture_get_context (gl_texture);
if (gdk_gl_context_is_shared (self->gl_context, texture_context))
{
/* A GL texture from the same GL context is a simple task... */
return gdk_gl_texture_get_id (gl_texture);
}
else
{
cairo_surface_t *surface;
/* In this case, we have to temporarily make the texture's context the current one,
* download its data into our context and then create a texture from it. */
if (texture_context)
gdk_gl_context_make_current (texture_context);
surface = gdk_texture_download_surface (texture);
downloaded_texture = gdk_texture_new_for_surface (surface);
cairo_surface_destroy (surface);
gdk_gl_context_make_current (self->gl_context);
source_texture = downloaded_texture;
}
}
else
{
t = gdk_texture_get_render_data (texture, self);
if (t)
{
if (t->min_filter == min_filter && t->mag_filter == mag_filter)
return t->texture_id;
}
source_texture = texture;
}
t = create_texture (self, gdk_texture_get_width (texture), gdk_texture_get_height (texture));
if (gdk_texture_set_render_data (texture, self, t, gsk_gl_driver_release_texture))
t->user = texture;
gsk_gl_driver_bind_source_texture (self, t->texture_id);
gsk_gl_driver_init_texture (self,
t->texture_id,
source_texture,
min_filter,
mag_filter);
gdk_gl_context_label_object_printf (self->gl_context, GL_TEXTURE, t->texture_id,
"GdkTexture<%p> %d", texture, t->texture_id);
if (downloaded_texture)
g_object_unref (downloaded_texture);
return t->texture_id;
}
static guint
texture_key_hash (gconstpointer v)
{
const GskTextureKey *k = (GskTextureKey *)v;
return GPOINTER_TO_UINT (k->pointer)
+ (guint)(k->scale_x * 100)
+ (guint)(k->scale_y * 100)
+ (guint)k->filter * 2 +
+ (guint)k->pointer_is_child;
}
static gboolean
texture_key_equal (gconstpointer v1, gconstpointer v2)
{
const GskTextureKey *k1 = (GskTextureKey *)v1;
const GskTextureKey *k2 = (GskTextureKey *)v2;
return k1->pointer == k2->pointer &&
k1->scale_x == k2->scale_x &&
k1->scale_y == k2->scale_y &&
k1->filter == k2->filter &&
k1->pointer_is_child == k2->pointer_is_child &&
(!k1->pointer_is_child || graphene_rect_equal (&k1->parent_rect, &k2->parent_rect));
}
int
gsk_gl_driver_get_texture_for_key (GskGLDriver *self,
GskTextureKey *key)
{
int id = 0;
if (G_UNLIKELY (self->pointer_textures == NULL))
self->pointer_textures = g_hash_table_new_full (texture_key_hash, texture_key_equal, g_free, NULL);
id = GPOINTER_TO_INT (g_hash_table_lookup (self->pointer_textures, key));
if (id != 0)
{
Texture *t;
t = g_hash_table_lookup (self->textures, GINT_TO_POINTER (id));
if (t != NULL)
t->in_use = TRUE;
}
return id;
}
void
gsk_gl_driver_set_texture_for_key (GskGLDriver *self,
GskTextureKey *key,
int texture_id)
{
GskTextureKey *k;
if (G_UNLIKELY (self->pointer_textures == NULL))
self->pointer_textures = g_hash_table_new_full (texture_key_hash, texture_key_equal, g_free, NULL);
k = g_new (GskTextureKey, 1);
*k = *key;
g_hash_table_insert (self->pointer_textures, k, GINT_TO_POINTER (texture_id));
}
int
gsk_gl_driver_create_texture (GskGLDriver *self,
float width,
float height)
{
Texture *t;
g_return_val_if_fail (GSK_IS_GL_DRIVER (self), -1);
t = create_texture (self, width, height);
return t->texture_id;
}
void
gsk_gl_driver_create_render_target (GskGLDriver *self,
int width,
int height,
int min_filter,
int mag_filter,
int *out_texture_id,
int *out_render_target_id)
{
GLuint fbo_id;
Texture *texture;
g_return_if_fail (self->in_frame);
texture = create_texture (self, width, height);
gsk_gl_driver_bind_source_texture (self, texture->texture_id);
gsk_gl_driver_init_texture_empty (self, texture->texture_id, min_filter, mag_filter);
glGenFramebuffers (1, &fbo_id);
glBindFramebuffer (GL_FRAMEBUFFER, fbo_id);
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, texture->texture_id, 0);
#if 0
if (add_depth_buffer || add_stencil_buffer)
{
glGenRenderbuffersEXT (1, &depth_stencil_buffer_id);
gdk_gl_context_label_object_printf (self->gl_context, GL_RENDERBUFFER, depth_stencil_buffer_id,
"%s buffer for %d", add_depth_buffer ? "Depth" : "Stencil", texture_id);
}
else
depth_stencil_buffer_id = 0;
glBindRenderbuffer (GL_RENDERBUFFER, depth_stencil_buffer_id);
if (add_depth_buffer || add_stencil_buffer)
{
if (add_stencil_buffer)
glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH24_STENCIL8, t->width, t->height);
else
glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, t->width, t->height);
if (add_depth_buffer)
glFramebufferRenderbuffer (GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_RENDERBUFFER, depth_stencil_buffer_id);
if (add_stencil_buffer)
glFramebufferRenderbufferEXT (GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, depth_stencil_buffer_id);
texture->fbo.depth_stencil_id = depth_stencil_buffer_id;
}
#endif
texture->fbo.fbo_id = fbo_id;
g_assert_cmphex (glCheckFramebufferStatus (GL_FRAMEBUFFER), ==, GL_FRAMEBUFFER_COMPLETE);
glBindFramebuffer (GL_FRAMEBUFFER, self->default_fbo.fbo_id);
*out_texture_id = texture->texture_id;
*out_render_target_id = fbo_id;
}
/* Mark the texture permanent, meaning it won'e be reused by the GLDriver.
* E.g. to store it in some other cache. */
void
gsk_gl_driver_mark_texture_permanent (GskGLDriver *self,
int texture_id)
{
Texture *t = gsk_gl_driver_get_texture (self, texture_id);
g_assert (t != NULL);
t->permanent = TRUE;
}
void
gsk_gl_driver_bind_source_texture (GskGLDriver *self,
int texture_id)
{
Texture *t;
g_return_if_fail (GSK_IS_GL_DRIVER (self));
g_return_if_fail (self->in_frame);
t = gsk_gl_driver_get_texture (self, texture_id);
if (t == NULL)
{
g_critical ("No texture %d found.", texture_id);
return;
}
if (self->bound_source_texture != t)
{
glActiveTexture (GL_TEXTURE0);
glBindTexture (GL_TEXTURE_2D, t->texture_id);
self->bound_source_texture = t;
}
}
void
gsk_gl_driver_destroy_texture (GskGLDriver *self,
int texture_id)
{
g_return_if_fail (GSK_IS_GL_DRIVER (self));
g_hash_table_remove (self->textures, GINT_TO_POINTER (texture_id));
}
void
gsk_gl_driver_init_texture_empty (GskGLDriver *self,
int texture_id,
int min_filter,
int mag_filter)
{
Texture *t;
g_return_if_fail (GSK_IS_GL_DRIVER (self));
t = gsk_gl_driver_get_texture (self, texture_id);
if (t == NULL)
{
g_critical ("No texture %d found.", texture_id);
return;
}
if (self->bound_source_texture != t)
{
g_critical ("You must bind the texture before initializing it.");
return;
}
t->min_filter = min_filter;
t->mag_filter = mag_filter;
gsk_gl_driver_set_texture_parameters (self, t->min_filter, t->mag_filter);
if (gdk_gl_context_get_use_es (self->gl_context))
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, t->width, t->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
else
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, t->width, t->height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glBindTexture (GL_TEXTURE_2D, 0);
}
static gboolean
filter_uses_mipmaps (int filter)
{
return filter != GL_NEAREST && filter != GL_LINEAR;
}
void
gsk_gl_driver_init_texture (GskGLDriver *self,
int texture_id,
GdkTexture *texture,
int min_filter,
int mag_filter)
{
Texture *t;
g_return_if_fail (GSK_IS_GL_DRIVER (self));
t = gsk_gl_driver_get_texture (self, texture_id);
if (t == NULL)
{
g_critical ("No texture %d found.", texture_id);
return;
}
if (self->bound_source_texture != t)
{
g_critical ("You must bind the texture before initializing it.");
return;
}
gsk_gl_driver_set_texture_parameters (self, min_filter, mag_filter);
upload_gdk_texture (texture, GL_TEXTURE_2D, 0, 0, t->width, t->height);
#ifdef G_ENABLE_DEBUG
gsk_profiler_counter_inc (self->profiler, self->counters.surface_uploads);
#endif
t->min_filter = min_filter;
t->mag_filter = mag_filter;
if (filter_uses_mipmaps (t->min_filter))
glGenerateMipmap (GL_TEXTURE_2D);
}

View File

@ -1,86 +0,0 @@
#ifndef __GSK_GL_DRIVER_PRIVATE_H__
#define __GSK_GL_DRIVER_PRIVATE_H__
#include <cairo.h>
#include <gdk/gdk.h>
#include <graphene.h>
G_BEGIN_DECLS
#define GSK_TYPE_GL_DRIVER (gsk_gl_driver_get_type ())
G_DECLARE_FINAL_TYPE (GskGLDriver, gsk_gl_driver, GSK, GL_DRIVER, GObject)
typedef struct {
float position[2];
float uv[2];
} GskQuadVertex;
typedef struct {
cairo_rectangle_int_t rect;
guint texture_id;
} TextureSlice;
typedef struct {
gpointer pointer;
float scale_x;
float scale_y;
int filter;
int pointer_is_child;
graphene_rect_t parent_rect; /* Only set if pointer_is_child */
} GskTextureKey;
GskGLDriver * gsk_gl_driver_new (GdkGLContext *context);
GdkGLContext *gsk_gl_driver_get_gl_context (GskGLDriver *driver);
int gsk_gl_driver_get_max_texture_size (GskGLDriver *driver);
void gsk_gl_driver_begin_frame (GskGLDriver *driver);
void gsk_gl_driver_end_frame (GskGLDriver *driver);
gboolean gsk_gl_driver_in_frame (GskGLDriver *driver);
int gsk_gl_driver_get_texture_for_texture (GskGLDriver *driver,
GdkTexture *texture,
int min_filter,
int mag_filter);
int gsk_gl_driver_get_texture_for_key (GskGLDriver *driver,
GskTextureKey *key);
void gsk_gl_driver_set_texture_for_key (GskGLDriver *driver,
GskTextureKey *key,
int texture_id);
int gsk_gl_driver_create_texture (GskGLDriver *driver,
float width,
float height);
void gsk_gl_driver_create_render_target (GskGLDriver *driver,
int width,
int height,
int min_filter,
int mag_filter,
int *out_texture_id,
int *out_render_target_id);
void gsk_gl_driver_mark_texture_permanent (GskGLDriver *self,
int texture_id);
void gsk_gl_driver_bind_source_texture (GskGLDriver *driver,
int texture_id);
void gsk_gl_driver_init_texture_empty (GskGLDriver *driver,
int texture_id,
int min_filter,
int max_filter);
void gsk_gl_driver_init_texture (GskGLDriver *driver,
int texture_id,
GdkTexture *texture,
int min_filter,
int mag_filter);
void gsk_gl_driver_destroy_texture (GskGLDriver *driver,
int texture_id);
int gsk_gl_driver_collect_textures (GskGLDriver *driver);
void gsk_gl_driver_slice_texture (GskGLDriver *self,
GdkTexture *texture,
TextureSlice **out_slices,
guint *out_n_slices);
G_END_DECLS
#endif /* __GSK_GL_DRIVER_PRIVATE_H__ */

View File

@ -1,397 +0,0 @@
#include "config.h"
#include "gskglglyphcacheprivate.h"
#include "gskgldriverprivate.h"
#include "gskdebugprivate.h"
#include "gskprivate.h"
#include "gskgltextureatlasprivate.h"
#include "gdk/gdkglcontextprivate.h"
#include "gdk/gdkmemorytextureprivate.h"
#include <graphene.h>
#include <cairo.h>
#include <epoxy/gl.h>
#include <string.h>
/* Cache eviction strategy
*
* We mark glyphs as accessed every time we use them.
* Every few frames, we mark glyphs that haven't been
* accessed since the last check as old.
*
* We keep count of the pixels of each atlas that are
* taken up by old data. When the fraction of old pixels
* gets too high, we drop the atlas and all the items it
* contained.
*
* Big glyphs are not stored in the atlas, they get their
* own texture, but they are still cached.
*/
#define MAX_FRAME_AGE (60)
#define MAX_GLYPH_SIZE 128 /* Will get its own texture if bigger */
static guint glyph_cache_hash (gconstpointer v);
static gboolean glyph_cache_equal (gconstpointer v1,
gconstpointer v2);
static void glyph_cache_key_free (gpointer v);
static void glyph_cache_value_free (gpointer v);
GskGLGlyphCache *
gsk_gl_glyph_cache_new (GdkDisplay *display,
GskGLTextureAtlases *atlases)
{
GskGLGlyphCache *glyph_cache;
glyph_cache = g_new0 (GskGLGlyphCache, 1);
glyph_cache->display = display;
glyph_cache->hash_table = g_hash_table_new_full (glyph_cache_hash, glyph_cache_equal,
glyph_cache_key_free, glyph_cache_value_free);
glyph_cache->atlases = gsk_gl_texture_atlases_ref (atlases);
glyph_cache->ref_count = 1;
return glyph_cache;
}
GskGLGlyphCache *
gsk_gl_glyph_cache_ref (GskGLGlyphCache *self)
{
self->ref_count++;
return self;
}
void
gsk_gl_glyph_cache_unref (GskGLGlyphCache *self)
{
g_assert (self->ref_count > 0);
if (self->ref_count == 1)
{
gsk_gl_texture_atlases_unref (self->atlases);
g_hash_table_unref (self->hash_table);
g_free (self);
return;
}
self->ref_count--;
}
static gboolean
glyph_cache_equal (gconstpointer v1, gconstpointer v2)
{
return memcmp (v1, v2, sizeof (CacheKeyData)) == 0;
}
static guint
glyph_cache_hash (gconstpointer v)
{
const GlyphCacheKey *key = v;
return key->hash;
}
static void
glyph_cache_key_free (gpointer v)
{
GlyphCacheKey *f = v;
g_object_unref (f->data.font);
g_free (f);
}
static void
glyph_cache_value_free (gpointer v)
{
g_free (v);
}
static gboolean
render_glyph (GlyphCacheKey *key,
GskGLCachedGlyph *value,
GskImageRegion *region)
{
cairo_surface_t *surface;
cairo_t *cr;
cairo_scaled_font_t *scaled_font;
PangoGlyphString glyph_string;
PangoGlyphInfo glyph_info;
int surface_width, surface_height;
int stride;
unsigned char *data;
scaled_font = pango_cairo_font_get_scaled_font ((PangoCairoFont *)key->data.font);
if (G_UNLIKELY (!scaled_font || cairo_scaled_font_status (scaled_font) != CAIRO_STATUS_SUCCESS))
{
g_warning ("Failed to get a font");
return FALSE;
}
surface_width = value->draw_width * key->data.scale / 1024;
surface_height = value->draw_height * key->data.scale / 1024;
stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, surface_width);
data = g_malloc0 (stride * surface_height);
surface = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32,
surface_width, surface_height,
stride);
cairo_surface_set_device_scale (surface, key->data.scale / 1024.0, key->data.scale / 1024.0);
cr = cairo_create (surface);
cairo_set_scaled_font (cr, scaled_font);
cairo_set_source_rgba (cr, 1, 1, 1, 1);
glyph_info.glyph = key->data.glyph;
glyph_info.geometry.width = value->draw_width * 1024;
if (glyph_info.glyph & PANGO_GLYPH_UNKNOWN_FLAG)
glyph_info.geometry.x_offset = 256 * key->data.xshift;
else
glyph_info.geometry.x_offset = 256 * key->data.xshift - value->draw_x * 1024;
glyph_info.geometry.y_offset = 256 * key->data.yshift - value->draw_y * 1024;
glyph_string.num_glyphs = 1;
glyph_string.glyphs = &glyph_info;
pango_cairo_show_glyph_string (cr, key->data.font, &glyph_string);
cairo_destroy (cr);
cairo_surface_flush (surface);
region->width = cairo_image_surface_get_width (surface);
region->height = cairo_image_surface_get_height (surface);
region->stride = cairo_image_surface_get_stride (surface);
region->data = data;
if (value->atlas)
{
region->x = (gsize)(value->tx * value->atlas->width);
region->y = (gsize)(value->ty * value->atlas->height);
}
else
{
region->x = 0;
region->y = 0;
}
cairo_surface_destroy (surface);
return TRUE;
}
static void
upload_glyph (GlyphCacheKey *key,
GskGLCachedGlyph *value)
{
GskImageRegion r;
guchar *pixel_data;
guchar *free_data = NULL;
guint gl_format;
guint gl_type;
gdk_gl_context_push_debug_group_printf (gdk_gl_context_get_current (),
"Uploading glyph %d",
key->data.glyph);
if (render_glyph (key, value, &r))
{
glPixelStorei (GL_UNPACK_ROW_LENGTH, r.stride / 4);
glBindTexture (GL_TEXTURE_2D, value->texture_id);
if (gdk_gl_context_get_use_es (gdk_gl_context_get_current ()))
{
pixel_data = free_data = g_malloc (r.width * r.height * 4);
gdk_memory_convert (pixel_data, r.width * 4,
GDK_MEMORY_R8G8B8A8_PREMULTIPLIED,
r.data, r.width * 4,
GDK_MEMORY_DEFAULT, r.width, r.height);
gl_format = GL_RGBA;
gl_type = GL_UNSIGNED_BYTE;
}
else
{
pixel_data = r.data;
gl_format = GL_BGRA;
gl_type = GL_UNSIGNED_INT_8_8_8_8_REV;
}
glTexSubImage2D (GL_TEXTURE_2D, 0, r.x, r.y, r.width, r.height,
gl_format, gl_type, pixel_data);
glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);
g_free (r.data);
g_free (free_data);
}
gdk_gl_context_pop_debug_group (gdk_gl_context_get_current ());
}
static void
add_to_cache (GskGLGlyphCache *self,
GlyphCacheKey *key,
GskGLDriver *driver,
GskGLCachedGlyph *value)
{
const int width = value->draw_width * key->data.scale / 1024;
const int height = value->draw_height * key->data.scale / 1024;
if (width < MAX_GLYPH_SIZE && height < MAX_GLYPH_SIZE)
{
GskGLTextureAtlas *atlas = NULL;
int packed_x = 0;
int packed_y = 0;
gsk_gl_texture_atlases_pack (self->atlases, width + 2, height + 2, &atlas, &packed_x, &packed_y);
value->tx = (float)(packed_x + 1) / atlas->width;
value->ty = (float)(packed_y + 1) / atlas->height;
value->tw = (float)width / atlas->width;
value->th = (float)height / atlas->height;
value->used = TRUE;
value->atlas = atlas;
value->texture_id = atlas->texture_id;
}
else
{
value->atlas = NULL;
value->texture_id = gsk_gl_driver_create_texture (driver, width, height);
gsk_gl_driver_mark_texture_permanent (driver, value->texture_id);
gsk_gl_driver_bind_source_texture (driver, value->texture_id);
gsk_gl_driver_init_texture_empty (driver, value->texture_id, GL_LINEAR, GL_LINEAR);
value->tx = 0.0f;
value->ty = 0.0f;
value->tw = 1.0f;
value->th = 1.0f;
}
upload_glyph (key, value);
}
void
gsk_gl_glyph_cache_lookup_or_add (GskGLGlyphCache *cache,
GlyphCacheKey *lookup,
GskGLDriver *driver,
const GskGLCachedGlyph **cached_glyph_out)
{
GskGLCachedGlyph *value;
value = g_hash_table_lookup (cache->hash_table, lookup);
if (value)
{
if (value->atlas && !value->used)
{
gsk_gl_texture_atlas_mark_used (value->atlas, value->draw_width, value->draw_height);
value->used = TRUE;
}
value->accessed = TRUE;
*cached_glyph_out = value;
return;
}
{
GlyphCacheKey *key;
PangoRectangle ink_rect;
pango_font_get_glyph_extents (lookup->data.font, lookup->data.glyph, &ink_rect, NULL);
pango_extents_to_pixels (&ink_rect, NULL);
if (lookup->data.xshift != 0)
ink_rect.width += 1;
if (lookup->data.yshift != 0)
ink_rect.height += 1;
value = g_new0 (GskGLCachedGlyph, 1);
value->draw_x = ink_rect.x;
value->draw_y = ink_rect.y;
value->draw_width = ink_rect.width;
value->draw_height = ink_rect.height;
value->accessed = TRUE;
value->atlas = NULL; /* For now */
key = g_new0 (GlyphCacheKey, 1);
key->data.font = g_object_ref (lookup->data.font);
key->data.glyph = lookup->data.glyph;
key->data.xshift = lookup->data.xshift;
key->data.yshift = lookup->data.yshift;
key->data.scale = lookup->data.scale;
key->hash = lookup->hash;
if (key->data.scale > 0 &&
value->draw_width * key->data.scale / 1024 > 0 &&
value->draw_height * key->data.scale / 1024 > 0)
add_to_cache (cache, key, driver, value);
*cached_glyph_out = value;
g_hash_table_insert (cache->hash_table, key, value);
}
}
void
gsk_gl_glyph_cache_begin_frame (GskGLGlyphCache *self,
GskGLDriver *driver,
GPtrArray *removed_atlases)
{
GHashTableIter iter;
GlyphCacheKey *key;
GskGLCachedGlyph *value;
guint dropped = 0;
self->timestamp++;
if (removed_atlases->len > 0)
{
g_hash_table_iter_init (&iter, self->hash_table);
while (g_hash_table_iter_next (&iter, (gpointer *)&key, (gpointer *)&value))
{
if (g_ptr_array_find (removed_atlases, value->atlas, NULL))
{
g_hash_table_iter_remove (&iter);
dropped++;
}
}
}
if (self->timestamp % MAX_FRAME_AGE == 30)
{
g_hash_table_iter_init (&iter, self->hash_table);
while (g_hash_table_iter_next (&iter, (gpointer *)&key, (gpointer *)&value))
{
if (!value->accessed)
{
if (value->atlas)
{
if (value->used)
{
gsk_gl_texture_atlas_mark_unused (value->atlas, value->draw_width, value->draw_height);
value->used = FALSE;
}
}
else
{
gsk_gl_driver_destroy_texture (driver, value->texture_id);
g_hash_table_iter_remove (&iter);
/* Sadly, if we drop an atlas-less cached glyph, we
* have to treat it like a dropped atlas and purge
* text node render data.
*/
dropped++;
}
}
else
value->accessed = FALSE;
}
GSK_NOTE(GLYPH_CACHE, g_message ("%d glyphs cached", g_hash_table_size (self->hash_table)));
}
GSK_NOTE(GLYPH_CACHE, if (dropped > 0) g_message ("Dropped %d glyphs", dropped));
}

View File

@ -1,92 +0,0 @@
#ifndef __GSK_GL_GLYPH_CACHE_PRIVATE_H__
#define __GSK_GL_GLYPH_CACHE_PRIVATE_H__
#include "gskgldriverprivate.h"
#include "gskglimageprivate.h"
#include "gskgltextureatlasprivate.h"
#include <pango/pango.h>
#include <gdk/gdk.h>
typedef struct
{
int ref_count;
GdkDisplay *display;
GHashTable *hash_table;
GskGLTextureAtlases *atlases;
int timestamp;
} GskGLGlyphCache;
struct _CacheKeyData
{
PangoFont *font;
PangoGlyph glyph;
guint xshift : 3;
guint yshift : 3;
guint scale : 26; /* times 1024 */
};
typedef struct _CacheKeyData CacheKeyData;
struct _GlyphCacheKey
{
CacheKeyData data;
guint hash;
};
typedef struct _GlyphCacheKey GlyphCacheKey;
#define PHASE(x) ((int)(floor (4 * (x + 0.125)) - 4 * floor (x + 0.125)))
static inline void
glyph_cache_key_set_glyph_and_shift (GlyphCacheKey *key,
PangoGlyph glyph,
float x,
float y)
{
key->data.glyph = glyph;
key->data.xshift = PHASE (x);
key->data.yshift = PHASE (y);
key->hash = GPOINTER_TO_UINT (key->data.font) ^
key->data.glyph ^
(key->data.xshift << 24) ^
(key->data.yshift << 26) ^
key->data.scale;
}
typedef struct _GskGLCachedGlyph GskGLCachedGlyph;
struct _GskGLCachedGlyph
{
GskGLTextureAtlas *atlas;
guint texture_id;
float tx;
float ty;
float tw;
float th;
int draw_x;
int draw_y;
int draw_width;
int draw_height;
guint accessed : 1; /* accessed since last check */
guint used : 1; /* accounted as used in the atlas */
};
GskGLGlyphCache * gsk_gl_glyph_cache_new (GdkDisplay *display,
GskGLTextureAtlases *atlases);
GskGLGlyphCache * gsk_gl_glyph_cache_ref (GskGLGlyphCache *self);
void gsk_gl_glyph_cache_unref (GskGLGlyphCache *self);
void gsk_gl_glyph_cache_begin_frame (GskGLGlyphCache *self,
GskGLDriver *driver,
GPtrArray *removed_atlases);
void gsk_gl_glyph_cache_lookup_or_add (GskGLGlyphCache *self,
GlyphCacheKey *lookup,
GskGLDriver *driver,
const GskGLCachedGlyph **cached_glyph_out);
#endif

View File

@ -1,275 +0,0 @@
#include "gskgliconcacheprivate.h"
#include "gskgltextureatlasprivate.h"
#include "gdk/gdktextureprivate.h"
#include "gdk/gdkmemorytextureprivate.h"
#include "gdk/gdkglcontextprivate.h"
#include <epoxy/gl.h>
#define MAX_FRAME_AGE 60
static void
icon_data_free (gpointer p)
{
g_object_unref (((IconData *)p)->source_texture);
g_free (p);
}
GskGLIconCache *
gsk_gl_icon_cache_new (GdkDisplay *display,
GskGLTextureAtlases *atlases)
{
GskGLIconCache *self;
self = g_new0 (GskGLIconCache, 1);
self->display = display;
self->icons = g_hash_table_new_full (NULL, NULL, NULL, icon_data_free);
self->atlases = gsk_gl_texture_atlases_ref (atlases);
self->ref_count = 1;
return self;
}
GskGLIconCache *
gsk_gl_icon_cache_ref (GskGLIconCache *self)
{
self->ref_count++;
return self;
}
void
gsk_gl_icon_cache_unref (GskGLIconCache *self)
{
g_assert (self->ref_count > 0);
if (self->ref_count == 1)
{
gsk_gl_texture_atlases_unref (self->atlases);
g_hash_table_unref (self->icons);
g_free (self);
return;
}
self->ref_count--;
}
void
gsk_gl_icon_cache_begin_frame (GskGLIconCache *self,
GPtrArray *removed_atlases)
{
GHashTableIter iter;
GdkTexture *texture;
IconData *icon_data;
self->timestamp++;
/* Drop icons on removed atlases */
if (removed_atlases->len > 0)
{
guint dropped = 0;
g_hash_table_iter_init (&iter, self->icons);
while (g_hash_table_iter_next (&iter, (gpointer *)&texture, (gpointer *)&icon_data))
{
if (g_ptr_array_find (removed_atlases, icon_data->atlas, NULL))
{
g_hash_table_iter_remove (&iter);
dropped++;
}
}
GSK_NOTE(GLYPH_CACHE, if (dropped > 0) g_message ("Dropped %d icons", dropped));
}
if (self->timestamp % MAX_FRAME_AGE == 0)
{
g_hash_table_iter_init (&iter, self->icons);
while (g_hash_table_iter_next (&iter, (gpointer *)&texture, (gpointer *)&icon_data))
{
if (!icon_data->accessed)
{
if (icon_data->used)
{
const int width = icon_data->source_texture->width;
const int height = icon_data->source_texture->height;
gsk_gl_texture_atlas_mark_unused (icon_data->atlas, width + 2, height + 2);
icon_data->used = FALSE;
}
}
icon_data->accessed = FALSE;
}
GSK_NOTE(GLYPH_CACHE, g_message ("%d icons cached", g_hash_table_size (self->icons)));
}
}
void
gsk_gl_icon_cache_lookup_or_add (GskGLIconCache *self,
GdkTexture *texture,
const IconData **out_icon_data)
{
IconData *icon_data = g_hash_table_lookup (self->icons, texture);
if (icon_data)
{
if (!icon_data->used)
{
gsk_gl_texture_atlas_mark_used (icon_data->atlas, texture->width + 2, texture->height + 2);
icon_data->used = TRUE;
}
icon_data->accessed = TRUE;
*out_icon_data = icon_data;
return;
}
/* texture not on any atlas yet. Find a suitable one. */
{
const int width = texture->width;
const int height = texture->height;
GskGLTextureAtlas *atlas = NULL;
int packed_x = 0;
int packed_y = 0;
cairo_surface_t *surface;
unsigned char *surface_data;
unsigned char *pixel_data;
guchar *free_data = NULL;
guint gl_format;
guint gl_type;
gsk_gl_texture_atlases_pack (self->atlases, width + 2, height + 2, &atlas, &packed_x, &packed_y);
icon_data = g_new0 (IconData, 1);
icon_data->atlas = atlas;
icon_data->accessed = TRUE;
icon_data->used = TRUE;
icon_data->texture_id = atlas->texture_id;
icon_data->source_texture = g_object_ref (texture);
icon_data->x = (float)(packed_x + 1) / atlas->width;
icon_data->y = (float)(packed_y + 1) / atlas->width;
icon_data->x2 = icon_data->x + (float)width / atlas->width;
icon_data->y2 = icon_data->y + (float)height / atlas->height;
g_hash_table_insert (self->icons, texture, icon_data);
/* actually upload the texture */
surface = gdk_texture_download_surface (texture);
surface_data = cairo_image_surface_get_data (surface);
gdk_gl_context_push_debug_group_printf (gdk_gl_context_get_current (),
"Uploading texture");
if (gdk_gl_context_get_use_es (gdk_gl_context_get_current ()))
{
pixel_data = free_data = g_malloc (width * height * 4);
gdk_memory_convert (pixel_data, width * 4,
GDK_MEMORY_R8G8B8A8_PREMULTIPLIED,
surface_data, cairo_image_surface_get_stride (surface),
GDK_MEMORY_DEFAULT, width, height);
gl_format = GL_RGBA;
gl_type = GL_UNSIGNED_BYTE;
}
else
{
pixel_data = surface_data;
gl_format = GL_BGRA;
gl_type = GL_UNSIGNED_INT_8_8_8_8_REV;
}
glBindTexture (GL_TEXTURE_2D, atlas->texture_id);
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x + 1, packed_y + 1,
width, height,
gl_format, gl_type,
pixel_data);
/* Padding top */
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x + 1, packed_y,
width, 1,
gl_format, gl_type,
pixel_data);
/* Padding left */
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x, packed_y + 1,
1, height,
gl_format, gl_type,
pixel_data);
/* Padding top left */
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x, packed_y,
1, 1,
gl_format, gl_type,
pixel_data);
/* Padding right */
glPixelStorei (GL_UNPACK_ROW_LENGTH, width);
glPixelStorei (GL_UNPACK_SKIP_PIXELS, width - 1);
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x + width + 1, packed_y + 1,
1, height,
gl_format, gl_type,
pixel_data);
/* Padding top right */
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x + width + 1, packed_y,
1, 1,
gl_format, gl_type,
pixel_data);
/* Padding bottom */
glPixelStorei (GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei (GL_UNPACK_SKIP_ROWS, height - 1);
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x + 1, packed_y + 1 + height,
width, 1,
gl_format, gl_type,
pixel_data);
/* Padding bottom left */
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x, packed_y + 1 + height,
1, 1,
gl_format, gl_type,
pixel_data);
/* Padding bottom right */
glPixelStorei (GL_UNPACK_ROW_LENGTH, width);
glPixelStorei (GL_UNPACK_SKIP_PIXELS, width - 1);
glTexSubImage2D (GL_TEXTURE_2D, 0,
packed_x + 1 + width, packed_y + 1 + height,
1, 1,
gl_format, gl_type,
pixel_data);
/* Reset this */
glPixelStorei (GL_UNPACK_SKIP_PIXELS, 0);
glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei (GL_UNPACK_SKIP_ROWS, 0);
gdk_gl_context_pop_debug_group (gdk_gl_context_get_current ());
*out_icon_data = icon_data;
cairo_surface_destroy (surface);
g_free (free_data);
#if 0
{
static int k;
const int stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, atlas->width);
guchar *data = g_malloc (atlas->height * stride);
cairo_surface_t *s;
char *filename = g_strdup_printf ("atlas_%u_%d.png", atlas->texture_id, k++);
glBindTexture (GL_TEXTURE_2D, atlas->texture_id);
glGetTexImage (GL_TEXTURE_2D, 0, GL_BGRA, GL_UNSIGNED_BYTE, data);
s = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, atlas->width, atlas->height, stride);
cairo_surface_write_to_png (s, filename);
cairo_surface_destroy (s);
g_free (data);
g_free (filename);
}
#endif
}
}

View File

@ -1,44 +0,0 @@
#ifndef __GSK_GL_ICON_CACHE_PRIVATE_H__
#define __GSK_GL_ICON_CACHE_PRIVATE_H__
#include "gskgldriverprivate.h"
#include "gskglimageprivate.h"
#include "gskrendererprivate.h"
#include "gskgltextureatlasprivate.h"
#include <pango/pango.h>
#include <gdk/gdk.h>
typedef struct
{
int ref_count;
GdkDisplay *display;
GskGLDriver *gl_driver;
GskGLTextureAtlases *atlases;
GHashTable *icons; /* GdkTexture -> IconData */
int timestamp;
} GskGLIconCache;
typedef struct
{
float x, y, x2, y2;
GskGLTextureAtlas *atlas;
guint used : 1;
guint accessed : 1;
int texture_id;
GdkTexture *source_texture;
} IconData;
GskGLIconCache * gsk_gl_icon_cache_new (GdkDisplay *display,
GskGLTextureAtlases *atlases);
GskGLIconCache * gsk_gl_icon_cache_ref (GskGLIconCache *self);
void gsk_gl_icon_cache_unref (GskGLIconCache *self);
void gsk_gl_icon_cache_begin_frame (GskGLIconCache *self,
GPtrArray *removed_atlases);
void gsk_gl_icon_cache_lookup_or_add (GskGLIconCache *self,
GdkTexture *texture,
const IconData **out_icon_data);
#endif

View File

@ -1,64 +0,0 @@
#include "gskglimageprivate.h"
#include <epoxy/gl.h>
void
gsk_gl_image_create (GskGLImage *self,
GskGLDriver *gl_driver,
int width,
int height,
int min_filter,
int mag_filter)
{
self->texture_id = gsk_gl_driver_create_texture (gl_driver, width, height);
self->width = width;
self->height = height;
gsk_gl_driver_bind_source_texture (gl_driver, self->texture_id);
gsk_gl_driver_init_texture_empty (gl_driver, self->texture_id, min_filter, mag_filter);
gsk_gl_driver_mark_texture_permanent (gl_driver, self->texture_id);
}
void
gsk_gl_image_destroy (GskGLImage *self,
GskGLDriver *gl_driver)
{
gsk_gl_driver_destroy_texture (gl_driver, self->texture_id);
self->texture_id = 0;
}
void
gsk_gl_image_write_to_png (const GskGLImage *self,
GskGLDriver *gl_driver,
const char *filename)
{
int stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, self->width);
guchar *data = g_malloc (self->height * stride);
cairo_surface_t *s;
gsk_gl_driver_bind_source_texture (gl_driver, self->texture_id);
glGetTexImage (GL_TEXTURE_2D, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, data);
s = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, self->width, self->height, stride);
cairo_surface_write_to_png (s, filename);
cairo_surface_destroy (s);
g_free (data);
}
void
gsk_gl_image_upload_region (GskGLImage *self,
GskGLDriver *gl_driver,
const GskImageRegion *region)
{
gsk_gl_driver_bind_source_texture (gl_driver, self->texture_id);
glBindTexture (GL_TEXTURE_2D, self->texture_id);
glTexSubImage2D (GL_TEXTURE_2D, 0, region->x, region->y, region->width, region->height,
GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, region->data);
#ifdef G_ENABLE_DEBUG
/*gsk_gl_driver_bind_source_texture (gl_driver, self->texture_id);*/
/*gsk_gl_image_dump (self, gl_driver, "/home/baedert/atlases/test_dump.png");*/
#endif
}

View File

@ -1,41 +0,0 @@
#ifndef __GSK_GL_IMAGE_H__
#define __GSK_GL_IMAGE_H__
#include "gskgldriverprivate.h"
#include <cairo.h>
typedef struct
{
guint texture_id;
int width;
int height;
} GskGLImage;
typedef struct
{
guchar *data;
gsize width;
gsize height;
gsize stride;
gsize x;
gsize y;
} GskImageRegion;
void gsk_gl_image_create (GskGLImage *self,
GskGLDriver *gl_driver,
int width,
int height,
int min_filter,
int mag_filter);
void gsk_gl_image_destroy (GskGLImage *self,
GskGLDriver *gl_driver);
void gsk_gl_image_write_to_png (const GskGLImage *self,
GskGLDriver *gl_driver,
const char *filename);
void gsk_gl_image_upload_region (GskGLImage *self,
GskGLDriver *gl_driver,
const GskImageRegion *region);
#endif

View File

@ -1,51 +0,0 @@
#include <glib/gprintf.h>
#include "gskglnodesampleprivate.h"
#include "gskrendernodeprivate.h"
void
node_sample_init (NodeSample *self)
{
memset (self->nodes, 0, sizeof (self->nodes));
self->count = 0;
}
void
node_sample_reset (NodeSample *self)
{
node_sample_init (self);
}
void
node_sample_add (NodeSample *self,
GskRenderNode *node)
{
const guint node_type = gsk_render_node_get_node_type (node);
g_assert (node_type <= N_NODE_TYPES);
if (self->nodes[node_type].class_name == NULL)
self->nodes[node_type].class_name = g_type_name_from_instance ((GTypeInstance *) node);
self->nodes[node_type].count ++;
self->count ++;
}
void
node_sample_print (const NodeSample *self,
const char *prefix)
{
guint i;
g_printf ("%s:\n", prefix);
for (i = 0; i < N_NODE_TYPES; i ++)
{
if (self->nodes[i].count > 0)
{
double p = (double)self->nodes[i].count / (double)self->count;
g_printf ("%s: %u (%.2f%%)\n", self->nodes[i].class_name, self->nodes[i].count, p * 100.0);
}
}
}

View File

@ -1,28 +0,0 @@
#ifndef __GSK_GL_NODE_SAMPLE_PRIVATE_H__
#define __GSK_GL_NODE_SAMPLE_PRIVATE_H__
#include <glib.h>
#include "gskenums.h"
#include "gskrendernode.h"
/* TODO: We have no other way for this...? */
#define N_NODE_TYPES (GSK_DEBUG_NODE + 1)
typedef struct
{
struct {
const char *class_name;
guint count;
} nodes[N_NODE_TYPES];
guint count;
} NodeSample;
void node_sample_init (NodeSample *self);
void node_sample_reset (NodeSample *self);
void node_sample_add (NodeSample *self,
GskRenderNode *node);
void node_sample_print (const NodeSample *self,
const char *prefix);
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,52 +0,0 @@
/*
* Copyright © 2016 Endless
* 2018 Timm Bäder <mail@baedert.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* Authors: Timm Bäder <mail@baedert.org>
*/
#ifndef __GSK_GL_RENDERER_H__
#define __GSK_GL_RENDERER_H__
#include <gsk/gskrenderer.h>
G_BEGIN_DECLS
#define GSK_TYPE_GL_RENDERER (gsk_gl_renderer_get_type ())
#define GSK_GL_RENDERER(obj) (G_TYPE_CHECK_INSTANCE_CAST ((obj), GSK_TYPE_GL_RENDERER, GskGLRenderer))
#define GSK_IS_GL_RENDERER(obj) (G_TYPE_CHECK_INSTANCE_TYPE ((obj), GSK_TYPE_GL_RENDERER))
#define GSK_GL_RENDERER_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), GSK_TYPE_GL_RENDERER, GskGLRendererClass))
#define GSK_IS_GL_RENDERER_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), GSK_TYPE_GL_RENDERER))
#define GSK_GL_RENDERER_GET_CLASS(obj) (G_TYPE_INSTANCE_GET_CLASS ((obj), GSK_TYPE_GL_RENDERER, GskGLRendererClass))
/**
* GskGLRenderer:
*
* A GSK renderer that is using OpenGL.
*/
typedef struct _GskGLRenderer GskGLRenderer;
typedef struct _GskGLRendererClass GskGLRendererClass;
GDK_AVAILABLE_IN_ALL
GType gsk_gl_renderer_get_type (void) G_GNUC_CONST;
GDK_AVAILABLE_IN_ALL
GskRenderer * gsk_gl_renderer_new (void);
G_END_DECLS
#endif /* __GSK_GL_RENDERER_H__ */

View File

@ -1,14 +0,0 @@
#ifndef __GSK_GL_RENDERER_PRIVATE_H__
#define __GSK_GL_RENDERER_PRIVATE_H__
#include "gskglrenderer.h"
G_BEGIN_DECLS
gboolean gsk_gl_renderer_try_compile_gl_shader (GskGLRenderer *self,
GskGLShader *shader,
GError **error);
G_END_DECLS
#endif /* __GSK_GL_RENDERER_PRIVATE_H__ */

View File

@ -1,976 +0,0 @@
#include "gskglrenderopsprivate.h"
#include "gsktransform.h"
typedef struct
{
GskRoundedRect rect;
bool is_rectilinear;
} ClipStackEntry;
static inline gboolean
rect_equal (const graphene_rect_t *a,
const graphene_rect_t *b)
{
return memcmp (a, b, sizeof (graphene_rect_t)) == 0;
}
static inline bool G_GNUC_PURE
rounded_rect_equal (const GskRoundedRect *r1,
const GskRoundedRect *r2)
{
if (r1 == r2)
return true;
if (!r1)
return false;
if (r1->bounds.origin.x != r2->bounds.origin.x ||
r1->bounds.origin.y != r2->bounds.origin.y ||
r1->bounds.size.width != r2->bounds.size.width ||
r1->bounds.size.height != r2->bounds.size.height)
return false;
for (int i = 0; i < 4; i ++)
if (r1->corner[i].width != r2->corner[i].width ||
r1->corner[i].height != r2->corner[i].height)
return false;
return true;
}
static inline gboolean G_GNUC_PURE
rounded_rect_corners_equal (const GskRoundedRect *r1,
const GskRoundedRect *r2)
{
int i;
if (!r1)
return FALSE;
for (i = 0; i < 4; i ++)
if (r1->corner[i].width != r2->corner[i].width ||
r1->corner[i].height != r2->corner[i].height)
return FALSE;
return TRUE;
}
static inline ProgramState *
get_current_program_state (RenderOpBuilder *builder)
{
if (!builder->current_program)
return NULL;
return &builder->current_program->state;
}
void
ops_finish (RenderOpBuilder *builder)
{
if (builder->mv_stack)
g_array_free (builder->mv_stack, TRUE);
builder->mv_stack = NULL;
if (builder->clip_stack)
g_array_free (builder->clip_stack, TRUE);
builder->clip_stack = NULL;
builder->dx = 0;
builder->dy = 0;
builder->scale_x = 1;
builder->scale_y = 1;
builder->current_modelview = NULL;
builder->current_clip = NULL;
builder->clip_is_rectilinear = TRUE;
builder->current_render_target = 0;
builder->current_texture = 0;
builder->current_program = NULL;
graphene_matrix_init_identity (&builder->current_projection);
builder->current_viewport = GRAPHENE_RECT_INIT (0, 0, 0, 0);
}
/* Debugging only! */
void
ops_dump_framebuffer (RenderOpBuilder *builder,
const char *filename,
int width,
int height)
{
OpDumpFrameBuffer *op;
op = ops_begin (builder, OP_DUMP_FRAMEBUFFER);
op->filename = g_strdup (filename);
op->width = width;
op->height = height;
}
void
ops_push_debug_group (RenderOpBuilder *builder,
const char *text)
{
OpDebugGroup *op;
op = ops_begin (builder, OP_PUSH_DEBUG_GROUP);
strncpy (op->text, text, sizeof(op->text) - 1);
op->text[sizeof(op->text) - 1] = 0; /* Ensure zero terminated */
}
void
ops_pop_debug_group (RenderOpBuilder *builder)
{
ops_begin (builder, OP_POP_DEBUG_GROUP);
}
static void
extract_matrix_metadata (GskTransform *transform,
OpsMatrixMetadata *md)
{
float dummy;
switch (gsk_transform_get_category (transform))
{
case GSK_TRANSFORM_CATEGORY_IDENTITY:
case GSK_TRANSFORM_CATEGORY_2D_TRANSLATE:
md->scale_x = 1;
md->scale_y = 1;
break;
case GSK_TRANSFORM_CATEGORY_2D_AFFINE:
gsk_transform_to_affine (transform,
&md->scale_x, &md->scale_y,
&dummy, &dummy);
break;
case GSK_TRANSFORM_CATEGORY_UNKNOWN:
case GSK_TRANSFORM_CATEGORY_ANY:
case GSK_TRANSFORM_CATEGORY_3D:
case GSK_TRANSFORM_CATEGORY_2D:
{
graphene_vec3_t col1;
graphene_vec3_t col2;
graphene_matrix_t m;
gsk_transform_to_matrix (transform, &m);
/* TODO: 90% sure this is incorrect. But we should never hit this code
* path anyway. */
graphene_vec3_init (&col1,
graphene_matrix_get_value (&m, 0, 0),
graphene_matrix_get_value (&m, 1, 0),
graphene_matrix_get_value (&m, 2, 0));
graphene_vec3_init (&col2,
graphene_matrix_get_value (&m, 0, 1),
graphene_matrix_get_value (&m, 1, 1),
graphene_matrix_get_value (&m, 2, 1));
md->scale_x = graphene_vec3_length (&col1);
md->scale_y = graphene_vec3_length (&col2);
}
break;
default:
{}
}
}
void
ops_transform_bounds_modelview (const RenderOpBuilder *builder,
const graphene_rect_t *src,
graphene_rect_t *dst)
{
graphene_rect_t r = *src;
g_assert (builder->mv_stack != NULL);
g_assert (builder->mv_stack->len >= 1);
r.origin.x += builder->dx;
r.origin.y += builder->dy;
gsk_transform_transform_bounds (builder->current_modelview, &r, dst);
}
void
ops_init (RenderOpBuilder *builder)
{
memset (builder, 0, sizeof (*builder));
builder->current_opacity = 1.0f;
op_buffer_init (&builder->render_ops);
builder->vertices = g_array_new (FALSE, TRUE, sizeof (GskQuadVertex));
}
void
ops_free (RenderOpBuilder *builder)
{
g_array_unref (builder->vertices);
op_buffer_destroy (&builder->render_ops);
}
void
ops_set_program (RenderOpBuilder *builder,
Program *program)
{
OpProgram *op;
if (builder->current_program == program)
return;
op = ops_begin (builder, OP_CHANGE_PROGRAM);
op->program = program;
builder->current_program = program;
}
void
ops_push_clip (RenderOpBuilder *self,
const GskRoundedRect *clip)
{
ClipStackEntry entry;
if (G_UNLIKELY (self->clip_stack == NULL))
self->clip_stack = g_array_new (FALSE, TRUE, sizeof (ClipStackEntry));
g_assert (self->clip_stack != NULL);
entry.rect = *clip;
entry.is_rectilinear = gsk_rounded_rect_is_rectilinear (clip);
g_array_append_val (self->clip_stack, entry);
self->current_clip = &g_array_index (self->clip_stack, ClipStackEntry, self->clip_stack->len - 1).rect;
self->clip_is_rectilinear = entry.is_rectilinear;
}
void
ops_pop_clip (RenderOpBuilder *self)
{
const ClipStackEntry *head;
g_assert (self->clip_stack);
g_assert (self->clip_stack->len >= 1);
self->clip_stack->len --;
head = &g_array_index (self->clip_stack, ClipStackEntry, self->clip_stack->len - 1);
if (self->clip_stack->len >= 1)
{
self->current_clip = &head->rect;
self->clip_is_rectilinear = head->is_rectilinear;
}
else
{
self->current_clip = NULL;
self->clip_is_rectilinear = TRUE;
}
}
gboolean
ops_has_clip (RenderOpBuilder *self)
{
return self->clip_stack != NULL &&
self->clip_stack->len > 1;
}
/**
* ops_set_modelview:
* @builder
* @transform: (transfer full): The new modelview transform
*
* This sets the modelview to the given one without looking at the
* one that's currently set */
void
ops_set_modelview (RenderOpBuilder *builder,
GskTransform *transform)
{
MatrixStackEntry *entry;
if (G_UNLIKELY (builder->mv_stack == NULL))
builder->mv_stack = g_array_new (FALSE, TRUE, sizeof (MatrixStackEntry));
g_assert (builder->mv_stack != NULL);
g_array_set_size (builder->mv_stack, builder->mv_stack->len + 1);
entry = &g_array_index (builder->mv_stack, MatrixStackEntry, builder->mv_stack->len - 1);
entry->transform = transform;
entry->metadata.dx_before = builder->dx;
entry->metadata.dy_before = builder->dy;
extract_matrix_metadata (entry->transform, &entry->metadata);
builder->dx = 0;
builder->dy = 0;
builder->current_modelview = entry->transform;
builder->scale_x = entry->metadata.scale_x;
builder->scale_y = entry->metadata.scale_y;
}
/* This sets the given modelview to the one we get when multiplying
* the given modelview with the current one. */
void
ops_push_modelview (RenderOpBuilder *builder,
GskTransform *transform)
{
MatrixStackEntry *entry;
if (G_UNLIKELY (builder->mv_stack == NULL))
builder->mv_stack = g_array_new (FALSE, TRUE, sizeof (MatrixStackEntry));
g_assert (builder->mv_stack != NULL);
g_array_set_size (builder->mv_stack, builder->mv_stack->len + 1);
entry = &g_array_index (builder->mv_stack, MatrixStackEntry, builder->mv_stack->len - 1);
if (G_LIKELY (builder->mv_stack->len >= 2))
{
const MatrixStackEntry *cur;
GskTransform *t = NULL;
cur = &g_array_index (builder->mv_stack, MatrixStackEntry, builder->mv_stack->len - 2);
/* Multiply given matrix with current modelview */
t = gsk_transform_translate (gsk_transform_ref (cur->transform),
&(graphene_point_t) { builder->dx, builder->dy});
t = gsk_transform_transform (t, transform);
entry->transform = t;
}
else
{
entry->transform = gsk_transform_ref (transform);
}
entry->metadata.dx_before = builder->dx;
entry->metadata.dy_before = builder->dy;
extract_matrix_metadata (entry->transform, &entry->metadata);
builder->dx = 0;
builder->dy = 0;
builder->scale_x = entry->metadata.scale_x;
builder->scale_y = entry->metadata.scale_y;
builder->current_modelview = entry->transform;
}
void
ops_pop_modelview (RenderOpBuilder *builder)
{
const MatrixStackEntry *head;
g_assert (builder->mv_stack);
g_assert (builder->mv_stack->len >= 1);
head = &g_array_index (builder->mv_stack, MatrixStackEntry, builder->mv_stack->len - 1);
builder->dx = head->metadata.dx_before;
builder->dy = head->metadata.dy_before;
gsk_transform_unref (head->transform);
builder->mv_stack->len --;
head = &g_array_index (builder->mv_stack, MatrixStackEntry, builder->mv_stack->len - 1);
if (builder->mv_stack->len >= 1)
{
builder->scale_x = head->metadata.scale_x;
builder->scale_y = head->metadata.scale_y;
builder->current_modelview = head->transform;
}
else
{
builder->current_modelview = NULL;
}
}
graphene_matrix_t
ops_set_projection (RenderOpBuilder *builder,
const graphene_matrix_t *projection)
{
graphene_matrix_t prev_mv;
prev_mv = builder->current_projection;
builder->current_projection = *projection;
return prev_mv;
}
graphene_rect_t
ops_set_viewport (RenderOpBuilder *builder,
const graphene_rect_t *viewport)
{
ProgramState *current_program_state = get_current_program_state (builder);
OpViewport *op;
graphene_rect_t prev_viewport;
if (rect_equal (&builder->current_viewport, viewport))
return *viewport;
op = ops_begin (builder, OP_CHANGE_VIEWPORT);
op->viewport = *viewport;
if (current_program_state != NULL)
current_program_state->viewport = *viewport;
prev_viewport = builder->current_viewport;
builder->current_viewport = *viewport;
return prev_viewport;
}
void
ops_set_texture (RenderOpBuilder *builder,
int texture_id)
{
OpTexture *op;
if (builder->current_texture == texture_id)
return;
op = ops_begin (builder, OP_CHANGE_SOURCE_TEXTURE);
op->texture_id = texture_id;
builder->current_texture = texture_id;
}
void
ops_set_extra_texture (RenderOpBuilder *builder,
int texture_id,
int idx)
{
OpExtraTexture *op;
op = ops_begin (builder, OP_CHANGE_EXTRA_SOURCE_TEXTURE);
op->texture_id = texture_id;
op->idx = idx;
}
int
ops_set_render_target (RenderOpBuilder *builder,
int render_target_id)
{
OpRenderTarget *op;
int prev_render_target;
if (builder->current_render_target == render_target_id)
return render_target_id;
prev_render_target = builder->current_render_target;
if (!(op = op_buffer_peek_tail_checked (&builder->render_ops, OP_CHANGE_RENDER_TARGET)))
op = op_buffer_add (&builder->render_ops, OP_CHANGE_RENDER_TARGET);
op->render_target_id = render_target_id;
builder->current_render_target = render_target_id;
return prev_render_target;
}
float
ops_set_opacity (RenderOpBuilder *builder,
float opacity)
{
float prev_opacity;
if (builder->current_opacity == opacity)
return opacity;
prev_opacity = builder->current_opacity;
builder->current_opacity = opacity;
return prev_opacity;
}
void
ops_set_color (RenderOpBuilder *builder,
const GdkRGBA *color)
{
ProgramState *current_program_state = get_current_program_state (builder);
OpColor *op;
if (gdk_rgba_equal (color, &current_program_state->color))
return;
current_program_state->color = *color;
op = ops_begin (builder, OP_CHANGE_COLOR);
op->rgba = color;
}
void
ops_set_gl_shader_args (RenderOpBuilder *builder,
GskGLShader *shader,
float width,
float height,
const guchar *uniform_data)
{
ProgramState *current_program_state = get_current_program_state (builder);
OpGLShader *op;
gsize args_size = gsk_gl_shader_get_args_size (shader);
if (current_program_state)
{
if (current_program_state->gl_shader.width == width &&
current_program_state->gl_shader.height == height &&
current_program_state->gl_shader.uniform_data_len == args_size &&
memcmp (current_program_state->gl_shader.uniform_data, uniform_data, args_size) == 0)
return;
current_program_state->gl_shader.width = width;
current_program_state->gl_shader.height = height;
if (args_size > sizeof (current_program_state->gl_shader.uniform_data))
current_program_state->gl_shader.uniform_data_len = 0;
else
{
current_program_state->gl_shader.uniform_data_len = args_size;
memcpy (current_program_state->gl_shader.uniform_data, uniform_data, args_size);
}
}
op = ops_begin (builder, OP_CHANGE_GL_SHADER_ARGS);
op->shader = shader;
op->size[0] = width;
op->size[1] = height;
op->uniform_data = uniform_data;
}
void
ops_set_color_matrix (RenderOpBuilder *builder,
const graphene_matrix_t *matrix,
const graphene_vec4_t *offset)
{
ProgramState *current_program_state = get_current_program_state (builder);
const bool offset_equal = graphene_vec4_equal (offset, &current_program_state->color_matrix.offset);
const bool matrix_equal = graphene_matrix_equal_fast (matrix,
&current_program_state->color_matrix.matrix);
OpColorMatrix *op;
if (offset_equal && matrix_equal)
return;
op = ops_begin (builder, OP_CHANGE_COLOR_MATRIX);
if (!matrix_equal)
{
current_program_state->color_matrix.matrix = *matrix;
op->matrix.value = matrix;
op->matrix.send = TRUE;
}
else
op->matrix.send = FALSE;
if (!offset_equal)
{
current_program_state->color_matrix.offset = *offset;
op->offset.value = offset;
op->offset.send = TRUE;
}
else
op->offset.send = FALSE;
}
void
ops_set_border (RenderOpBuilder *builder,
const GskRoundedRect *outline)
{
ProgramState *current_program_state = get_current_program_state (builder);
OpBorder *op;
if (memcmp (&current_program_state->border.outline,
outline, sizeof (GskRoundedRect)) == 0)
return;
current_program_state->border.outline = *outline;
op = ops_begin (builder, OP_CHANGE_BORDER);
op->outline = *outline;
}
void
ops_set_border_width (RenderOpBuilder *builder,
const float *widths)
{
ProgramState *current_program_state = get_current_program_state (builder);
OpBorder *op;
g_assert (current_program_state);
if (memcmp (current_program_state->border.widths,
widths, sizeof (float) * 4) == 0)
return;
memcpy (&current_program_state->border.widths,
widths, sizeof (float) * 4);
op = ops_begin (builder, OP_CHANGE_BORDER_WIDTH);
op->widths[0] = widths[0];
op->widths[1] = widths[1];
op->widths[2] = widths[2];
op->widths[3] = widths[3];
}
void
ops_set_border_color (RenderOpBuilder *builder,
const GdkRGBA *color)
{
ProgramState *current_program_state = get_current_program_state (builder);
OpBorder *op;
if (gdk_rgba_equal (color, &current_program_state->border.color))
return;
op = op_buffer_add (&builder->render_ops, OP_CHANGE_BORDER_COLOR);
op->color = color;
current_program_state->border.color = *color;
}
GskQuadVertex *
ops_draw (RenderOpBuilder *builder,
const GskQuadVertex vertex_data[GL_N_VERTICES])
{
ProgramState *program_state = get_current_program_state (builder);
OpDraw *op;
if (memcmp (&builder->current_projection, &program_state->projection, sizeof (graphene_matrix_t)) != 0)
{
OpMatrix *opm;
opm = ops_begin (builder, OP_CHANGE_PROJECTION);
opm->matrix = builder->current_projection;
program_state->projection = builder->current_projection;
}
if (program_state->modelview == NULL ||
!gsk_transform_equal (builder->current_modelview, program_state->modelview))
{
OpMatrix *opm;
opm = ops_begin (builder, OP_CHANGE_MODELVIEW);
gsk_transform_to_matrix (builder->current_modelview, &opm->matrix);
gsk_transform_unref (program_state->modelview);
program_state->modelview = gsk_transform_ref (builder->current_modelview);
}
if (!rect_equal (&builder->current_viewport, &program_state->viewport))
{
OpViewport *opv;
opv = ops_begin (builder, OP_CHANGE_VIEWPORT);
opv->viewport = builder->current_viewport;
program_state->viewport = builder->current_viewport;
}
if (!rounded_rect_equal (builder->current_clip, &program_state->clip))
{
OpClip *opc;
opc = ops_begin (builder, OP_CHANGE_CLIP);
opc->clip = *builder->current_clip;
opc->send_corners = !rounded_rect_corners_equal (builder->current_clip, &program_state->clip);
program_state->clip = *builder->current_clip;
}
if (program_state->opacity != builder->current_opacity)
{
OpOpacity *opo;
opo = ops_begin (builder, OP_CHANGE_OPACITY);
opo->opacity = builder->current_opacity;
program_state->opacity = builder->current_opacity;
}
/* TODO: Did the additions above break the following optimization? */
if ((op = op_buffer_peek_tail_checked (&builder->render_ops, OP_DRAW)))
{
op->vao_size += GL_N_VERTICES;
}
else
{
op = op_buffer_add (&builder->render_ops, OP_DRAW);
op->vao_offset = builder->vertices->len;
op->vao_size = GL_N_VERTICES;
}
if (vertex_data)
{
g_array_append_vals (builder->vertices, vertex_data, GL_N_VERTICES);
return NULL; /* Better not use this on the caller side */
}
g_array_set_size (builder->vertices, builder->vertices->len + GL_N_VERTICES);
return &g_array_index (builder->vertices, GskQuadVertex, builder->vertices->len - GL_N_VERTICES);
}
/* The offset is only valid for the current modelview.
* Setting a new modelview will add the offset to that matrix
* and reset the internal offset to 0. */
void
ops_offset (RenderOpBuilder *builder,
float x,
float y)
{
builder->dx += x;
builder->dy += y;
}
gpointer
ops_begin (RenderOpBuilder *builder,
OpKind kind)
{
return op_buffer_add (&builder->render_ops, kind);
}
void
ops_reset (RenderOpBuilder *builder)
{
op_buffer_clear (&builder->render_ops);
g_array_set_size (builder->vertices, 0);
}
OpBuffer *
ops_get_buffer (RenderOpBuilder *builder)
{
return &builder->render_ops;
}
void
ops_set_inset_shadow (RenderOpBuilder *self,
const GskRoundedRect outline,
float spread,
const GdkRGBA *color,
float dx,
float dy)
{
ProgramState *current_program_state = get_current_program_state (self);
OpShadow *op;
g_assert (current_program_state);
op = ops_begin (self, OP_CHANGE_INSET_SHADOW);
if (!rounded_rect_equal (&outline, &current_program_state->inset_shadow.outline))
{
op->outline.value = outline;
op->outline.send = TRUE;
op->outline.send_corners = !rounded_rect_corners_equal (&current_program_state->inset_shadow.outline,
&outline);
current_program_state->inset_shadow.outline = outline;
}
else
op->outline.send = FALSE;
if (spread != current_program_state->inset_shadow.spread)
{
op->spread.value = spread;
op->spread.send = TRUE;
current_program_state->inset_shadow.spread = spread;
}
else
op->spread.send = FALSE;
if (!gdk_rgba_equal (color, &current_program_state->inset_shadow.color))
{
op->color.value = color;
op->color.send = TRUE;
current_program_state->inset_shadow.color = *color;
}
else
op->color.send = FALSE;
if (dx != current_program_state->inset_shadow.dx ||
dy != current_program_state->inset_shadow.dy)
{
op->offset.value[0] = dx;
op->offset.value[1] = dy;
op->offset.send = TRUE;
current_program_state->inset_shadow.dx = dx;
current_program_state->inset_shadow.dy = dy;
}
else
op->offset.send = FALSE;
if (!op->outline.send &&
!op->spread.send &&
!op->offset.send &&
!op->color.send)
{
op_buffer_pop_tail (&self->render_ops);
}
}
void
ops_set_unblurred_outset_shadow (RenderOpBuilder *self,
const GskRoundedRect outline,
float spread,
const GdkRGBA *color,
float dx,
float dy)
{
ProgramState *current_program_state = get_current_program_state (self);
OpShadow *op;
g_assert (current_program_state);
op = ops_begin (self, OP_CHANGE_UNBLURRED_OUTSET_SHADOW);
if (!rounded_rect_equal (&outline, &current_program_state->unblurred_outset_shadow.outline))
{
op->outline.value = outline;
op->outline.send = TRUE;
op->outline.send_corners = !rounded_rect_corners_equal (&current_program_state->unblurred_outset_shadow.outline,
&outline);
current_program_state->unblurred_outset_shadow.outline = outline;
}
else
op->outline.send = FALSE;
if (spread != current_program_state->unblurred_outset_shadow.spread)
{
op->spread.value = spread;
op->spread.send = TRUE;
current_program_state->unblurred_outset_shadow.spread = spread;
}
else
op->spread.send = FALSE;
if (!gdk_rgba_equal (color, &current_program_state->unblurred_outset_shadow.color))
{
op->color.value = color;
op->color.send = TRUE;
current_program_state->unblurred_outset_shadow.color = *color;
}
else
op->color.send = FALSE;
if (dx != current_program_state->unblurred_outset_shadow.dx ||
dy != current_program_state->unblurred_outset_shadow.dy)
{
op->offset.value[0] = dx;
op->offset.value[1] = dy;
op->offset.send = TRUE;
current_program_state->unblurred_outset_shadow.dx = dx;
current_program_state->unblurred_outset_shadow.dy = dy;
}
else
op->offset.send = FALSE;
}
void
ops_set_linear_gradient (RenderOpBuilder *self,
guint n_color_stops,
const GskColorStop *color_stops,
gboolean repeat,
float start_x,
float start_y,
float end_x,
float end_y)
{
ProgramState *current_program_state = get_current_program_state (self);
OpLinearGradient *op;
const guint real_n_color_stops = MIN (GL_MAX_GRADIENT_STOPS, n_color_stops);
g_assert (current_program_state);
op = ops_begin (self, OP_CHANGE_LINEAR_GRADIENT);
/* We always save the n_color_stops value in the op so the renderer can use it in
* cases where we send the color stops, but not n_color_stops */
op->n_color_stops.value = real_n_color_stops;
if (current_program_state->linear_gradient.n_color_stops != real_n_color_stops)
{
op->n_color_stops.send = TRUE;
current_program_state->linear_gradient.n_color_stops = real_n_color_stops;
}
else
op->n_color_stops.send = FALSE;
op->color_stops.send = FALSE;
if (!op->n_color_stops.send)
{
g_assert (current_program_state->linear_gradient.n_color_stops == real_n_color_stops);
for (guint i = 0; i < real_n_color_stops; i ++)
{
const GskColorStop *s1 = &color_stops[i];
const GskColorStop *s2 = &current_program_state->linear_gradient.color_stops[i];
if (s1->offset != s2->offset ||
!gdk_rgba_equal (&s1->color, &s2->color))
{
op->color_stops.send = TRUE;
break;
}
}
}
else
op->color_stops.send = TRUE;
if (op->color_stops.send)
{
op->color_stops.value = color_stops;
memcpy (&current_program_state->linear_gradient.color_stops,
color_stops,
sizeof (GskColorStop) * real_n_color_stops);
}
op->repeat = repeat;
op->start_point[0] = start_x;
op->start_point[1] = start_y;
op->end_point[0] = end_x;
op->end_point[1] = end_y;
}
void
ops_set_radial_gradient (RenderOpBuilder *self,
guint n_color_stops,
const GskColorStop *color_stops,
gboolean repeat,
float center_x,
float center_y,
float start,
float end,
float hradius,
float vradius)
{
const guint real_n_color_stops = MIN (GL_MAX_GRADIENT_STOPS, n_color_stops);
OpRadialGradient *op;
/* TODO: State tracking? */
op = ops_begin (self, OP_CHANGE_RADIAL_GRADIENT);
op->n_color_stops.value = real_n_color_stops;
op->n_color_stops.send = true;
op->color_stops.value = color_stops;
op->color_stops.send = true;
op->center[0] = center_x;
op->center[1] = center_y;
op->radius[0] = hradius;
op->radius[1] = vradius;
op->start = start;
op->end = end;
op->repeat = repeat;
}
void
ops_set_conic_gradient (RenderOpBuilder *self,
guint n_color_stops,
const GskColorStop *color_stops,
float center_x,
float center_y,
float angle)
{
const guint real_n_color_stops = MIN (GL_MAX_GRADIENT_STOPS, n_color_stops);
OpConicGradient *op;
/* TODO: State tracking? */
op = ops_begin (self, OP_CHANGE_CONIC_GRADIENT);
op->n_color_stops.value = real_n_color_stops;
op->n_color_stops.send = true;
op->color_stops.value = color_stops;
op->color_stops.send = true;
op->center[0] = center_x;
op->center[1] = center_y;
op->angle = angle;
}

View File

@ -1,353 +0,0 @@
#ifndef __GSK_GL_RENDER_OPS_H__
#define __GSK_GL_RENDER_OPS_H__
#include <glib.h>
#include <graphene.h>
#include <gdk/gdk.h>
#include "gskgldriverprivate.h"
#include "gskroundedrectprivate.h"
#include "gskglrenderer.h"
#include "gskrendernodeprivate.h"
#include "opbuffer.h"
#define GL_N_VERTICES 6
#define GL_N_PROGRAMS 15
#define GL_MAX_GRADIENT_STOPS 6
typedef struct
{
float scale_x;
float scale_y;
float dx_before;
float dy_before;
} OpsMatrixMetadata;
typedef struct
{
GskTransform *transform;
OpsMatrixMetadata metadata;
} MatrixStackEntry;
typedef struct
{
GskTransform *modelview;
GskRoundedRect clip;
graphene_matrix_t projection;
int source_texture;
graphene_rect_t viewport;
float opacity;
/* Per-program state */
union {
GdkRGBA color;
struct {
graphene_matrix_t matrix;
graphene_vec4_t offset;
} color_matrix;
struct {
float widths[4];
GdkRGBA color;
GskRoundedRect outline;
} border;
struct {
GskRoundedRect outline;
float dx;
float dy;
float spread;
GdkRGBA color;
} inset_shadow;
struct {
GskRoundedRect outline;
float dx;
float dy;
float spread;
GdkRGBA color;
} unblurred_outset_shadow;
struct {
int n_color_stops;
GskColorStop color_stops[GL_MAX_GRADIENT_STOPS];
float start_point[2];
float end_point[2];
} linear_gradient;
struct {
int n_color_stops;
GskColorStop color_stops[GL_MAX_GRADIENT_STOPS];
float center[2];
float start;
float end;
float radius[2]; /* h/v */
} radial_gradient;
struct {
float width;
float height;
int uniform_data_len;
guchar uniform_data[32];
} gl_shader;
};
} ProgramState;
struct _Program
{
const char *name;
int index; /* Into the renderer's program array -1 for custom */
int id;
/* Common locations (gl_common)*/
int source_location;
int position_location;
int uv_location;
int alpha_location;
int viewport_location;
int projection_location;
int modelview_location;
int clip_rect_location;
union {
struct {
int color_location;
} color;
struct {
int color_location;
} coloring;
struct {
int color_matrix_location;
int color_offset_location;
} color_matrix;
struct {
int num_color_stops_location;
int color_stops_location;
int points_location;
int repeat_location;
} linear_gradient;
struct {
int num_color_stops_location;
int color_stops_location;
int geometry_location;
int range_location;
int repeat_location;
} radial_gradient;
struct {
int num_color_stops_location;
int color_stops_location;
int geometry_location;
} conic_gradient;
struct {
int blur_radius_location;
int blur_size_location;
int blur_dir_location;
} blur;
struct {
int color_location;
int spread_location;
int offset_location;
int outline_rect_location;
} inset_shadow;
struct {
int color_location;
int outline_rect_location;
} outset_shadow;
struct {
int outline_rect_location;
int color_location;
int spread_location;
int offset_location;
} unblurred_outset_shadow;
struct {
int color_location;
int widths_location;
int outline_rect_location;
} border;
struct {
int source2_location;
int progress_location;
} cross_fade;
struct {
int source2_location;
int mode_location;
} blend;
struct {
int child_bounds_location;
int texture_rect_location;
} repeat;
struct {
int size_location;
int args_locations[8];
int texture_locations[4];
GError *compile_error;
} glshader;
};
ProgramState state;
};
typedef struct {
int ref_count;
union {
Program programs[GL_N_PROGRAMS];
struct {
Program blend_program;
Program blit_program;
Program blur_program;
Program border_program;
Program color_matrix_program;
Program color_program;
Program coloring_program;
Program cross_fade_program;
Program inset_shadow_program;
Program linear_gradient_program;
Program radial_gradient_program;
Program conic_gradient_program;
Program outset_shadow_program;
Program repeat_program;
Program unblurred_outset_shadow_program;
};
};
GHashTable *custom_programs; /* GskGLShader -> Program* */
} GskGLRendererPrograms;
typedef struct
{
GskGLRendererPrograms *programs;
Program *current_program;
int current_render_target;
int current_texture;
graphene_matrix_t current_projection;
graphene_rect_t current_viewport;
float current_opacity;
float dx, dy;
float scale_x, scale_y;
OpBuffer render_ops;
GArray *vertices;
GskGLRenderer *renderer;
/* Stack of modelview matrices */
GArray *mv_stack;
GskTransform *current_modelview;
/* Same thing */
GArray *clip_stack;
/* Pointer into clip_stack */
const GskRoundedRect *current_clip;
bool clip_is_rectilinear;
} RenderOpBuilder;
void ops_dump_framebuffer (RenderOpBuilder *builder,
const char *filename,
int width,
int height);
void ops_init (RenderOpBuilder *builder);
void ops_free (RenderOpBuilder *builder);
void ops_reset (RenderOpBuilder *builder);
void ops_push_debug_group (RenderOpBuilder *builder,
const char *text);
void ops_pop_debug_group (RenderOpBuilder *builder);
void ops_finish (RenderOpBuilder *builder);
void ops_push_modelview (RenderOpBuilder *builder,
GskTransform *transform);
void ops_set_modelview (RenderOpBuilder *builder,
GskTransform *transform);
void ops_pop_modelview (RenderOpBuilder *builder);
void ops_set_program (RenderOpBuilder *builder,
Program *program);
void ops_push_clip (RenderOpBuilder *builder,
const GskRoundedRect *clip);
void ops_pop_clip (RenderOpBuilder *builder);
gboolean ops_has_clip (RenderOpBuilder *builder);
void ops_transform_bounds_modelview (const RenderOpBuilder *builder,
const graphene_rect_t *src,
graphene_rect_t *dst);
graphene_matrix_t ops_set_projection (RenderOpBuilder *builder,
const graphene_matrix_t *projection);
graphene_rect_t ops_set_viewport (RenderOpBuilder *builder,
const graphene_rect_t *viewport);
void ops_set_texture (RenderOpBuilder *builder,
int texture_id);
void ops_set_extra_texture (RenderOpBuilder *builder,
int texture_id,
int idx);
int ops_set_render_target (RenderOpBuilder *builder,
int render_target_id);
float ops_set_opacity (RenderOpBuilder *builder,
float opacity);
void ops_set_color (RenderOpBuilder *builder,
const GdkRGBA *color);
void ops_set_color_matrix (RenderOpBuilder *builder,
const graphene_matrix_t *matrix,
const graphene_vec4_t *offset);
void ops_set_border (RenderOpBuilder *builder,
const GskRoundedRect *outline);
void ops_set_border_width (RenderOpBuilder *builder,
const float *widths);
void ops_set_border_color (RenderOpBuilder *builder,
const GdkRGBA *color);
void ops_set_inset_shadow (RenderOpBuilder *self,
const GskRoundedRect outline,
float spread,
const GdkRGBA *color,
float dx,
float dy);
void ops_set_gl_shader_args (RenderOpBuilder *builder,
GskGLShader *shader,
float width,
float height,
const guchar *uniform_data);
void ops_set_unblurred_outset_shadow (RenderOpBuilder *self,
const GskRoundedRect outline,
float spread,
const GdkRGBA *color,
float dx,
float dy);
void ops_set_linear_gradient (RenderOpBuilder *self,
guint n_color_stops,
const GskColorStop *color_stops,
gboolean repeat,
float start_x,
float start_y,
float end_x,
float end_y);
void ops_set_radial_gradient (RenderOpBuilder *self,
guint n_color_stops,
const GskColorStop *color_stops,
gboolean repeat,
float center_x,
float center_y,
float start,
float end,
float hradius,
float vradius);
void ops_set_conic_gradient (RenderOpBuilder *self,
guint n_color_stops,
const GskColorStop *color_stops,
float center_x,
float center_y,
float angle);
GskQuadVertex * ops_draw (RenderOpBuilder *builder,
const GskQuadVertex vertex_data[GL_N_VERTICES]);
void ops_offset (RenderOpBuilder *builder,
float x,
float y);
gpointer ops_begin (RenderOpBuilder *builder,
OpKind kind);
OpBuffer *ops_get_buffer (RenderOpBuilder *builder);
#endif

View File

@ -1,271 +0,0 @@
#include "config.h"
#include "gskglshaderbuilderprivate.h"
#include "gskdebugprivate.h"
#include <gdk/gdk.h>
#include <epoxy/gl.h>
void
gsk_gl_shader_builder_init (GskGLShaderBuilder *self,
const char *common_preamble_resource_path,
const char *vs_preamble_resource_path,
const char *fs_preamble_resource_path)
{
memset (self, 0, sizeof (*self));
self->preamble = g_resources_lookup_data (common_preamble_resource_path, 0, NULL);
self->vs_preamble = g_resources_lookup_data (vs_preamble_resource_path, 0, NULL);
self->fs_preamble = g_resources_lookup_data (fs_preamble_resource_path, 0, NULL);
g_assert (self->preamble);
g_assert (self->vs_preamble);
g_assert (self->fs_preamble);
}
void
gsk_gl_shader_builder_finish (GskGLShaderBuilder *self)
{
g_bytes_unref (self->preamble);
g_bytes_unref (self->vs_preamble);
g_bytes_unref (self->fs_preamble);
}
void
gsk_gl_shader_builder_set_glsl_version (GskGLShaderBuilder *self,
int version)
{
self->version = version;
}
static void
prepend_line_numbers (char *code,
GString *s)
{
char *p;
int line;
p = code;
line = 1;
while (*p)
{
char *end = strchr (p, '\n');
if (end)
end = end + 1; /* Include newline */
else
end = p + strlen (p);
g_string_append_printf (s, "%3d| ", line++);
g_string_append_len (s, p, end - p);
p = end;
}
}
static gboolean
check_shader_error (int shader_id,
int shader_type,
const char *resource_path,
GError **error)
{
int status;
int log_len;
char *buffer;
int code_len;
char *code;
GString *s;
glGetShaderiv (shader_id, GL_COMPILE_STATUS, &status);
if (G_LIKELY (status == GL_TRUE))
return TRUE;
glGetShaderiv (shader_id, GL_INFO_LOG_LENGTH, &log_len);
buffer = g_malloc0 (log_len + 1);
glGetShaderInfoLog (shader_id, log_len, NULL, buffer);
glGetShaderiv (shader_id, GL_SHADER_SOURCE_LENGTH, &code_len);
code = g_malloc0 (code_len + 1);
glGetShaderSource (shader_id, code_len, NULL, code);
s = g_string_new ("");
prepend_line_numbers (code, s);
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_COMPILATION_FAILED,
"Compilation failure in %s shader %s.\nSource Code:\n%s\n\nError Message:\n%s\n\n",
(shader_type == GL_FRAGMENT_SHADER ? "fragment" : "vertex"),
resource_path,
s->str,
buffer);
g_string_free (s, TRUE);
g_free (buffer);
g_free (code);
return FALSE;
}
static void
print_shader_info (const char *prefix,
int shader_id,
const char *resource_path)
{
if (GSK_DEBUG_CHECK(SHADERS))
{
int code_len;
char *code;
GString *s;
glGetShaderiv (shader_id, GL_SHADER_SOURCE_LENGTH, &code_len);
code = g_malloc0 (code_len + 1);
glGetShaderSource (shader_id, code_len, NULL, code);
s = g_string_new ("");
prepend_line_numbers (code, s);
g_message ("%s %d, %s:\n%s", prefix, shader_id, resource_path, s->str);
g_string_free (s, TRUE);
g_free (code);
}
}
int
gsk_gl_shader_builder_create_program (GskGLShaderBuilder *self,
const char *resource_path,
const char *extra_fragment_snippet,
gsize extra_fragment_length,
GError **error)
{
GBytes *source_bytes = g_resources_lookup_data (resource_path, 0, NULL);
char version_buffer[64];
const char *source;
const char *vertex_shader_start;
const char *fragment_shader_start;
int vertex_id;
int fragment_id;
int program_id = -1;
int status;
g_assert (source_bytes);
source = g_bytes_get_data (source_bytes, NULL);
vertex_shader_start = strstr (source, "VERTEX_SHADER");
fragment_shader_start = strstr (source, "FRAGMENT_SHADER");
g_assert (vertex_shader_start);
g_assert (fragment_shader_start);
/* They both start at the next newline */
vertex_shader_start = strstr (vertex_shader_start, "\n");
fragment_shader_start = strstr (fragment_shader_start, "\n");
g_snprintf (version_buffer, sizeof (version_buffer),
"#version %d\n", self->version);
vertex_id = glCreateShader (GL_VERTEX_SHADER);
glShaderSource (vertex_id, 8,
(const char *[]) {
version_buffer,
self->debugging ? "#define GSK_DEBUG 1\n" : "",
self->legacy ? "#define GSK_LEGACY 1\n" : "",
self->gl3 ? "#define GSK_GL3 1\n" : "",
self->gles ? "#define GSK_GLES 1\n" : "",
g_bytes_get_data (self->preamble, NULL),
g_bytes_get_data (self->vs_preamble, NULL),
vertex_shader_start
},
(int[]) {
-1,
-1,
-1,
-1,
-1,
-1,
-1,
fragment_shader_start - vertex_shader_start
});
glCompileShader (vertex_id);
if (!check_shader_error (vertex_id, GL_VERTEX_SHADER, resource_path, error))
{
glDeleteShader (vertex_id);
goto out;
}
print_shader_info ("Vertex shader", vertex_id, resource_path);
fragment_id = glCreateShader (GL_FRAGMENT_SHADER);
glShaderSource (fragment_id, 9,
(const char *[]) {
version_buffer,
self->debugging ? "#define GSK_DEBUG 1\n" : "",
self->legacy ? "#define GSK_LEGACY 1\n" : "",
self->gl3 ? "#define GSK_GL3 1\n" : "",
self->gles ? "#define GSK_GLES 1\n" : "",
g_bytes_get_data (self->preamble, NULL),
g_bytes_get_data (self->fs_preamble, NULL),
fragment_shader_start,
extra_fragment_snippet ? extra_fragment_snippet : ""
},
(int[]) {
-1,
-1,
-1,
-1,
-1,
-1,
-1,
-1,
extra_fragment_length,
});
glCompileShader (fragment_id);
if (!check_shader_error (fragment_id, GL_FRAGMENT_SHADER, resource_path, error))
{
glDeleteShader (fragment_id);
goto out;
}
print_shader_info ("Fragment shader", fragment_id, resource_path);
program_id = glCreateProgram ();
glAttachShader (program_id, vertex_id);
glAttachShader (program_id, fragment_id);
glBindAttribLocation (program_id, 0, "aPosition");
glBindAttribLocation (program_id, 1, "aUv");
glLinkProgram (program_id);
glDetachShader (program_id, vertex_id);
glDetachShader (program_id, fragment_id);
glGetProgramiv (program_id, GL_LINK_STATUS, &status);
if (status == GL_FALSE)
{
char *buffer = NULL;
int log_len = 0;
glGetProgramiv (program_id, GL_INFO_LOG_LENGTH, &log_len);
buffer = g_malloc0 (log_len + 1);
glGetProgramInfoLog (program_id, log_len, NULL, buffer);
g_warning ("Linking failure in shader:\n%s", buffer);
g_set_error (error, GDK_GL_ERROR, GDK_GL_ERROR_LINK_FAILED,
"Linking failure in shader: %s", buffer);
g_free (buffer);
glDeleteProgram (program_id);
program_id = -1;
}
glDeleteShader (vertex_id);
glDeleteShader (fragment_id);
out:
g_bytes_unref (source_bytes);
return program_id;
}

View File

@ -1,42 +0,0 @@
#ifndef __GSK_SHADER_BUILDER_PRIVATE_H__
#define __GSK_SHADER_BUILDER_PRIVATE_H__
#include <gdk/gdk.h>
#include <graphene.h>
G_BEGIN_DECLS
typedef struct
{
GBytes *preamble;
GBytes *vs_preamble;
GBytes *fs_preamble;
int version;
guint debugging: 1;
guint gles: 1;
guint gl3: 1;
guint legacy: 1;
} GskGLShaderBuilder;
void gsk_gl_shader_builder_init (GskGLShaderBuilder *self,
const char *common_preamble_resource_path,
const char *vs_preamble_resource_path,
const char *fs_preamble_resource_path);
void gsk_gl_shader_builder_finish (GskGLShaderBuilder *self);
void gsk_gl_shader_builder_set_glsl_version (GskGLShaderBuilder *self,
int version);
int gsk_gl_shader_builder_create_program (GskGLShaderBuilder *self,
const char *resource_path,
const char *extra_fragment_snippet,
gsize extra_fragment_length,
GError **error);
G_END_DECLS
#endif /* __GSK_SHADER_BUILDER_PRIVATE_H__ */

View File

@ -1,141 +0,0 @@
#include "gskglshadowcacheprivate.h"
#define MAX_UNUSED_FRAMES (16 * 5)
typedef struct
{
GskRoundedRect outline;
float blur_radius;
} CacheKey;
typedef struct
{
GskRoundedRect outline;
float blur_radius;
int texture_id;
int unused_frames;
} CacheItem;
static gboolean
key_equal (const void *x,
const void *y)
{
const CacheKey *a = x;
const CacheKey *b = y;
return a->blur_radius == b->blur_radius &&
graphene_size_equal (&a->outline.corner[0], &b->outline.corner[0]) &&
graphene_size_equal (&a->outline.corner[1], &b->outline.corner[1]) &&
graphene_size_equal (&a->outline.corner[2], &b->outline.corner[2]) &&
graphene_size_equal (&a->outline.corner[3], &b->outline.corner[3]) &&
graphene_rect_equal (&a->outline.bounds, &b->outline.bounds);
}
void
gsk_gl_shadow_cache_init (GskGLShadowCache *self)
{
self->textures = g_array_new (FALSE, TRUE, sizeof (CacheItem));
}
void
gsk_gl_shadow_cache_free (GskGLShadowCache *self,
GskGLDriver *gl_driver)
{
guint i, p;
for (i = 0, p = self->textures->len; i < p; i ++)
{
const CacheItem *item = &g_array_index (self->textures, CacheItem, i);
gsk_gl_driver_destroy_texture (gl_driver, item->texture_id);
}
g_array_free (self->textures, TRUE);
self->textures = NULL;
}
void
gsk_gl_shadow_cache_begin_frame (GskGLShadowCache *self,
GskGLDriver *gl_driver)
{
guint i, p;
for (i = 0, p = self->textures->len; i < p; i ++)
{
CacheItem *item = &g_array_index (self->textures, CacheItem, i);
if (item->unused_frames > MAX_UNUSED_FRAMES)
{
gsk_gl_driver_destroy_texture (gl_driver, item->texture_id);
g_array_remove_index_fast (self->textures, i);
p --;
i --;
}
else
{
item->unused_frames ++;
}
}
}
/* XXX
* The offset origin should always be at 0/0, or the blur radius should just go
* away since it defines the origin position anyway?
*/
int
gsk_gl_shadow_cache_get_texture_id (GskGLShadowCache *self,
GskGLDriver *gl_driver,
const GskRoundedRect *shadow_rect,
float blur_radius)
{
CacheItem *item= NULL;
guint i;
g_assert (self != NULL);
g_assert (gl_driver != NULL);
g_assert (shadow_rect != NULL);
for (i = 0; i < self->textures->len; i ++)
{
CacheItem *k = &g_array_index (self->textures, CacheItem, i);
if (key_equal (&(CacheKey){*shadow_rect, blur_radius},
&(CacheKey){k->outline, k->blur_radius}))
{
item = k;
break;
}
}
if (item == NULL)
return 0;
item->unused_frames = 0;
g_assert (item->texture_id != 0);
return item->texture_id;
}
void
gsk_gl_shadow_cache_commit (GskGLShadowCache *self,
const GskRoundedRect *shadow_rect,
float blur_radius,
int texture_id)
{
CacheItem *item;
g_assert (self != NULL);
g_assert (shadow_rect != NULL);
g_assert (texture_id > 0);
g_array_set_size (self->textures, self->textures->len + 1);
item = &g_array_index (self->textures, CacheItem, self->textures->len - 1);
item->outline = *shadow_rect;
item->blur_radius = blur_radius;
item->unused_frames = 0;
item->texture_id = texture_id;
}

View File

@ -1,31 +0,0 @@
#ifndef __GSK_GL_SHADOW_CACHE_H__
#define __GSK_GL_SHADOW_CACHE_H__
#include <glib.h>
#include "gskgldriverprivate.h"
#include "gskroundedrect.h"
typedef struct
{
GArray *textures;
} GskGLShadowCache;
void gsk_gl_shadow_cache_init (GskGLShadowCache *self);
void gsk_gl_shadow_cache_free (GskGLShadowCache *self,
GskGLDriver *gl_driver);
void gsk_gl_shadow_cache_begin_frame (GskGLShadowCache *self,
GskGLDriver *gl_driver);
int gsk_gl_shadow_cache_get_texture_id (GskGLShadowCache *self,
GskGLDriver *gl_driver,
const GskRoundedRect *shadow_rect,
float blur_radius);
void gsk_gl_shadow_cache_commit (GskGLShadowCache *self,
const GskRoundedRect *shadow_rect,
float blur_radius,
int texture_id);
#endif

View File

@ -1,309 +0,0 @@
#include "config.h"
#include "gskgltextureatlasprivate.h"
#include "gskdebugprivate.h"
#include "gdkglcontextprivate.h"
#include <epoxy/gl.h>
#define ATLAS_SIZE (512)
#define MAX_OLD_RATIO 0.5
static void
free_atlas (gpointer v)
{
GskGLTextureAtlas *atlas = v;
gsk_gl_texture_atlas_free (atlas);
g_free (atlas);
}
GskGLTextureAtlases *
gsk_gl_texture_atlases_new (void)
{
GskGLTextureAtlases *self;
self = g_new (GskGLTextureAtlases, 1);
self->atlases = g_ptr_array_new_with_free_func (free_atlas);
self->ref_count = 1;
return self;
}
GskGLTextureAtlases *
gsk_gl_texture_atlases_ref (GskGLTextureAtlases *self)
{
self->ref_count++;
return self;
}
void
gsk_gl_texture_atlases_unref (GskGLTextureAtlases *self)
{
g_assert (self->ref_count > 0);
if (self->ref_count == 1)
{
g_ptr_array_unref (self->atlases);
g_free (self);
return;
}
self->ref_count--;
}
#if 0
static void
write_atlas_to_png (GskGLTextureAtlas *atlas,
const char *filename)
{
int stride = cairo_format_stride_for_width (CAIRO_FORMAT_ARGB32, atlas->width);
guchar *data = g_malloc (atlas->height * stride);
cairo_surface_t *s;
glBindTexture (GL_TEXTURE_2D, atlas->texture_id);
glGetTexImage (GL_TEXTURE_2D, 0, GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV, data);
s = cairo_image_surface_create_for_data (data, CAIRO_FORMAT_ARGB32, atlas->width, atlas->height, stride);
cairo_surface_write_to_png (s, filename);
cairo_surface_destroy (s);
g_free (data);
}
#endif
void
gsk_gl_texture_atlases_begin_frame (GskGLTextureAtlases *self,
GPtrArray *removed)
{
int i;
for (i = self->atlases->len - 1; i >= 0; i--)
{
GskGLTextureAtlas *atlas = g_ptr_array_index (self->atlases, i);
if (gsk_gl_texture_atlas_get_unused_ratio (atlas) > MAX_OLD_RATIO)
{
GSK_NOTE(GLYPH_CACHE,
g_message ("Dropping atlas %d (%g.2%% old)", i,
100.0 * gsk_gl_texture_atlas_get_unused_ratio (atlas)));
if (atlas->texture_id != 0)
{
glDeleteTextures (1, &atlas->texture_id);
atlas->texture_id = 0;
}
g_ptr_array_add (removed, atlas);
g_ptr_array_remove_index (self->atlases, i);
}
}
GSK_NOTE(GLYPH_CACHE, {
static guint timestamp;
if (timestamp++ % 60 == 0)
g_message ("%d atlases", self->atlases->len);
});
#if 0
{
static guint timestamp;
timestamp++;
if (timestamp % 10 == 0)
for (i = 0; i < self->atlases->len; i++)
{
GskGLTextureAtlas *atlas = g_ptr_array_index (self->atlases, i);
if (atlas->texture_id)
{
char *filename;
filename = g_strdup_printf ("textureatlas%d-%u.png", i, timestamp);
write_atlas_to_png (atlas, filename);
g_free (filename);
}
}
}
#endif
}
gboolean
gsk_gl_texture_atlases_pack (GskGLTextureAtlases *self,
int width,
int height,
GskGLTextureAtlas **atlas_out,
int *out_x,
int *out_y)
{
GskGLTextureAtlas *atlas;
int x, y;
int i;
g_assert (width < ATLAS_SIZE);
g_assert (height < ATLAS_SIZE);
atlas = NULL;
for (i = 0; i < self->atlases->len; i++)
{
atlas = g_ptr_array_index (self->atlases, i);
if (gsk_gl_texture_atlas_pack (atlas, width, height, &x, &y))
break;
atlas = NULL;
}
if (atlas == NULL)
{
/* No atlas has enough space, so create a new one... */
atlas = g_malloc (sizeof (GskGLTextureAtlas));
gsk_gl_texture_atlas_init (atlas, ATLAS_SIZE, ATLAS_SIZE);
gsk_gl_texture_atlas_realize (atlas);
g_ptr_array_add (self->atlases, atlas);
/* Pack it onto that one, which surely has enough space... */
if (!gsk_gl_texture_atlas_pack (atlas, width, height, &x, &y))
g_assert_not_reached ();
GSK_NOTE(GLYPH_CACHE, g_message ("adding new atlas"));
}
*atlas_out = atlas;
*out_x = x;
*out_y = y;
return TRUE;
}
void
gsk_gl_texture_atlas_init (GskGLTextureAtlas *self,
int width,
int height)
{
memset (self, 0, sizeof (*self));
self->texture_id = 0;
self->width = width;
self->height = height;
/* TODO: We might want to change the strategy about the amount of
* nodes here? stb_rect_pack.h says with is optimal. */
self->nodes = g_malloc0 (sizeof (struct stbrp_node) * width);
stbrp_init_target (&self->context,
width, height,
self->nodes,
width);
gsk_gl_texture_atlas_realize (self);
}
void
gsk_gl_texture_atlas_free (GskGLTextureAtlas *self)
{
if (self->texture_id != 0)
{
glDeleteTextures (1, &self->texture_id);
self->texture_id = 0;
}
g_clear_pointer (&self->nodes, g_free);
}
void
gsk_gl_texture_atlas_mark_unused (GskGLTextureAtlas *self,
int width,
int height)
{
self->unused_pixels += (width * height);
}
void
gsk_gl_texture_atlas_mark_used (GskGLTextureAtlas *self,
int width,
int height)
{
self->unused_pixels -= (width * height);
g_assert (self->unused_pixels >= 0);
}
gboolean
gsk_gl_texture_atlas_pack (GskGLTextureAtlas *self,
int width,
int height,
int *out_x,
int *out_y)
{
stbrp_rect rect;
g_assert (out_x);
g_assert (out_y);
rect.w = width;
rect.h = height;
stbrp_pack_rects (&self->context, &rect, 1);
if (rect.was_packed)
{
*out_x = rect.x;
*out_y = rect.y;
}
return rect.was_packed;
}
double
gsk_gl_texture_atlas_get_unused_ratio (const GskGLTextureAtlas *self)
{
if (self->unused_pixels > 0)
return (double)(self->unused_pixels) / (double)(self->width * self->height);
return 0.0;
}
/* Not using gdk_gl_driver_create_texture here, since we want
* this texture to survive the driver and stay around until
* the display gets closed.
*/
static guint
create_shared_texture (int width,
int height)
{
guint texture_id;
glGenTextures (1, &texture_id);
glBindTexture (GL_TEXTURE_2D, texture_id);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
if (gdk_gl_context_get_use_es (gdk_gl_context_get_current ()))
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
else
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_BGRA, GL_UNSIGNED_BYTE, NULL);
glBindTexture (GL_TEXTURE_2D, 0);
return texture_id;
}
void
gsk_gl_texture_atlas_realize (GskGLTextureAtlas *atlas)
{
if (atlas->texture_id)
return;
atlas->texture_id = create_shared_texture (atlas->width, atlas->height);
gdk_gl_context_label_object_printf (gdk_gl_context_get_current (),
GL_TEXTURE, atlas->texture_id,
"Texture atlas %d", atlas->texture_id);
}

View File

@ -1,72 +0,0 @@
#ifndef __GSK_GL_TEXTURE_ATLAS_H__
#define __GSK_GL_TEXTURE_ATLAS_H__
#include "stb_rect_pack.h"
#include "gskglimageprivate.h"
#include "gskgldriverprivate.h"
struct _GskGLTextureAtlas
{
struct stbrp_context context;
struct stbrp_node *nodes;
int width;
int height;
guint texture_id;
int unused_pixels; /* Pixels of rects that have been used at some point,
But are now unused. */
void *user_data;
};
typedef struct _GskGLTextureAtlas GskGLTextureAtlas;
struct _GskGLTextureAtlases
{
int ref_count;
GPtrArray *atlases;
};
typedef struct _GskGLTextureAtlases GskGLTextureAtlases;
GskGLTextureAtlases *gsk_gl_texture_atlases_new (void);
GskGLTextureAtlases *gsk_gl_texture_atlases_ref (GskGLTextureAtlases *atlases);
void gsk_gl_texture_atlases_unref (GskGLTextureAtlases *atlases);
void gsk_gl_texture_atlases_begin_frame (GskGLTextureAtlases *atlases,
GPtrArray *removed);
gboolean gsk_gl_texture_atlases_pack (GskGLTextureAtlases *atlases,
int width,
int height,
GskGLTextureAtlas **atlas_out,
int *out_x,
int *out_y);
void gsk_gl_texture_atlas_init (GskGLTextureAtlas *self,
int width,
int height);
void gsk_gl_texture_atlas_free (GskGLTextureAtlas *self);
void gsk_gl_texture_atlas_realize (GskGLTextureAtlas *self);
void gsk_gl_texture_atlas_mark_unused (GskGLTextureAtlas *self,
int width,
int height);
void gsk_gl_texture_atlas_mark_used (GskGLTextureAtlas *self,
int width,
int height);
gboolean gsk_gl_texture_atlas_pack (GskGLTextureAtlas *self,
int width,
int height,
int *out_x,
int *out_y);
double gsk_gl_texture_atlas_get_unused_ratio (const GskGLTextureAtlas *self);
#endif

View File

@ -1,137 +0,0 @@
#include "opbuffer.h"
#include <string.h>
static guint op_sizes[OP_LAST] = {
0,
sizeof (OpOpacity),
sizeof (OpColor),
sizeof (OpMatrix),
sizeof (OpMatrix),
sizeof (OpProgram),
sizeof (OpRenderTarget),
sizeof (OpClip),
sizeof (OpViewport),
sizeof (OpTexture),
sizeof (OpRepeat),
sizeof (OpLinearGradient),
sizeof (OpRadialGradient),
sizeof (OpColorMatrix),
sizeof (OpBlur),
sizeof (OpShadow),
sizeof (OpOutsetShadow),
sizeof (OpBorder),
sizeof (OpBorder),
sizeof (OpBorder),
sizeof (OpCrossFade),
sizeof (OpShadow),
0,
sizeof (OpDraw),
sizeof (OpDumpFrameBuffer),
sizeof (OpDebugGroup),
0,
sizeof (OpBlend),
sizeof (OpGLShader),
sizeof (OpExtraTexture),
sizeof (OpConicGradient),
};
void
op_buffer_init (OpBuffer *buffer)
{
static gsize initialized = FALSE;
if (g_once_init_enter (&initialized))
{
guint i;
for (i = 0; i < G_N_ELEMENTS (op_sizes); i++)
{
guint size = op_sizes[i];
if (size > 0)
{
/* Round all op entry sizes to the nearest 16 to ensure
* that we guarantee proper alignments for all op entries.
* This is only done once on first use.
*/
#define CHECK_SIZE(s) else if (size < (s)) { size = s; }
if (0) {}
CHECK_SIZE (16)
CHECK_SIZE (32)
CHECK_SIZE (48)
CHECK_SIZE (64)
CHECK_SIZE (80)
CHECK_SIZE (96)
CHECK_SIZE (112)
CHECK_SIZE (128)
CHECK_SIZE (144)
CHECK_SIZE (160)
CHECK_SIZE (176)
CHECK_SIZE (192)
else g_assert_not_reached ();
#undef CHECK_SIZE
op_sizes[i] = size;
}
}
g_once_init_leave (&initialized, TRUE);
}
memset (buffer, 0, sizeof *buffer);
buffer->buflen = 4096;
buffer->bufpos = 0;
buffer->buf = g_malloc (buffer->buflen);
buffer->index = g_array_new (FALSE, FALSE, sizeof (OpBufferEntry));
/* Add dummy entry to guarantee non-empty index */
op_buffer_add (buffer, OP_NONE);
}
void
op_buffer_destroy (OpBuffer *buffer)
{
g_free (buffer->buf);
g_array_unref (buffer->index);
}
void
op_buffer_clear (OpBuffer *buffer)
{
if (buffer->index->len > 1)
g_array_remove_range (buffer->index, 1, buffer->index->len - 1);
buffer->bufpos = 0;
}
static inline void
ensure_buffer_space_for (OpBuffer *buffer,
guint size)
{
if G_UNLIKELY (buffer->bufpos + size >= buffer->buflen)
{
buffer->buflen *= 2;
buffer->buf = g_realloc (buffer->buf, buffer->buflen);
}
}
gpointer
op_buffer_add (OpBuffer *buffer,
OpKind kind)
{
guint size = op_sizes[kind];
OpBufferEntry entry;
entry.pos = buffer->bufpos;
entry.kind = kind;
if (size > 0)
ensure_buffer_space_for (buffer, size);
g_array_append_val (buffer->index, entry);
buffer->bufpos += size;
return &buffer->buf[entry.pos];
}

View File

@ -1,306 +0,0 @@
#ifndef __OP_BUFFER_H__
#define __OP_BUFFER_H__
#include <gdk/gdk.h>
#include <gsk/gsk.h>
#include <graphene.h>
#include "gskgldriverprivate.h"
typedef struct _Program Program;
typedef enum
{
OP_NONE = 0,
OP_CHANGE_OPACITY = 1,
OP_CHANGE_COLOR = 2,
OP_CHANGE_PROJECTION = 3,
OP_CHANGE_MODELVIEW = 4,
OP_CHANGE_PROGRAM = 5,
OP_CHANGE_RENDER_TARGET = 6,
OP_CHANGE_CLIP = 7,
OP_CHANGE_VIEWPORT = 8,
OP_CHANGE_SOURCE_TEXTURE = 9,
OP_CHANGE_REPEAT = 10,
OP_CHANGE_LINEAR_GRADIENT = 11,
OP_CHANGE_RADIAL_GRADIENT = 12,
OP_CHANGE_COLOR_MATRIX = 13,
OP_CHANGE_BLUR = 14,
OP_CHANGE_INSET_SHADOW = 15,
OP_CHANGE_OUTSET_SHADOW = 16,
OP_CHANGE_BORDER = 17,
OP_CHANGE_BORDER_COLOR = 18,
OP_CHANGE_BORDER_WIDTH = 19,
OP_CHANGE_CROSS_FADE = 20,
OP_CHANGE_UNBLURRED_OUTSET_SHADOW = 21,
OP_CLEAR = 22,
OP_DRAW = 23,
OP_DUMP_FRAMEBUFFER = 24,
OP_PUSH_DEBUG_GROUP = 25,
OP_POP_DEBUG_GROUP = 26,
OP_CHANGE_BLEND = 27,
OP_CHANGE_GL_SHADER_ARGS = 28,
OP_CHANGE_EXTRA_SOURCE_TEXTURE = 29,
OP_CHANGE_CONIC_GRADIENT = 30,
OP_LAST
} OpKind;
typedef struct { int value; guint send: 1; } IntUniformValue;
typedef struct { float value; guint send: 1; } FloatUniformValue;
typedef struct { float value[2]; guint send: 1; } Float2UniformValue;
typedef struct { GskRoundedRect value; guint send: 1; guint send_corners: 1; } RRUniformValue;
typedef struct { const GdkRGBA *value; guint send: 1; } RGBAUniformValue;
typedef struct { const graphene_vec4_t *value; guint send: 1; } Vec4UniformValue;
typedef struct { const GskColorStop *value; guint send: 1; } ColorStopUniformValue;
typedef struct { const graphene_matrix_t *value; guint send: 1; } MatrixUniformValue;
/* OpNode are allocated within OpBuffer.pos, but we keep
* a secondary index into the locations of that buffer
* from OpBuffer.index. This allows peeking at the kind
* and quickly replacing existing entries when necessary.
*/
typedef struct
{
RRUniformValue outline;
FloatUniformValue spread;
Float2UniformValue offset;
RGBAUniformValue color;
} OpShadow;
typedef struct
{
RRUniformValue outline;
} OpOutsetShadow;
typedef struct
{
guint pos;
OpKind kind;
} OpBufferEntry;
typedef struct
{
guint8 *buf;
gsize buflen;
gsize bufpos;
GArray *index;
} OpBuffer;
typedef struct
{
float opacity;
} OpOpacity;
typedef struct
{
graphene_matrix_t matrix;
} OpMatrix;
typedef struct
{
const Program *program;
} OpProgram;
typedef struct
{
const GdkRGBA *rgba;
} OpColor;
typedef struct
{
int render_target_id;
} OpRenderTarget;
typedef struct
{
GskRoundedRect clip;
guint send_corners: 1;
} OpClip;
typedef struct
{
graphene_rect_t viewport;
} OpViewport;
typedef struct
{
int texture_id;
} OpTexture;
typedef struct
{
int texture_id;
int idx;
} OpExtraTexture;
typedef struct
{
gsize vao_offset;
gsize vao_size;
} OpDraw;
typedef struct
{
ColorStopUniformValue color_stops;
IntUniformValue n_color_stops;
float start_point[2];
float end_point[2];
gboolean repeat;
} OpLinearGradient;
typedef struct
{
ColorStopUniformValue color_stops;
IntUniformValue n_color_stops;
float start;
float end;
float radius[2];
float center[2];
gboolean repeat;
} OpRadialGradient;
typedef struct
{
ColorStopUniformValue color_stops;
IntUniformValue n_color_stops;
float center[2];
float angle;
} OpConicGradient;
typedef struct
{
MatrixUniformValue matrix;
Vec4UniformValue offset;
} OpColorMatrix;
typedef struct
{
float radius;
graphene_size_t size;
float dir[2];
} OpBlur;
typedef struct
{
float widths[4];
const GdkRGBA *color;
GskRoundedRect outline;
} OpBorder;
typedef struct
{
float progress;
int source2;
} OpCrossFade;
typedef struct
{
char *filename;
int width;
int height;
} OpDumpFrameBuffer;
typedef struct
{
char text[64];
} OpDebugGroup;
typedef struct
{
int source2;
int mode;
} OpBlend;
typedef struct
{
float child_bounds[4];
float texture_rect[4];
} OpRepeat;
typedef struct
{
float size[2];
GskGLShader *shader;
const guchar *uniform_data;
} OpGLShader;
void op_buffer_init (OpBuffer *buffer);
void op_buffer_destroy (OpBuffer *buffer);
void op_buffer_clear (OpBuffer *buffer);
gpointer op_buffer_add (OpBuffer *buffer,
OpKind kind);
typedef struct
{
GArray *index;
OpBuffer *buffer;
guint pos;
} OpBufferIter;
static inline void
op_buffer_iter_init (OpBufferIter *iter,
OpBuffer *buffer)
{
iter->index = buffer->index;
iter->buffer = buffer;
iter->pos = 1; /* Skip first OP_NONE */
}
static inline gpointer
op_buffer_iter_next (OpBufferIter *iter,
OpKind *kind)
{
const OpBufferEntry *entry;
if (iter->pos == iter->index->len)
return NULL;
entry = &g_array_index (iter->index, OpBufferEntry, iter->pos);
iter->pos++;
*kind = entry->kind;
return &iter->buffer->buf[entry->pos];
}
static inline void
op_buffer_pop_tail (OpBuffer *buffer)
{
/* Never truncate the first OP_NONE */
if G_LIKELY (buffer->index->len > 0)
buffer->index->len--;
}
static inline gpointer
op_buffer_peek_tail (OpBuffer *buffer,
OpKind *kind)
{
const OpBufferEntry *entry;
entry = &g_array_index (buffer->index, OpBufferEntry, buffer->index->len - 1);
*kind = entry->kind;
return &buffer->buf[entry->pos];
}
static inline gpointer
op_buffer_peek_tail_checked (OpBuffer *buffer,
OpKind kind)
{
const OpBufferEntry *entry;
entry = &g_array_index (buffer->index, OpBufferEntry, buffer->index->len - 1);
if (entry->kind == kind)
return &buffer->buf[entry->pos];
return NULL;
}
static inline guint
op_buffer_n_ops (OpBuffer *buffer)
{
return buffer->index->len - 1;
}
#endif /* __OP_BUFFER_H__ */

View File

@ -1,310 +0,0 @@
// VERTEX_SHADER:
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
}
// FRAGMENT_SHADER:
uniform int u_mode;
uniform sampler2D u_source2;
float
combine (float source, float backdrop)
{
return source + backdrop * (1.0 - source);
}
vec4
composite (vec4 Cs, vec4 Cb, vec3 B)
{
float ao = Cs.a + Cb.a * (1.0 - Cs.a);
vec3 Co = (Cs.a*(1.0 - Cb.a)*Cs.rgb + Cs.a*Cb.a*B + (1.0 - Cs.a)*Cb.a*Cb.rgb) / ao;
return vec4(Co, ao);
}
vec4
normal (vec4 Cs, vec4 Cb)
{
return composite (Cs, Cb, Cs.rgb);
}
vec4
multiply (vec4 Cs, vec4 Cb)
{
return composite (Cs, Cb, Cs.rgb * Cb.rgb);
}
vec4
difference (vec4 Cs, vec4 Cb)
{
return composite (Cs, Cb, abs(Cs.rgb - Cb.rgb));
}
vec4
screen (vec4 Cs, vec4 Cb)
{
return composite (Cs, Cb, Cs.rgb + Cb.rgb - Cs.rgb * Cb.rgb);
}
float
hard_light (float source, float backdrop)
{
if (source <= 0.5)
return 2.0 * backdrop * source;
else
return 2.0 * (backdrop + source - backdrop * source) - 1.0;
}
vec4
hard_light (vec4 Cs, vec4 Cb)
{
vec3 B = vec3 (hard_light (Cs.r, Cb.r),
hard_light (Cs.g, Cb.g),
hard_light (Cs.b, Cb.b));
return composite (Cs, Cb, B);
}
float
soft_light (float source, float backdrop)
{
float db;
if (backdrop <= 0.25)
db = ((16.0 * backdrop - 12.0) * backdrop + 4.0) * backdrop;
else
db = sqrt (backdrop);
if (source <= 0.5)
return backdrop - (1.0 - 2.0 * source) * backdrop * (1.0 - backdrop);
else
return backdrop + (2.0 * source - 1.0) * (db - backdrop);
}
vec4
soft_light (vec4 Cs, vec4 Cb)
{
vec3 B = vec3 (soft_light (Cs.r, Cb.r),
soft_light (Cs.g, Cb.g),
soft_light (Cs.b, Cb.b));
return composite (Cs, Cb, B);
}
vec4
overlay (vec4 Cs, vec4 Cb)
{
vec3 B = vec3 (hard_light (Cb.r, Cs.r),
hard_light (Cb.g, Cs.g),
hard_light (Cb.b, Cs.b));
return composite (Cs, Cb, B);
}
vec4
darken (vec4 Cs, vec4 Cb)
{
vec3 B = min (Cs.rgb, Cb.rgb);
return composite (Cs, Cb, B);
}
vec4
lighten (vec4 Cs, vec4 Cb)
{
vec3 B = max (Cs.rgb, Cb.rgb);
return composite (Cs, Cb, B);
}
float
color_dodge (float source, float backdrop)
{
return (source == 1.0) ? source : min (backdrop / (1.0 - source), 1.0);
}
vec4
color_dodge (vec4 Cs, vec4 Cb)
{
vec3 B = vec3 (color_dodge (Cs.r, Cb.r),
color_dodge (Cs.g, Cb.g),
color_dodge (Cs.b, Cb.b));
return composite (Cs, Cb, B);
}
float
color_burn (float source, float backdrop)
{
return (source == 0.0) ? source : max ((1.0 - ((1.0 - backdrop) / source)), 0.0);
}
vec4
color_burn (vec4 Cs, vec4 Cb)
{
vec3 B = vec3 (color_burn (Cs.r, Cb.r),
color_burn (Cs.g, Cb.g),
color_burn (Cs.b, Cb.b));
return composite (Cs, Cb, B);
}
vec4
exclusion (vec4 Cs, vec4 Cb)
{
vec3 B = Cb.rgb + Cs.rgb - 2.0 * Cb.rgb * Cs.rgb;
return composite (Cs, Cb, B);
}
float
lum (vec3 c)
{
return 0.3 * c.r + 0.59 * c.g + 0.11 * c.b;
}
vec3
clip_color (vec3 c)
{
float l = lum (c);
float n = min (c.r, min (c.g, c.b));
float x = max (c.r, max (c.g, c.b));
if (n < 0.0) c = l + (((c - l) * l) / (l - n));
if (x > 1.0) c = l + (((c - l) * (1.0 - l)) / (x - l));
return c;
}
vec3
set_lum (vec3 c, float l)
{
float d = l - lum (c);
return clip_color (vec3 (c.r + d, c.g + d, c.b + d));
}
float
sat (vec3 c)
{
return max (c.r, max (c.g, c.b)) - min (c.r, min (c.g, c.b));
}
vec3
set_sat (vec3 c, float s)
{
float cmin = min (c.r, min (c.g, c.b));
float cmax = max (c.r, max (c.g, c.b));
vec3 res;
if (cmax == cmin)
res = vec3 (0, 0, 0);
else
{
if (c.r == cmax)
{
if (c.g == cmin)
{
res.b = ((c.b - cmin) * s) / (cmax - cmin);
res.g = 0.0;
}
else
{
res.g = ((c.g - cmin) * s) / (cmax - cmin);
res.b = 0.0;
}
res.r = s;
}
else if (c.g == cmax)
{
if (c.r == cmin)
{
res.b = ((c.b - cmin) * s) / (cmax - cmin);
res.r = 0.0;
}
else
{
res.r = ((c.r - cmin) * s) / (cmax - cmin);
res.b = 0.0;
}
res.g = s;
}
else
{
if (c.r == cmin)
{
res.g = ((c.g - cmin) * s) / (cmax - cmin);
res.r = 0.0;
}
else
{
res.r = ((c.r - cmin) * s) / (cmax - cmin);
res.g = 0.0;
}
res.b = s;
}
}
return res;
}
vec4
color (vec4 Cs, vec4 Cb)
{
vec3 B = set_lum (Cs.rgb, lum (Cb.rgb));
return composite (Cs, Cb, B);
}
vec4
hue (vec4 Cs, vec4 Cb)
{
vec3 B = set_lum (set_sat (Cs.rgb, sat (Cb.rgb)), lum (Cb.rgb));
return composite (Cs, Cb, B);
}
vec4
saturation (vec4 Cs, vec4 Cb)
{
vec3 B = set_lum (set_sat (Cb.rgb, sat (Cs.rgb)), lum (Cb.rgb));
return composite (Cs, Cb, B);
}
vec4
luminosity (vec4 Cs, vec4 Cb)
{
vec3 B = set_lum (Cb.rgb, lum (Cs.rgb));
return composite (Cs, Cb, B);
}
void main() {
vec4 bottom_color = GskTexture(u_source, vUv);
vec4 top_color = GskTexture(u_source2, vUv);
vec4 result;
if (u_mode == 0)
result = normal(top_color, bottom_color);
else if (u_mode == 1)
result = multiply(top_color, bottom_color);
else if (u_mode == 2)
result = screen(top_color, bottom_color);
else if (u_mode == 3)
result = overlay(top_color, bottom_color);
else if (u_mode == 4)
result = darken(top_color, bottom_color);
else if (u_mode == 5)
result = lighten(top_color, bottom_color);
else if (u_mode == 6)
result = color_dodge(top_color, bottom_color);
else if (u_mode == 7)
result = color_burn(top_color, bottom_color);
else if (u_mode == 8)
result = hard_light(top_color, bottom_color);
else if (u_mode == 9)
result = soft_light(top_color, bottom_color);
else if (u_mode == 10)
result = difference(top_color, bottom_color);
else if (u_mode == 11)
result = exclusion(top_color, bottom_color);
else if (u_mode == 12)
result = color(top_color, bottom_color);
else if (u_mode == 13)
result = hue(top_color, bottom_color);
else if (u_mode == 14)
result = saturation(top_color, bottom_color);
else if (u_mode == 15)
result = luminosity(top_color, bottom_color);
else
discard;
gskSetOutputColor(result * u_alpha);
}

View File

@ -1,13 +0,0 @@
// VERTEX_SHADER:
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
}
// FRAGMENT_SHADER:
void main() {
vec4 diffuse = GskTexture(u_source, vUv);
gskSetOutputColor(diffuse * u_alpha);
}

View File

@ -1,55 +0,0 @@
// VERTEX_SHADER:
uniform float u_blur_radius;
uniform vec2 u_blur_size;
uniform vec2 u_blur_dir;
_OUT_ vec2 pixel_step;
_OUT_ float pixels_per_side;
_OUT_ vec3 initial_gaussian;
const float PI = 3.14159265;
const float RADIUS_MULTIPLIER = 2.0;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
pixel_step = (vec2(1.0) / u_blur_size) * u_blur_dir;
pixels_per_side = floor(u_blur_radius * RADIUS_MULTIPLIER / 2.0);
float sigma = u_blur_radius / 2.0; // *shrug*
initial_gaussian.x = 1.0 / (sqrt(2.0 * PI) * sigma);
initial_gaussian.y = exp(-0.5 / (sigma * sigma));
initial_gaussian.z = initial_gaussian.y * initial_gaussian.y;
}
// FRAGMENT_SHADER:
_IN_ vec2 pixel_step;
_IN_ float pixels_per_side;
_IN_ vec3 initial_gaussian;
// blur_radius 0 is NOT supported and MUST be caught before.
// Partially from http://callumhay.blogspot.com/2010/09/gaussian-blur-shader-glsl.html
void main() {
vec3 incrementalGaussian = initial_gaussian;
float coefficientSum = 0.0;
vec4 sum = GskTexture(u_source, vUv) * incrementalGaussian.x;
coefficientSum += incrementalGaussian.x;
incrementalGaussian.xy *= incrementalGaussian.yz;
vec2 p = pixel_step;
for (int i = 1; i <= int(pixels_per_side); i++) {
sum += GskTexture(u_source, vUv - p) * incrementalGaussian.x;
sum += GskTexture(u_source, vUv + p) * incrementalGaussian.x;
coefficientSum += 2.0 * incrementalGaussian.x;
incrementalGaussian.xy *= incrementalGaussian.yz;
p += pixel_step;
}
gskSetOutputColor(sum / coefficientSum);
}

View File

@ -1,40 +0,0 @@
// VERTEX_SHADER:
uniform vec4 u_color;
uniform vec4 u_widths;
uniform vec4[3] u_outline_rect;
_OUT_ vec4 final_color;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outside_outline;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_inside_outline;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
final_color = gsk_premultiply(u_color) * u_alpha;
GskRoundedRect outside = gsk_create_rect(u_outline_rect);
GskRoundedRect inside = gsk_rounded_rect_shrink (outside, u_widths);
gsk_rounded_rect_transform(outside, u_modelview);
gsk_rounded_rect_transform(inside, u_modelview);
gsk_rounded_rect_encode(outside, transformed_outside_outline);
gsk_rounded_rect_encode(inside, transformed_inside_outline);
}
// FRAGMENT_SHADER:
uniform vec4[3] u_outline_rect;
_IN_ vec4 final_color;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outside_outline;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_inside_outline;
void main() {
vec2 frag = gsk_get_frag_coord();
float alpha = clamp(gsk_rounded_rect_coverage(gsk_decode_rect(transformed_outside_outline), frag) -
gsk_rounded_rect_coverage(gsk_decode_rect(transformed_inside_outline), frag),
0.0, 1.0);
gskSetOutputColor(final_color * alpha);
}

View File

@ -1,18 +0,0 @@
// VERTEX_SHADER:
uniform vec4 u_color;
_OUT_ vec4 final_color;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
final_color = gsk_premultiply(u_color) * u_alpha;
}
// FRAGMENT_SHADER:
_IN_ vec4 final_color;
void main() {
gskSetOutputColor(final_color);
}

View File

@ -1,25 +0,0 @@
// VERTEX_SHADER:
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
}
// FRAGMENT_SHADER:
uniform mat4 u_color_matrix;
uniform vec4 u_color_offset;
void main() {
vec4 color = GskTexture(u_source, vUv);
// Un-premultilpy
if (color.a != 0.0)
color.rgb /= color.a;
color = u_color_matrix * color + u_color_offset;
color = clamp(color, 0.0, 1.0);
color.rgb *= color.a;
gskSetOutputColor(color * u_alpha);
}

View File

@ -1,22 +0,0 @@
// VERTEX_SHADER:
uniform vec4 u_color;
_OUT_ vec4 final_color;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
final_color = gsk_premultiply(u_color) * u_alpha;
}
// FRAGMENT_SHADER:
_IN_ vec4 final_color;
void main() {
vec4 diffuse = GskTexture(u_source, vUv);
gskSetOutputColor(final_color * diffuse.a);
}

View File

@ -1,73 +0,0 @@
// VERTEX_SHADER
uniform vec4 u_geometry;
_NOPERSPECTIVE_ _OUT_ vec2 coord;
void main() {
gl_Position = u_projection * (u_modelview * vec4(aPosition, 0.0, 1.0));
vec2 mv0 = u_modelview[0].xy;
vec2 mv1 = u_modelview[1].xy;
vec2 offset = aPosition - u_geometry.xy;
coord = vec2(dot(mv0, offset),
dot(mv1, offset));
}
// FRAGMENT_SHADER:
#ifdef GSK_LEGACY
uniform int u_num_color_stops;
#else
uniform highp int u_num_color_stops; // Why? Because it works like this.
#endif
uniform vec4 u_geometry;
uniform float u_color_stops[6 * 5];
_NOPERSPECTIVE_ _IN_ vec2 coord;
float get_offset(int index) {
return u_color_stops[5 * index];
}
vec4 get_color(int index) {
int base = 5 * index + 1;
return vec4(u_color_stops[base],
u_color_stops[base + 1],
u_color_stops[base + 2],
u_color_stops[base + 3]);
}
void main() {
// direction of point in range [-PI, PI]
vec2 pos = floor(coord);
float angle = atan(pos.y, pos.x);
// fract() does the modulo here, so now we have progress
// into the current conic
float offset = fract(angle * u_geometry.z + u_geometry.w);
if (offset < get_offset(0)) {
gskSetOutputColor(gsk_scaled_premultiply(get_color(0), u_alpha));
return;
}
int n = u_num_color_stops - 1;
for (int i = 0; i < n; i++) {
float curr_offset = get_offset(i);
float next_offset = get_offset(i + 1);
if (offset >= curr_offset && offset < next_offset) {
float f = (offset - curr_offset) / (next_offset - curr_offset);
vec4 curr_color = gsk_premultiply(get_color(i));
vec4 next_color = gsk_premultiply(get_color(i + 1));
vec4 color = mix(curr_color, next_color, f);
gskSetOutputColor(color * u_alpha);
return;
}
}
gskSetOutputColor(gsk_scaled_premultiply(get_color(n), u_alpha));
}

View File

@ -1,20 +0,0 @@
// VERTEX_SHADER:
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
}
// FRAGMENT_SHADER:
uniform float u_progress;
uniform sampler2D u_source2;
void main() {
vec4 source1 = GskTexture(u_source, vUv); // start child
vec4 source2 = GskTexture(u_source2, vUv); // end child
float p_start = (1.0 - u_progress) * u_alpha;
float p_end = u_progress * u_alpha;
vec4 color = (p_start * source1) + (p_end * source2);
gskSetOutputColor(color);
}

View File

@ -1,21 +0,0 @@
// VERTEX_SHADER:
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
}
// FRAGMENT_SHADER:
// The shader supplies:
void mainImage(out vec4 fragColor, in vec2 fragCoord, in vec2 resolution, in vec2 uv);
uniform vec2 u_size;
uniform sampler2D u_source2;
uniform sampler2D u_source3;
uniform sampler2D u_source4;
void main() {
vec4 fragColor;
vec2 fragCoord = vec2(vUv.x * u_size.x, (1.0-vUv.y) * u_size.y);
mainImage(fragColor, fragCoord, u_size, vUv);
gskSetOutputColor(fragColor);
}

View File

@ -1,41 +0,0 @@
// VERTEX_SHADER:
uniform vec4 u_color;
uniform float u_spread;
uniform vec2 u_offset;
uniform vec4[3] u_outline_rect;
_OUT_ vec4 final_color;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outside_outline;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_inside_outline;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
final_color = gsk_premultiply(u_color) * u_alpha;
GskRoundedRect outside = gsk_create_rect(u_outline_rect);
GskRoundedRect inside = gsk_rounded_rect_shrink(outside, vec4(u_spread));
gsk_rounded_rect_offset(inside, u_offset);
gsk_rounded_rect_transform(outside, u_modelview);
gsk_rounded_rect_transform(inside, u_modelview);
gsk_rounded_rect_encode(outside, transformed_outside_outline);
gsk_rounded_rect_encode(inside, transformed_inside_outline);
}
// FRAGMENT_SHADER:
_IN_ vec4 final_color;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outside_outline;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_inside_outline;
void main() {
vec2 frag = gsk_get_frag_coord();
float alpha = clamp(gsk_rounded_rect_coverage(gsk_decode_rect(transformed_outside_outline), frag) -
gsk_rounded_rect_coverage(gsk_decode_rect(transformed_inside_outline), frag),
0.0, 1.0);
gskSetOutputColor(final_color * alpha);
}

View File

@ -1,95 +0,0 @@
// VERTEX_SHADER
uniform vec4 u_points;
_NOPERSPECTIVE_ _OUT_ vec4 info;
void main() {
gl_Position = u_projection * (u_modelview * vec4(aPosition, 0.0, 1.0));
vec2 mv0 = u_modelview[0].xy;
vec2 mv1 = u_modelview[1].xy;
vec2 offset = aPosition - u_points.xy;
vec2 coord = vec2(dot(mv0, offset),
dot(mv1, offset));
// Original equation:
// VS | maxDist = length(end - start);
// VS | gradient = end - start;
// VS | gradientLength = length(gradient);
// FS | pos = frag_coord - start
// FS | proj = (dot(gradient, pos) / (gradientLength * gradientLength)) * gradient
// FS | offset = length(proj) / maxDist
// Simplified formula derivation:
// 1. Notice that maxDist = gradientLength:
// offset = length(proj) / gradientLength
// 2. Let gnorm = gradient / gradientLength, then:
// proj = (dot(gnorm * gradientLength, pos) / (gradientLength * gradientLength)) * (gnorm * gradientLength) =
// = dot(gnorm, pos) * gnorm
// 3. Since gnorm is unit length then:
// length(proj) = length(dot(gnorm, pos) * gnorm) = dot(gnorm, pos)
// 4. We can avoid the FS division by passing a scaled pos from the VS:
// offset = dot(gnorm, pos) / gradientLength = dot(gnorm, pos / gradientLength)
// 5. 1.0 / length(gradient) is inversesqrt(dot(gradient, gradient)) in GLSL
vec2 gradient = vec2(dot(mv0, u_points.zw),
dot(mv1, u_points.zw));
float rcp_gradient_length = inversesqrt(dot(gradient, gradient));
info = rcp_gradient_length * vec4(coord, gradient);
}
// FRAGMENT_SHADER:
#ifdef GSK_LEGACY
uniform int u_num_color_stops;
#else
uniform highp int u_num_color_stops; // Why? Because it works like this.
#endif
uniform float u_color_stops[6 * 5];
uniform bool u_repeat;
_NOPERSPECTIVE_ _IN_ vec4 info;
float get_offset(int index) {
return u_color_stops[5 * index];
}
vec4 get_color(int index) {
int base = 5 * index + 1;
return vec4(u_color_stops[base],
u_color_stops[base + 1],
u_color_stops[base + 2],
u_color_stops[base + 3]);
}
void main() {
float offset = dot(info.xy, info.zw);
if (u_repeat) {
offset = fract(offset);
}
if (offset < get_offset(0)) {
gskSetOutputColor(gsk_scaled_premultiply(get_color(0), u_alpha));
return;
}
int n = u_num_color_stops - 1;
for (int i = 0; i < n; i++) {
float curr_offset = get_offset(i);
float next_offset = get_offset(i + 1);
if (offset >= curr_offset && offset < next_offset) {
float f = (offset - curr_offset) / (next_offset - curr_offset);
vec4 curr_color = gsk_premultiply(get_color(i));
vec4 next_color = gsk_premultiply(get_color(i + 1));
vec4 color = mix(curr_color, next_color, f);
gskSetOutputColor(color * u_alpha);
return;
}
}
gskSetOutputColor(gsk_scaled_premultiply(get_color(n), u_alpha));
}

View File

@ -1,33 +0,0 @@
// VERTEX_SHADER:
uniform vec4 u_color;
uniform vec4[3] u_outline_rect;
_OUT_ vec4 final_color;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outline;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
final_color = gsk_premultiply(u_color) * u_alpha;
GskRoundedRect outline = gsk_create_rect(u_outline_rect);
gsk_rounded_rect_transform(outline, u_modelview);
gsk_rounded_rect_encode(outline, transformed_outline);
}
// FRAGMENT_SHADER:
_IN_ vec4 final_color;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outline;
void main() {
vec2 frag = gsk_get_frag_coord();
float alpha = GskTexture(u_source, vUv).a;
alpha *= (1.0 - clamp(gsk_rounded_rect_coverage(gsk_decode_rect(transformed_outline), frag), 0.0, 1.0));
vec4 color = final_color * alpha;
gskSetOutputColor(color);
}

View File

@ -1,139 +0,0 @@
uniform sampler2D u_source;
uniform mat4 u_projection;
uniform mat4 u_modelview;
uniform float u_alpha;// = 1.0;
uniform vec4 u_viewport;
uniform vec4[3] u_clip_rect;
#if defined(GSK_LEGACY)
_OUT_ vec4 outputColor;
#elif !defined(GSK_GLES)
_OUT_ vec4 outputColor;
#endif
_IN_ vec2 vUv;
GskRoundedRect gsk_decode_rect(_GSK_ROUNDED_RECT_UNIFORM_ r)
{
#if defined(GSK_GLES) || defined(GSK_LEGACY)
return GskRoundedRect(r[0], r[1], r[2]);
#else
return r;
#endif
}
float
gsk_ellipsis_dist (vec2 p, vec2 radius)
{
if (radius == vec2(0, 0))
return 0.0;
vec2 p0 = p / radius;
vec2 p1 = 2.0 * p0 / radius;
return (dot(p0, p0) - 1.0) / length (p1);
}
float
gsk_ellipsis_coverage (vec2 point, vec2 center, vec2 radius)
{
float d = gsk_ellipsis_dist (point - center, radius);
return clamp (0.5 - d, 0.0, 1.0);
}
float
gsk_rounded_rect_coverage (GskRoundedRect r, vec2 p)
{
if (p.x < r.bounds.x || p.y < r.bounds.y ||
p.x >= r.bounds.z || p.y >= r.bounds.w)
return 0.0;
vec2 ref_tl = r.corner_points1.xy;
vec2 ref_tr = r.corner_points1.zw;
vec2 ref_br = r.corner_points2.xy;
vec2 ref_bl = r.corner_points2.zw;
if (p.x >= ref_tl.x && p.x >= ref_bl.x &&
p.x <= ref_tr.x && p.x <= ref_br.x)
return 1.0;
if (p.y >= ref_tl.y && p.y >= ref_tr.y &&
p.y <= ref_bl.y && p.y <= ref_br.y)
return 1.0;
vec2 rad_tl = r.corner_points1.xy - r.bounds.xy;
vec2 rad_tr = r.corner_points1.zw - r.bounds.zy;
vec2 rad_br = r.corner_points2.xy - r.bounds.zw;
vec2 rad_bl = r.corner_points2.zw - r.bounds.xw;
float d_tl = gsk_ellipsis_coverage(p, ref_tl, rad_tl);
float d_tr = gsk_ellipsis_coverage(p, ref_tr, rad_tr);
float d_br = gsk_ellipsis_coverage(p, ref_br, rad_br);
float d_bl = gsk_ellipsis_coverage(p, ref_bl, rad_bl);
vec4 corner_coverages = 1.0 - vec4(d_tl, d_tr, d_br, d_bl);
bvec4 is_out = bvec4(p.x < ref_tl.x && p.y < ref_tl.y,
p.x > ref_tr.x && p.y < ref_tr.y,
p.x > ref_br.x && p.y > ref_br.y,
p.x < ref_bl.x && p.y > ref_bl.y);
return 1.0 - dot(vec4(is_out), corner_coverages);
}
float
gsk_rect_coverage (vec4 r, vec2 p)
{
if (p.x < r.x || p.y < r.y ||
p.x >= r.z || p.y >= r.w)
return 0.0;
return 1.0;
}
vec4 GskTexture(sampler2D sampler, vec2 texCoords) {
#if defined(GSK_GLES) || defined(GSK_LEGACY)
return texture2D(sampler, texCoords);
#else
return texture(sampler, texCoords);
#endif
}
#ifdef GSK_GL3
layout(origin_upper_left) in vec4 gl_FragCoord;
#endif
vec2 gsk_get_frag_coord() {
vec2 fc = gl_FragCoord.xy;
#ifdef GSK_GL3
fc += u_viewport.xy;
#else
fc.x += u_viewport.x;
fc.y = (u_viewport.y + u_viewport.w) - fc.y;
#endif
return fc;
}
void gskSetOutputColor(vec4 color) {
vec4 result;
#if defined(NO_CLIP)
result = color;
#elif defined(RECT_CLIP)
result = color * gsk_rect_coverage(gsk_get_bounds(u_clip_rect),
gsk_get_frag_coord());
#else
result = color * gsk_rounded_rect_coverage(gsk_create_rect(u_clip_rect),
gsk_get_frag_coord());
#endif
#if defined(GSK_GLES) || defined(GSK_LEGACY)
gl_FragColor = result;
#else
outputColor = result;
#endif
}

View File

@ -1,57 +0,0 @@
#ifndef GSK_LEGACY
precision highp float;
#endif
#if defined(GSK_GLES) || defined(GSK_LEGACY)
#define _OUT_ varying
#define _IN_ varying
#define _NOPERSPECTIVE_
#define _GSK_ROUNDED_RECT_UNIFORM_ vec4[3]
#else
#define _OUT_ out
#define _IN_ in
#define _NOPERSPECTIVE_ noperspective
#define _GSK_ROUNDED_RECT_UNIFORM_ GskRoundedRect
#endif
struct GskRoundedRect
{
vec4 bounds; // Top left and bottom right
// Look, arrays can't be in structs if you want to return the struct
// from a function in gles or whatever. Just kill me.
vec4 corner_points1; // xy = top left, zw = top right
vec4 corner_points2; // xy = bottom right, zw = bottom left
};
// Transform from a C GskRoundedRect to what we need.
GskRoundedRect
gsk_create_rect(vec4[3] data)
{
vec4 bounds = vec4(data[0].xy, data[0].xy + data[0].zw);
vec4 corner_points1 = vec4(bounds.xy + data[1].xy,
bounds.zy + vec2(data[1].zw * vec2(-1, 1)));
vec4 corner_points2 = vec4(bounds.zw + (data[2].xy * vec2(-1, -1)),
bounds.xw + vec2(data[2].zw * vec2(1, -1)));
return GskRoundedRect(bounds, corner_points1, corner_points2);
}
vec4
gsk_get_bounds(vec4[3] data)
{
return vec4(data[0].xy, data[0].xy + data[0].zw);
}
vec4 gsk_premultiply(vec4 c) {
return vec4(c.rgb * c.a, c.a);
}
vec4 gsk_scaled_premultiply(vec4 c, float s) {
// Fast version of gsk_premultiply(c) * s
// 4 muls instead of 7
float a = s * c.a;
return vec4(c.rgb * a, a);
}

View File

@ -1,69 +0,0 @@
uniform mat4 u_projection;
uniform mat4 u_modelview;
uniform float u_alpha;
#if defined(GSK_GLES) || defined(GSK_LEGACY)
attribute vec2 aPosition;
attribute vec2 aUv;
_OUT_ vec2 vUv;
#else
_IN_ vec2 aPosition;
_IN_ vec2 aUv;
_OUT_ vec2 vUv;
#endif
// amount is: top, right, bottom, left
GskRoundedRect
gsk_rounded_rect_shrink (GskRoundedRect r, vec4 amount)
{
vec4 new_bounds = r.bounds + vec4(1.0,1.0,-1.0,-1.0) * amount.wxyz;
vec4 new_corner_points1 = r.corner_points1;
vec4 new_corner_points2 = r.corner_points2;
if (r.corner_points1.xy == r.bounds.xy) new_corner_points1.xy = new_bounds.xy;
if (r.corner_points1.zw == r.bounds.zy) new_corner_points1.zw = new_bounds.zy;
if (r.corner_points2.xy == r.bounds.zw) new_corner_points2.xy = new_bounds.zw;
if (r.corner_points2.zw == r.bounds.xw) new_corner_points2.zw = new_bounds.xw;
return GskRoundedRect (new_bounds, new_corner_points1, new_corner_points2);
}
void
gsk_rounded_rect_offset(inout GskRoundedRect r, vec2 offset)
{
r.bounds.xy += offset;
r.bounds.zw += offset;
r.corner_points1.xy += offset;
r.corner_points1.zw += offset;
r.corner_points2.xy += offset;
r.corner_points2.zw += offset;
}
void gsk_rounded_rect_transform(inout GskRoundedRect r, mat4 mat)
{
r.bounds.xy = (mat * vec4(r.bounds.xy, 0.0, 1.0)).xy;
r.bounds.zw = (mat * vec4(r.bounds.zw, 0.0, 1.0)).xy;
r.corner_points1.xy = (mat * vec4(r.corner_points1.xy, 0.0, 1.0)).xy;
r.corner_points1.zw = (mat * vec4(r.corner_points1.zw, 0.0, 1.0)).xy;
r.corner_points2.xy = (mat * vec4(r.corner_points2.xy, 0.0, 1.0)).xy;
r.corner_points2.zw = (mat * vec4(r.corner_points2.zw, 0.0, 1.0)).xy;
}
#if defined(GSK_LEGACY)
// Can't have out or inout array parameters...
#define gsk_rounded_rect_encode(r, uni) uni[0] = r.bounds; uni[1] = r.corner_points1; uni[2] = r.corner_points2;
#else
void gsk_rounded_rect_encode(GskRoundedRect r, out _GSK_ROUNDED_RECT_UNIFORM_ out_r)
{
#if defined(GSK_GLES)
out_r[0] = r.bounds;
out_r[1] = r.corner_points1;
out_r[2] = r.corner_points2;
#else
out_r = r;
#endif
}
#endif

View File

@ -1,74 +0,0 @@
// VERTEX_SHADER
uniform vec4 u_geometry;
_NOPERSPECTIVE_ _OUT_ vec2 coord;
void main() {
gl_Position = u_projection * (u_modelview * vec4(aPosition, 0.0, 1.0));
vec2 mv0 = u_modelview[0].xy;
vec2 mv1 = u_modelview[1].xy;
vec2 offset = aPosition - u_geometry.xy;
vec2 dir = vec2(dot(mv0, offset),
dot(mv1, offset));
coord = dir * u_geometry.zw;
}
// FRAGMENT_SHADER:
#ifdef GSK_LEGACY
uniform int u_num_color_stops;
#else
uniform highp int u_num_color_stops;
#endif
uniform bool u_repeat;
uniform vec2 u_range;
uniform float u_color_stops[6 * 5];
_NOPERSPECTIVE_ _IN_ vec2 coord;
float get_offset(int index) {
return u_color_stops[5 * index];
}
vec4 get_color(int index) {
int base = 5 * index + 1;
return vec4(u_color_stops[base],
u_color_stops[base + 1],
u_color_stops[base + 2],
u_color_stops[base + 3]);
}
void main() {
// Reverse scale
float offset = length(coord) * u_range.x + u_range.y;
if (u_repeat) {
offset = fract(offset);
}
if (offset < get_offset(0)) {
gskSetOutputColor(gsk_scaled_premultiply(get_color(0), u_alpha));
return;
}
int n = u_num_color_stops - 1;
for (int i = 0; i < n; i++) {
float curr_offset = get_offset(i);
float next_offset = get_offset(i + 1);
if (offset >= curr_offset && offset < next_offset) {
float f = (offset - curr_offset) / (next_offset - curr_offset);
vec4 curr_color = gsk_premultiply(get_color(i));
vec4 next_color = gsk_premultiply(get_color(i + 1));
vec4 color = mix(curr_color, next_color, f);
gskSetOutputColor(color * u_alpha);
return;
}
}
gskSetOutputColor(gsk_scaled_premultiply(get_color(n), u_alpha));
}

View File

@ -1,41 +0,0 @@
// VERTEX_SHADER:
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
vUv = vec2(aUv.x, aUv.y);
}
// FRAGMENT_SHADER:
uniform vec4 u_child_bounds;
uniform vec4 u_texture_rect;
float wrap(float f, float wrap_for) {
return mod(f, wrap_for);
}
/* We get the texture coordinates via vUv,
* but that might be on a texture atlas, so we need to do the
* wrapping ourselves.
*/
void main() {
/* We map the texture coordinate to [1;0], then wrap it and scale the result again */
float tw = u_texture_rect.z - u_texture_rect.x;
float th = u_texture_rect.w - u_texture_rect.y;
float mapped_x = (vUv.x - u_texture_rect.x) / tw;
float mapped_y = (vUv.y - u_texture_rect.y) / th;
float wrapped_x = wrap(u_child_bounds.x + mapped_x * u_child_bounds.z, 1.0);
float wrapped_y = wrap(u_child_bounds.y + mapped_y * u_child_bounds.w, 1.0);
vec2 tp;
tp.x = u_texture_rect.x + (wrapped_x * tw);
tp.y = u_texture_rect.y + (wrapped_y * th);
vec4 diffuse = GskTexture(u_source, tp);
gskSetOutputColor(diffuse * u_alpha);
}

View File

@ -1,42 +0,0 @@
// VERTEX_SHADER:
uniform vec4 u_color;
uniform float u_spread;
uniform vec2 u_offset;
uniform vec4[3] u_outline_rect;
_OUT_ vec4 final_color;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outside_outline;
_OUT_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_inside_outline;
void main() {
gl_Position = u_projection * u_modelview * vec4(aPosition, 0.0, 1.0);
final_color = gsk_premultiply(u_color) * u_alpha;
GskRoundedRect inside = gsk_create_rect(u_outline_rect);
GskRoundedRect outside = gsk_rounded_rect_shrink(inside, vec4(- u_spread));
gsk_rounded_rect_offset(outside, u_offset);
gsk_rounded_rect_transform(outside, u_modelview);
gsk_rounded_rect_transform(inside, u_modelview);
gsk_rounded_rect_encode(outside, transformed_outside_outline);
gsk_rounded_rect_encode(inside, transformed_inside_outline);
}
// FRAGMENT_SHADER:
_IN_ vec4 final_color;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_outside_outline;
_IN_ _GSK_ROUNDED_RECT_UNIFORM_ transformed_inside_outline;
void main() {
vec2 frag = gsk_get_frag_coord();
float alpha = clamp(gsk_rounded_rect_coverage(gsk_decode_rect(transformed_outside_outline), frag) -
gsk_rounded_rect_coverage(gsk_decode_rect(transformed_inside_outline), frag),
0.0, 1.0);
gskSetOutputColor(final_color * alpha);
}

View File

@ -139,7 +139,6 @@
#include "gskglshaderprivate.h"
#include "gskdebugprivate.h"
#include "gl/gskglrendererprivate.h"
#include "ngl/gsknglrendererprivate.h"
static GskGLUniformType
@ -544,9 +543,7 @@ gsk_gl_shader_compile (GskGLShader *shader,
{
g_return_val_if_fail (GSK_IS_GL_SHADER (shader), FALSE);
if (GSK_IS_GL_RENDERER (renderer))
return gsk_gl_renderer_try_compile_gl_shader (GSK_GL_RENDERER (renderer), shader, error);
else if (GSK_IS_NGL_RENDERER (renderer))
if (GSK_IS_NGL_RENDERER (renderer))
return gsk_ngl_renderer_try_compile_gl_shader (GSK_NGL_RENDERER (renderer), shader, error);
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,

View File

@ -38,7 +38,6 @@
#include "gskcairorenderer.h"
#include "gskdebugprivate.h"
#include "gl/gskglrenderer.h"
#include "ngl/gsknglrenderer.h"
#include "gskprofilerprivate.h"
#include "gskrendernodeprivate.h"
@ -508,8 +507,6 @@ get_renderer_for_name (const char *renderer_name)
else if (g_ascii_strcasecmp (renderer_name, "opengl") == 0 ||
g_ascii_strcasecmp (renderer_name, "ngl") == 0)
return GSK_TYPE_NGL_RENDERER;
else if (g_ascii_strcasecmp (renderer_name, "gl") == 0)
return GSK_TYPE_GL_RENDERER;
#ifdef GDK_RENDERING_VULKAN
else if (g_ascii_strcasecmp (renderer_name, "vulkan") == 0)
return GSK_TYPE_VULKAN_RENDERER;
@ -520,12 +517,11 @@ get_renderer_for_name (const char *renderer_name)
#ifdef GDK_WINDOWING_BROADWAY
g_print ("broadway - Use the Broadway specific renderer\n");
#else
g_print ("broadway - disabled during GTK build\n");
g_print ("broadway - Disabled during GTK build\n");
#endif
g_print (" cairo - Use the Cairo fallback renderer\n");
g_print (" opengl - Use the default OpenGL renderer\n");
g_print (" gl - An OpenGL renderer\n");
g_print (" ngl - Another OpenGL renderer\n");
g_print (" ngl - An OpenGL renderer\n");
#ifdef GDK_RENDERING_VULKAN
g_print (" vulkan - Use the Vulkan renderer\n");
#else

View File

@ -1,25 +1,3 @@
gsk_private_gl_shaders = [
'gl/resources/preamble.glsl',
'gl/resources/preamble.fs.glsl',
'gl/resources/preamble.vs.glsl',
'gl/resources/border.glsl',
'gl/resources/blit.glsl',
'gl/resources/coloring.glsl',
'gl/resources/color.glsl',
'gl/resources/linear_gradient.glsl',
'gl/resources/radial_gradient.glsl',
'gl/resources/conic_gradient.glsl',
'gl/resources/color_matrix.glsl',
'gl/resources/blur.glsl',
'gl/resources/inset_shadow.glsl',
'gl/resources/outset_shadow.glsl',
'gl/resources/unblurred_outset_shadow.glsl',
'gl/resources/cross_fade.glsl',
'gl/resources/blend.glsl',
'gl/resources/repeat.glsl',
'gl/resources/custom.glsl',
]
gsk_private_ngl_shaders = [
'ngl/resources/preamble.glsl',
'ngl/resources/preamble.fs.glsl',
@ -53,7 +31,6 @@ gsk_public_sources = files([
'gskrendernodeparser.c',
'gskroundedrect.c',
'gsktransform.c',
'gl/gskglrenderer.c',
'ngl/gsknglrenderer.c',
])
@ -62,16 +39,6 @@ gsk_private_sources = files([
'gskdebug.c',
'gskprivate.c',
'gskprofiler.c',
'gl/gskglshaderbuilder.c',
'gl/gskglprofiler.c',
'gl/gskglglyphcache.c',
'gl/gskgldriver.c',
'gl/gskglrenderops.c',
'gl/gskglshadowcache.c',
'gl/gskgltextureatlas.c',
'gl/gskgliconcache.c',
'gl/opbuffer.c',
'gl/stb_rect_pack.c',
'ngl/gsknglattachmentstate.c',
'ngl/gsknglbuffer.c',
'ngl/gsknglcommandqueue.c',
@ -85,6 +52,8 @@ gsk_private_sources = files([
'ngl/gskngltexturelibrary.c',
'ngl/gskngluniformstate.c',
'ngl/gskngltexturepool.c',
'ngl/gskglprofiler.c',
'ngl/stb_rect_pack.c',
'ngl/fp16.c',
])
@ -106,7 +75,6 @@ gsk_public_headers = files([
install_headers(gsk_public_headers, 'gsk.h', subdir: 'gtk-4.0/gsk')
gsk_public_gl_headers = files([
'gl/gskglrenderer.h',
'ngl/gsknglrenderer.h',
])
install_headers(gsk_public_gl_headers, subdir: 'gtk-4.0/gsk/gl')
@ -177,7 +145,6 @@ gsk_resources_xml = configure_file(output: 'gsk.resources.xml',
command: [
find_program('gen-gsk-gresources-xml.py'),
'@OUTPUT@',
gsk_private_gl_shaders,
gsk_private_ngl_shaders,
gsk_private_vulkan_compiled_shaders,
gsk_private_vulkan_shaders

View File

@ -30,7 +30,7 @@
#include "inlinearray.h"
#include "../gl/gskglprofilerprivate.h"
#include "gskglprofilerprivate.h"
G_BEGIN_DECLS

View File

@ -24,7 +24,7 @@
#include "gskngltypesprivate.h"
#include "gskngltexturepoolprivate.h"
#include "../gl/stb_rect_pack.h"
#include "stb_rect_pack.h"
G_BEGIN_DECLS