On X11, there is no such equivalent to the inhibit shortcut protocol
found on Wayland.
To implement the inhibit_system_shortcuts API on X11, we emulate the
same behavior using grabs on the keyboard.
To avoid keeping active grabs on the keyboard that would affect other
X11 applications even when the surface isn't focused, the X11
implementation takes care of releasing the grabs as soon as the toplevel
loses focus.
Without this, the back buffers of the wrong size
keep being used, causing flickery misdraws, as
seen when expanding the expander in the popover
in widget-factory.
There is no shape combining going on anymore, so
call this just gdk_surface_set_input_region, and
remove the offset arguments too. All callers pass
0 anyway.
Update all callers and implementations.
Sprinkle various g_assert() around the code where gcc cannot figure out
on its own that a variable is not NULL and too much refactoring would be
needed to make it do that.
Also fix usage of g_assert_nonnull(x) to use g_assert(x) because the
first is not marked as G_GNUC_NORETURN because of course GTester
supports not aborting on aborts.
replace all uses with const char * (non-interned).
Also remove a lot fo juggling from atom to GdkAtom to string and back.
The X Atom hash table is now mapping to (again, non-interned) strings.
Restructure the getters for event fields to
be more targeted at particular event types.
Update all callers, and replace all direct
event struct access with getters.
As a side-effect, this drops some unused getters.
Replace the gdk_surface_move_to_rect() API with a new GdkSurface
method called gdk_surface_present_popup() taking a new GdkPopupLayout
object describing how they should be laid out on screen.
The layout properties provided are the same as the ones used with
gdk_surface_move_to_rect(), except they are now set up using
GdkPopupLayout.
Calling gdk_surface_present_popup() will either show the popup at the
position described using the popup layout object and a new unconstrained
size, or reposition it accordingly.
In some situations, such as when a popup is set to autohide, presenting
may immediately fail, in case the grab was not granted by the display
server.
After a successful present, the result of the layout can be queried
using the following methods:
* gdk_surface_get_position() - to get the position relative to its
parent
* gdk_surface_get_width() - to get the current width
* gdk_surface_get_height() - to get the current height
* gdk_surface_get_rect_anchor() - to get the anchor point on the anchor
rectangle the popup was effectively positioned against given
constraints defined by the environment and the layout rules provided
via GdkPopupLayout.
* gdk_surface_get_surface_anchor() - the same as the one above but for
the surface anchor.
A new signal replaces the old "moved-to-rect" one -
"popup-layout-changed". However, it is only intended to be emitted when
the layout changes implicitly by the windowing system, for example if
the monitor resolution changed, or the parent window moved.
The "iconified" state is mostly an X11-ism; every other platform calls
this state "minimized" because it may not involve turning a window into
an icon at all.
Windows/surface's aren't supposed to be explicitly moved by any external
part, so don't provide API for doing so. Usage throughout Gdk is
replaced by the corresponding backend variants.
The generic layer still does the heavy lifting, leaving the backends
more or less just act as thin wrappers, dealing a bit with global
coordinate transformations. The end goal is to remove explicit surface
moving from the generic gdk layer.
To separate how toplevels and popups are configured, a first step is to
introduce a resize-only vfunc for backends to implement. It's meant to
only configure toplevel windows, i.e. popups. Currently it's used for
both types, but introducing the resize-only API is a first step.
To make a frame clock tick as long as any of the associated surfaces
expect to receive ticks, make the surfaces inhibit freezing the clock,
instead of directly tell the frame clock to freeze itself.
This makes it so that as long as any surface using a certain frame clock
is not frozen (e.g. just received a frame event from the display
server), the frame clock will not be frozen.
With this, the frame clock is initiated as frozen, and won't be thawed
until any surface inhibits freeze. It will be frozen again, when every
surface has that previously inhibited freeze uninhibited freeze.
The X backend was storing global coordinates
in surface->x/y, and keeping the parent-relative
positions in its own fields. Switch this around
to store the relative position in x/y, as is
expected by the frontend.
Now that popups share the frame clock of their
parent, we have to be much more careful about
freezing the clock, since that may stop updates
for another surface.
This commit makes two changes that make the
X11 handling of the frame clock more similar
to the Wayland backend:
- Use gdk_surface_freeze_updates instead of
gdk_surface_freeze_toplevel_updates to avoid
affecting the frame clock
- Bail out early in before_paint/after_paint
if the surface is frozen, to avoid affecting
the frame clock
Together, these two make the X11 popup surface
type work without freezing updates for the toplevel.
With separate clocks, the phases are not coordinated,
which messes with GTKs size allocation machinery treating
the entire widget tree as a whole, and causes us to
run into assertion where popups get drawn before they
are allocated.
Make them use o-r windows, and move
with their parent.
We do a sort-of ok job on stacking order
here - whenever the parent window gets a
ConfigureNotify, we just restack all popups
directly on top of their parent. This is good
enough to keep popups on top of their parent
while we drag it around, and it gets the popup
to disappear when raising another window on
top of the parent.
Store popup parents separately from transient-for
parents, since these are separate concepts with
different behaviors. And we need the parent in
the frontend, so we can use it in the fallback
move-to-rect implementation.
We don't need the complicated wrapper system anymore,
since client-side windows are gone. This commit moves
all the vfuncs to GtkSurfaceClass, and changes the
backends to just derive their surface implementation
from GdkSurface.
We want to use a gdk_surface_new_popup for popups,
and align the constructor names with the surface
types, so rename
gdk_surface_new_popup -> gdk_surface_new_temp
gdk_surface_new_popup_full -> gdk_surface_new_popup
The temp surface type will disappear eventually.