The cursor was set using gdk_window_set_cursor() even in
gdk_window_new().
So instead of having yet another flag, just make the users of that flag
call gdk_window_set_cursor() directly after the window was created.
X11 was the only backend to support it and people can just override it
using XSetClassHint() directly.
The docs already advertised the function as "Do not use".
Keep the existing call to XSetClassHint() in place, so that we keep
setting the same values as in GTK3.
... and gdk_screen_get_window_stack().
Those functions were originally added in
5afb4f0f11 but do not seem to be used as
they are not implemented anywhere but in X.
As GDK is not meant to fulfill window management functionality I'm going
to remove these functions without replacements.
... and gdk_screen_get_width_mm() and gdk_screen_get_height_mm() and
the shortcut counterparts that call these functions on the default
screen.
Modern display servers don't provide an ability to query the size of a
screen or display so we shouldn't allow that either.
The GLib main loop blocks on MsgWaitForMultipleObjectsEx to
determine if there are any incoming messages while also allowing
for background tasks to run. If all available messages are not
processed after MsgWaitForMultipleObjectsEx has signaled that
there are available, CPU usage will skyrocket.
From my limited understanding (by inspection of profiling
under Visual Studio):
Key is pressed - MsgWaitForMultipleObjectsEx unblocks, and
sends message to GDK's event handler. Some event is now queued.
g_poll unblocks, calls the g_event_dispatch which finally
resolves to gdk_event_dispatch. This then calls
_gdk_win32_display_queue_events, but since a message is already
queued, it fails to call PeekMessage and returns immediately.
At the next iteration, g_poll again calls MsgWaitForMultipleObjectsEx
which queues yet another event and returns almost immediately, since
there are events available which haven't been processed by PeekMessage.
The dispatch function is then called and the process repeats.
https://bugzilla.gnome.org/show_bug.cgi?id=771568
Pick the W32 API for possible deadkey+<something> combinations
and prefer these to other sources of deadkey combos.
Specifically, if W32 API supports at least one combo for a particular
deadkey, only use that data and do not attempt to do other, unsupported
combinations, even if they make sense otherwise.
This is needed to, for example, correctly support US-International
keyboard layout, which produces a combined character for <' + a>
combo, but not for <' + s>, for example.
This is achieved by stashing all the deadkeys that we find in
an array, then doing extra loop through all virtual key codes and
trying to combine them with each of these deadkeys. Any combinations
that produce a single character are cached for later use.
In GTK Simple IM context, call a new GDK W32 function to do a lookup
on that cached combination table early on, among the "special cases"
(which are now partially obsolete).
A limitation of this code is that combinations with more than
one deadkey are not supported, except for combinations that consist
entirely of 2 known deadkeys. The upshot is that lookups should
be relatively fast, as deadkey array stays small and the combination
tree stays shallow.
Note that the use of ToUnicodeEx() seems suboptimal, as it should
be possible to just load a keyboard library (KBD*.DLL) manually
and obtain and use its key table directly. However, that is much more
complicated and would result in a significant rewrite of gdkkeys-win32.
The code from this commit, though hacky, is a direct addition to
existing code and should cover vast majority of the use-cases.
https://bugzilla.gnome.org/show_bug.cgi?id=569581
This changes the group/level semantic.
Previously W32 backend used "group 0/1" to denote "AltGr OFF/ON"
and "level 0/1" to denote "Shift is OFF/ON".
Now "group" means "keyboard layout" and there can be up to 255 groups,
while AltGr and Shift are combined into a single level enum that
takes values between 0 and 4.
Unlike X, W32 doesn't do effective group overriding, meaning that
it will never tell the caller that a different group was actually
used (even for universal keys, such as Enter), because key symbol
table is completely fabricated and there's no point in trying to
save a few of kilobytes of RAM by not duplicating universal key
records for all groups.
Also contains many whitespace changes (tab elimination, fixed
indentation) and cleanup (axed a few global variables, these are
now accessed via the default keymap).
https://bugzilla.gnome.org/show_bug.cgi?id=768722
WINBOOL is MinGW-specific, so change it to BOOL, which is universally
available.
Also, Visua Studio is more picky on where __stdcall (WINAPI) is placed, so
fix that to be in-sync with what is done in the other sources.
Always associate a drag context with a GdkDisplay and use that when
getting a cursor for a given action.
If we don't do this, dragging on a window that doesn't use the default
display will make us use cursors from the wrong display.
https://bugzilla.gnome.org/show_bug.cgi?id=765565
Windows save in hardware_keycode an information which is not so low
level and some application require the hardware scancode.
As Windows provides this information save it in GdkEventPrivate
and provide a function to get this information.
For no Windows system the function return the hardware_keycode instead.
Signed-off-by: Frediano Ziglio <fziglio@redhat.com>
https://bugzilla.gnome.org/show_bug.cgi?id=765259
MoveWindow should not be used over the pre-existing move/resize
functions, which already correctly position a window with respect
to its parent, while also taking into account the size of window
decorations.
https://bugzilla.gnome.org/show_bug.cgi?id=765100
gdk_window_reparent() already changes children list for old and new parent.
Doing so twice results in a circular reference in the list, which can hang
the application later, for example in gtk_window_show().
https://bugzilla.gnome.org/show_bug.cgi?id=764845
This makes usage of _gdk_display again when creating a window.
This is needed because there is a window created when the display
is being initialized, so it becomes a chicken and egg problem.
For now we roll back this to fix the wintab crash but we might
want to fix this again in the future by improving the wintab
initialization.
https://bugzilla.gnome.org/show_bug.cgi?id=764664
This fixes a bug that was introduced by db1b24233e.
The reason why 0:0 coordinates were passed was that SWP_NOREPOSITION was
misinterpreted as SWP_NOMOVE. That is not the case - SWP_NOREPOSITION
prevents owner Z-order change, not the window position change.
Currently only one kind of decorative window is in use - the shape
indicator that is shown when snapping windows to the edge of the screen.
When normal toplevel class is used, its window procedure expects certain
motions from GDK (passing user data to CreateWindowEx(), registering
handle in a hash map etc), and might crash if that is not done.
Dumb window doesn't require anything, it can just be.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
Now halfleft/halfright/fullup snaps do hug screen edges as intended.
Documents AeroSnap behaviour when snapped windows are drag-resized
(currently this implementation handles this in a very simplistic way).
Don't believe GTK when it tells us that window shadow is 0, preserve
previous values (but do remember that GTK wants no shadow, in case
we need that).
Fixes a couple of bugs in unsnapping (check offset against the half
of the window; don't put pointer in the middle of the window vertically
if it still fits in the top half).
https://bugzilla.gnome.org/show_bug.cgi?id=763013
Implements gdk_win32_window_set_shadow_width().
Uses shadow width/height to adjust max tracking size, allowing
windows to be drag-resized to cover the whole desktop.
Also uses SM_C*VIRTUALSCREEN instead of SM_C*MAXTRACK.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
Indicator is a bare layered click-through native window,
painted completely by GDK, including animation.
This commit also isolates some of the more spam-ish debug logging
under ifdef.
This commit also changes the system metric used for maximal window
height for the snapping purposes. Turns out, SM_CYMAXTRACK is way
too large, use SM_CYVIRTUALSCREEN instead.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
This implements the part of AeroSnap that snaps windows when you
drag them (while moving or resizing) to the edge of the screen.
It also fixes drag behaviour for snapped and maximized windows
(if such windows are dragged, first they must be unmaximized/unsnapped).
Note that this code does not take into account the shadow width, and
because of that the under-pointer-position-preserving window moves
might not look as such for maximized windows, which lack the shadow
when maximized, but do have the shadow when unmaximized.
This commit also doesn't cover some corner-cases the same way AeroSnap does.
Also, the snapping indicator (which is supposed to be a window shape that
shows where the window will be if the drag op is stopped at its current
point) is not being drawn, all routines responsible for its creation,
moving and drawing are stubs.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
This is what AeroSnap does. If a window is being unsnapped on
a new monitor, check if the work area is large enough for the
window to fit in its normal size. If the window fits, just
reposition it so that the ratio of
left-window-edge-to-screen-edge / right-window-edge-to-screen-edge
remains the same, without scaling the window.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
It works exactly like AeroSnap.
Except for shift+win+left/right, which is left for AeroSnap
to handle (AeroSnap takes action before we get the message,
so there's no way for us to override it).
The only thing that doesn't work is shift+win+left/right on
a maximized window, for reasons unknown at the moment.
This only implements winkey+stuff behaviour of AeroSnap,
not the drag-to-the-edge-and-something-funny-happens one.
https://bugzilla.gnome.org/show_bug.cgi?id=763013
If a layered window was hidden and is made visible, erase its
contents before showing it. GDK will schedule a redraw, but until
then we generally don't want to show old contents.
https://bugzilla.gnome.org/show_bug.cgi?id=763783
This is achieved by sending undocumented message WM_SYSMENU
to the window.
Before doing that, the window is given WS_SYSMENU style
(to enable window menu) and some combination of
WS_MAXIMIZEBOX (for "Mazimize" item)
WS_MINIMIZEBOX (for "Minimize" item)
WS_SIZEBOX (for "Size" item)
depending on which operations are currently permissible.
WM_SYSMENU is processed by DefWindowProc(), which results
in showing the window menu. We remove extra styles
at the first opportunity (WM_INITMENU message), as they
alter the way our window is rendered.
https://bugzilla.gnome.org/show_bug.cgi?id=763851
Delay as long as possible before calling OpenClipboard(),
call CloseClipboard() as quickly as possible after that.
Don't call OpenClipboard() when we don't need to (for example,
we don't need to open clipboard to call GetClipboardOwner()).
Also, print out actual W32 error code in some cases where it
was not printed before.
https://bugzilla.gnome.org/show_bug.cgi?id=763907
Error codes can be easily looked up in an error code list
and/or googled up. Error messages, while descriptive, often
describe the wrong thing, and the messages themselves are not
part of the documentation of a function, unlike error codes.
It would be preferable to have the code, or both.
https://bugzilla.gnome.org/show_bug.cgi?id=763913
Using UpdateLayeredWindow() on iconic windows brings them *back* from
their iconic (minimized) state. That is bad.
As a precaution, also don't use SetWindowPos() on iconic windows.
This means that iconic windows can't be moved. That is fixable
by using SetWindowPlacement(), but there is no pressing need to do so,
as there are very few cases when windows need to be moved while minimized.
https://bugzilla.gnome.org/show_bug.cgi?id=763835
Two errors here:
1) A typo in splashscreen rectangle calculation - sets right twice
instead of setting top
2) Centering for dialogs is off because it doesn't convert
GDK virtual desktop coordinates to Windows WM virtual desktop
coordinates by adding _gdk_offset_*
https://bugzilla.gnome.org/show_bug.cgi?id=763628
This code:
> gdk_window_get_root_origin (window, &x, &y);
> x -= root_x;
> y -= root_y;
> pointer_window = gdk_device_get_window_at_position (device, &x, &y);
was meant to find the child gdk window at coordinates root_x and root_y.
These 4 lines had 2 bugs:
1) x = x - root_x (same for y) is wrong, it should be x = root_x - x
2) gdk_device_get_window_at_position() does not give you the window
at position x and y. It gives you the window under the device
(mouse pointer) and the returns the device coordinates in x and y.
https://bugzilla.gnome.org/show_bug.cgi?id=763533
Other portions of the GDK-Win32 backend make use of this function as
layered windows need to be disabled for GL windows and possibly other
parts, so make this function a private function that is available within
the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=763285
Layered windows and GL do not work well together, so disable layered
windows when initiating a GdkGLContext, so that GtkGLArea programs can run
properly.
Also based on patch by LRN to address the issue.
https://bugzilla.gnome.org/show_bug.cgi?id=763080
This removes the event_poll_fd global variable and the (ab)use of
get_default_display. It is also more consistent with other backends.
Also store display
Otherwise WM-dependent default cursor is used, which does not
match our theme. Worse, later GDK will realize that we have
our own left_ptr cursor and will apply it after all, making
the discrepancy even more noticeable.
https://bugzilla.gnome.org/show_bug.cgi?id=762902
* Explicitly grab the device, setting appropriate cursor on it.
* Fix gdk_device_virtual_set_window_cursor() to just set the
cursor, without trying to check that mouse is over the given
window. Also prevent it from immediately resetting cursor.
* Alse take into account things that happen in other parts of
GDK - don't look for replacement cursor, GDK already did that,
and don't create a default arrow cursor instead of NULL,
GDK-W32 already did that up the stack as well.
Warn about inappropriate cursor == NULL argument instead.
https://bugzilla.gnome.org/show_bug.cgi?id=762711
Toplevels are now true layered windows that are moved,
resized and repainted via UpdateLayeredWindow() API call.
This achieves transparency without any extra effort,
and prevents window size and window contents desychronization
(bug 761629).
This also changes the way CSD windows are detected. We now
use window decorations to detect CSDiness of a window,
and to decide whether a window should be layered (CSD windows should
be) or not.
Decorations are now stored in the window implementation,
not as a quark-based property of the window-as-gobject.
https://bugzilla.gnome.org/show_bug.cgi?id=748872
Normally works only on CSD windows, non-CSD windows continue
to use WM modal loop for drag-resizing and drag-moving. However,
if it is activated on non-CSD windows, it does work.
Has the advantage of being completely immune to AeroSnap.
AeroSnap only worked partially on CSD windows, with the only part
that worked being "don't let users drag window titlebar outside of
the desktop". Now AeroSnap doesn't work on windows moved by
this code at all, which is good, since they currently don't work
well with it due to the way shadows are drawn.
It's possible to also re-implement AeroSnap (or something similar),
but that is a story for another commit.
This code was originally intended to fix the problem of window
size and window contents desynchronization, but failed to achieve
that result in the end. Nevertheless, it serves as a foundation for
other changes to the way window resizing works.
https://bugzilla.gnome.org/show_bug.cgi?id=761629
gdk_display_list_devices is deprecated and all the backends
implement the same fallback by delegating to the device manager
and caching the list (caching it is needed since the method does
not transfer ownership of the container).
The compat code can be shared among all backends and we can
initialize the list lazily only in the case someone calls the
deprecated method.
https://bugzilla.gnome.org/show_bug.cgi?id=762891
Except for the init function, all the visual related code is made
of gdkscreen vfuncs, so let's move it to gdkscreen-win32. This way
we avoid keeping other static variables and instead store the info
inside the screen struct.
1f74f12d9 rendered entry of keypad decimal mark unuseable for
several national keyboard layouts, this commit amends that, at
least for W32, and makes GTK+ behave more or less the same way
W32 behaves.
The patch works like this:
- When typing the first character at the keyboard or when switching
keyboard layouts, the decimal mark character will be cached in the
static variable "decimal_mark" within gdkkeys-win32.c
- in case of WIN32, gdk_keyval_to_unicode() asks gdkkeys-win32.c for the
current decimal_mark when converting GDK_KEY_KP_Decimal.
https://bugzilla.gnome.org/show_bug.cgi?id=756751
1) MSDN says that the coordinates of the maximized window
must be specified as if the window was on the primary display,
even if nearest display where it ends up is not the primary display.
So instead of using nearest display work area verbatim,
use it only to account for taskbar size, while using
primary display top-left corner (0:0) as the reference point.
2) MSDN says that max tracking size is a system property, we
should just call GetSystemMetrics() and use that.
https://bugzilla.gnome.org/show_bug.cgi?id=762629
The first time a window is shown we should always call SW_SHOWNORMAL.
Understand whether to call SW_SHOW or SW_SHOWNORMAL and the specific
ones for the temporary windows depending on IsWindowVisible.
This also fixes the problem when calling gtk_window_present and
the window is snapped to the left or right of the screen.
This patch is based on the patches provided by Yevgen Muntyan
and Aleksander Morgado.
https://bugzilla.gnome.org/show_bug.cgi?id=698652
If the window is iconified we want to restore the window
to get the proper size instead of showing it normal which
would change the size of the window.
https://bugzilla.gnome.org/show_bug.cgi?id=698652
This prevents WM from drawing shadows around tooltip windows,
which, in Adwaita, should have no shadow and are CSD-ish (which means
that tooltip window is larger than it looks, and WM draws the shadow
only on the outside, leaving a gap between the visible tooltip edge and
the shadow).
https://bugzilla.gnome.org/show_bug.cgi?id=759898
Functions requiring CoInitialize are called just in two places:
- the filechooser thread which calls its own CoInitializeEx
- the dnd code
Moving CoInitialize in the dnd specific init is cleaner and
we can pair it with the corresponding CoUninitialize since
CoUninitialize should be called as many times as CoInitialize.
Note that it is ok to call this function multiple times, so it
will not break if another codepath will need it in the future.
The patch also replaces the deprecated CoInitialize with the
equivalent call to CoInitializeEx (already used in the filechooser).
Add a variant of gdk_drag_begin that takes the start position
in addition to the device. All backend implementation have been
updated to accept (and ignore) the new arguments.
Subsequent commits will make use of the data in some backends.
While searching for the cause of bug 746745 it was discovered that one could
not set WS_EX_TOPMOST extended window style with SetWindowLong(),
but must use SetWindowPos() for that purpose.
This was never a problem most likely because it is highly unlikely for windows
to acquire/lose WS_EX_TOPMOST after they are created, by means other
than SetWindowPos() (which GTK does use to raise/lower windows and
set/remove keep_above), and because trying to set/unset WS_EX_TOPMOST with
SetWindowLong() results in WS_EX_TOPMOST merely not being set/unset (that is,
other styles are still set/unset within the same call and no error is
signalled).
https://bugzilla.gnome.org/show_bug.cgi?id=758483
This prevents normal application windows (and other kinds of windows)
from being moved up in Z-order to be above windows that have the
always-on-top bit set. Doing so would make the previously-normal windows
in question also always-on-top implicitly.
Windows that are already always-on-top will be restacked on top of other
always-on-top windows too.
https://bugzilla.gnome.org/show_bug.cgi?id=746745
A follow up on the previous patch. We should use DestroyWindow
directly since it has a different calling convention than
the expected callback for g_clear_pointer
Instead of handling WM_DISPLAYCHANGE on every GdkWindow, only handle
it on an ad-hoc hidden window we create when opening the display.
This has two reasons:
1) we want emit the display::size-changed signal even if there are no
gtk windows currently open
2) we want to emit the signal just once and not once for every window
https://bugzilla.gnome.org/show_bug.cgi?id=757324
This is a variable holding a ref to an object, so it is
a great case to use g_set_object and g_clear_object.
# Please enter the commit message for your changes. Lines starting
We need to rename the projects so that when these projects are added
into an all-in-one solution file that will build the GTK+ 2/3 stack,
the names of the projects will not collide with the GTK+-2.x ones,
especially as GTK+-2.x and GTK+-3.x are done to co-exist on the same
system. This is due to the case that the MSVC projects are directly
carried over from the GTK+-2.x ones and was then updated for 3.x.
We still need to update the GUIDs of the projects, so that they won't
conflict with the GTK+-2.x ones.
Use the common automake module from the previous commit in the
Makefile.am's, which means that the Makefile.am's in gdk/ and gtk/ can be
cleaned up as a result. As a side effect, the property sheet that is used
to "install" the build results and headers can now be generated in terms of
the listing of headers to copy during 'make dist', where we can acquire
most of the list of headers to "install", so that we can largely avoid the
situation where the property sheet files are not updated in time for this,
causing missing headers when this build of GTK+ is being used.
Also use the Visual Studio Project file generation for the following
projects:
gtk3-demo
gtk3-demo-application
gtk3-icon-browser
gdk-win32
gdk-broadway
gail-util
So that the maintenace of these project files can be simplified as well.
https://bugzilla.gnome.org/show_bug.cgi?id=681965
Windows does not send any release key event for one of the shift keys
when both shift keys were pressed together. This commit solves
the problem by sending the extra release key event for the shift key
which was released as first, when the other shift key is released.
Other modifiers (e.g. Ctrl, Alt) do not have this problem.
https://bugzilla.gnome.org/show_bug.cgi?id=751721
Load themed cursors from the same places they are loaded on freedesktop systems,
but use W32 API functions to do so (works for .cur/.ani cursors instead of X
cursors).
Refactor the code for cursor handling. Prefer loading cursors by name.
Do not load actual cursors when loading the theme. Find the files and remember
the arguments/calls for loading them instead. Keeping HCURSOR instance in the
hashmap would result in multiple GdkCursors using the same HCURSOR. Given that
we use DestroyCursor() to off them, this would cause problems (at the very
least - DestroyCursor() would fail).
Store GdkCursor instances in a cache. Update cached cursors when theme changes.
Recognize "system" theme as a special (and default) case. When it is set,
prefer system cursors and fall back to Adwaita cursors and (as a last resort)
built-in X cursors. Otherwise prefer theme cursors and fall back to system and
X cursors.
Force GTK to use "left_ptr" cursor when no cursor is set. Using NULL makes
it use the system default "arrow", which is not the intended behaviour when
a non-system theme is selected.
Ignore cursor size setting and query the OS for the required cursor size, as
Windows (almost) does not allow setting cursors of arbitrary size.
https://bugzilla.gnome.org/show_bug.cgi?id=749287
In particular this means that cursors are disposed of by the way of
g_object_unref(), not DestroyCursor (which is documented to not to be
used on certain kinds of cursors, and we can't tell which is which).
It should also alleviate any concerns about destroying cursors that
are still in use by other windows, except for cases where we would
somehow get our hands on a HCURSOR that someone else is using and we
make a GdkCursor out of it and later unref and finalize it while it
is still in use.
It also removes the need to call CopyCursor(), which makes animated
cursors into non-animated ones as a side-effect (supposed to be a bug,
but try explaining that to MS). Now cursors should be animated (if
the are set up as such in the OS).
https://bugzilla.gnome.org/show_bug.cgi?id=697477
This is purely to support gdk_cursor_new_from_name().
In particular, its counterpart, gdk_cursor_new_for_display(), will not
be affected, because there's no GDK_LEFT_PTR_WATCH cursor type,
and because i don't have a fallback cursor bitmask for gdk/win32/xcursors.h
We now have proper checks for gdk_screen_is_composited() and a proper
implementation for gdk_screen_get_rgba_visual() for Windows, so we
can remove the comments in this file stating that they aren't
available for Windows.
Requires Vista and newer.
* Create surfaces with cairo_win32_surface_create_with_format
* Provide an rgba visual that can be distinguished from the system visual
* Make rgba visual the best available visual
* Enable alpha-transparency for all windows that we control
* Check for appropriate cairo capabilities at configure time
(W32 - 1.14.3 newer than 2015-04-14; others - 1.14.0)
* Check for composition support before enabling CSDs
* Re-enable transparency on WM_DWMCOMPOSITIONCHANGED
Windows that were created while composition was enabled and that were CSDed
as a result and will look ugly (thick black borders or no borders at all) once
composition is disabled.
If composition is enabled afterwards, they will return back to normal.
This happens, for example, when RDP session is opened to a desktop where a GTK
application is running. For W7/Vista windows will only re-gain transparency after
the RDP session is closed. For W8 transparency will only be gone momentarily.
Windows that were created while composition was disabled will not be CSDed
automatically and will use SSD (WM decorations), while windows that are CSDed
manually will get a thin square border.
If composition is enabled afterwards, these windows will not change.
This is most noticeable for system menus (popup menus are often generated
on the fly, system menus are created once) and some dialogues (About dialogue,
for example).
https://bugzilla.gnome.org/show_bug.cgi?id=727316
GdkKeymap already has support for _get_num_lock_state() and
_get_caps_lock_state(). Adding _get_scroll_lock_state() would be good
for completness and some backends (Windows?) could take advantage of
this.
This reverts commit 24d3f3fcb2.
Sorry, I am going to re-commit this very shortly with a new
commit message, as I found the commit message to be quite
wrong and misleading.
The current GdkScreen->is_composited() is a stub as we were having Windows
XP being supported, which does not support Desktop Window Manager (DWM),
which is used by Windows for composition.
Windows Vista and later support DWM, and it is always enabled on Windows 8/
Server 2012 and later.
Please note that as we are dropping XP support in this cycle, this is the
commit that would say goodbye to Windows XP support for GTK+-3.x, by
linking directly to dwmapi.dll. This means, we only check whether we are
on Windows 8 or Server 2012 (or later) to see whether we unconditionally
have composition enabled.
https://bugzilla.gnome.org/show_bug.cgi?id=741849
Use screen workarea to *also* set the position of a maximized window,
not just its size. Without this the window position defaults to 0:0
(the topleft corner), which is wrong when taskbar is position along the
top or left edge of the screen.
https://bugzilla.gnome.org/show_bug.cgi?id=746821
The existence of OpenGL implementations that do not provide the full
core profile compatibility because of reasons beyond the technical, like
llvmpipe not implementing floating point buffers, makes the existence of
GdkGLProfile and documenting the fact that we use core profiles a bit
harder.
Since we do not have any existing profile except the default, we can
remove the GdkGLProfile and its related API from GDK and GTK+, and sweep
the whole thing under the carpet, while we wait for an extension that
lets us ask for the most compatible profile possible.
https://bugzilla.gnome.org/show_bug.cgi?id=744407
Now that we have a two-stages GL context creation sequence, we can move
the profile to a pre-realize option, like the debug and forward
compatibility bits, or the GL version to use.
Emit an error if the profile is different.
This is a follow-up commit to commits cc45e82 (x11/gl: Ensure we use the
3.2 core profile) and 2d9081d (wayland/gl: Ensure we use the 3.2 core
profile), so that we do the same on GDK-Win32. Update variable names and
comments so that the code is clearer to people, as we still need a
temporary legacy WGL context first before we can use
wglCreateContextAttribsARB() to create a WGL core (3.2+) context.
https://bugzilla.gnome.org/show_bug.cgi?id=741946
Like what is being done in the X11 and Wayland backends, create the
GdkWin32GLContext in 2 steps, where we only create the actual WGL context
in _gdk_win32_gl_context_realize().
https://bugzilla.gnome.org/show_bug.cgi?id=741946
The default ->upload_texture() works also for Windows since commit 27cf0fa,
as some of the problems described in 742953 also applied for GL core
contexts on Windows as well before 27cf0fa. Clean up the GDK-Win32 code a
little bit as a result.
This function is given a barely setup GdkEvent, so the GdkDevice field
is still unset, causing warnings and misbehaviors when the position
is queried for it.
Given that the wintab GTK+ code seems to rely somewhat hard on the wintab
device managing the pointer cursor, query the pointer position from the
pointer itself.
https://bugzilla.gnome.org/show_bug.cgi?id=743330
The window used NULL as a parent window, which defaults internally to
using the root window of the default screen. But at the time wintab is
initialized, there is no default display/screen yet.
Fix this by retrieving this information from the given GdkDeviceManager,
so we don't have to wait for the display to be in place before
initialization.
https://bugzilla.gnome.org/show_bug.cgi?id=743330
This adds support for OpenGL to the GDK Windows backend using the WGL API
calls, which enables programs that uses the GTK+ GLArea widgets to work on
Windows as well.
This also adds a simple utility function to query for the version of OpenGL
that is supported by the Windows system, like the one provided by the X11
backend.
Many thanks to Alex (and Emmanuele, who started the OpenGL integration in
GTK+) who offered advice and help along the way, as well as the X11 and
Wayland backend for this work to refer to and to model upon.
https://bugzilla.gnome.org/show_bug.cgi?id=740795
X11 backend doesn't, and for good reason - main code body does not check
that the window it sets opacity for is, in fact, toplevel.
Just silently fail to do anything for non-toplevel windows.
https://bugzilla.gnome.org/show_bug.cgi?id=733769
Support environment variable GDK_WIN32_FONT_RESOLUTION that can be set to
a desired dpi (72, 96, 130, etc) to override system settings. Useful for
debugging, since changing system font scaling requires the user to log off
and log on again.
https://bugzilla.gnome.org/show_bug.cgi?id=734038
Use (cairo) input shape of the window to check whether a point is inside or not
inside the window.
If it is, let the default window procedure do its thing (which seems to be
working all right in all known cases).
If it isn't, override the default window procedure and tell WM what we think.
Don't do any of the above if the window has CSD-incompatible styles (WS_BORDER
or WS_THICKFRAME).
This is a crude kind of substitute for window input shape support (which W32
does not seem to have). Still probably enough to be positive about input shapes
support.
https://bugzilla.gnome.org/show_bug.cgi?id=733679
This function currently calls gdk_win32_window_shape_combine_region(),
which is wrong, because it leads to SetWindowRgn() being called with
non-NULL region, which makes W32 disable theming (particularly - decoration
theming), which makes decorations revert back to old GDI-drawn Windows 2000
variant, which looks out of place and interacts *badly* with alpha channel
(because GDI).
https://bugzilla.gnome.org/show_bug.cgi?id=733671
Since the Win32 code never actually called InvalidateRgn or used the
Win32 update area at all, that meant the only thing that could possibly
invalidate the window was the Win32 window manager as part of scrolling
or resizing, which would also send it a WM_PAINT message.
But the WM_PAINT handling called BeginPaint / EndPaint, which clears the
update area completely! We also draw out-of-band, not directly when
handling WM_PAINT, so there's no way that the update area inside the
Win32 WM would match our local one.
There is no possible way that this queue_antiexpose implementation could
do anything. Remove it.
Traditionally, the way painting was done in GTK+ was with the
"expose-event" handler, where you'd use GDK methods to do drawing on
your surface. In GTK+ 2.24, we added cairo support with gdk_cairo_create,
so you could paint your graphics with cairo.
Since then, we've added client-side windows, double buffering, the paint
clock, and various other enhancements, and the modern way to do drawing
is to connect to the "draw" signal on GtkWidget, which hands you a
cairo_t. To do double-buffering, the cairo_t we hand you is actually on
a secret surface, not the actual backing store of the window, and when
the draw handler completes we blit it into the main backing store
atomically.
The code to do this is with the APIs gdk_window_begin_paint_region,
which creates the temporary surface, and gdk_window_end_paint which
blits it back into the backing store. GTK+'s implementation of the
"draw" signal uses these APIs.
We've always sort-of supported people calling gdk_cairo_create
"outside" of a begin_paint / end_paint like old times, but then you're
not getting the benefit of double-buffering, and it's harder for GDK to
optimize.
Additionally, newer backends like Mir and Wayland can't actually support
this model, since they're based on double-buffering and swapping buffers
at various points in time. If we hand you a random cairo_t, we have no
idea when is a good time to swap.
Remove support for this.
This is technically a GDK API break: a warning is added in cases where
gdk_cairo_create is called outside of a paint cycle, and the returned
surface is a dummy that won't ever be composited back onto the main
surface. Testing with complex applications like Ardour didn't produce
any warnings.
Having the same, usable, default appearance acroll platforms
trumps having a more-or-less working native theme. The default
will be Adwaita on all platforms. The native ms-windows theme
is of course still available.
It may happen that the received clipboard data is empty, but
if it's of type image/bmp, gtk+ will crash:
gdk_property_change: 00030AD4 GDK_SELECTION image/bmp REPLACE 8*0 bits:
... delayed rendering
gdk_selection_send_notify_for_display: 00030AD4 CLIPBOARD image/bmp
GDK_SELECTION (no-op)
_gdk_win32_selection_convert_to_dib: 1252003C image/bmp
Program received signal SIGSEGV, Segmentation fault.
0x749a9f40 in msvcrt!memmove () from C:\Windows\syswow64\msvcrt.dll
Thread 1 (Thread 2248.0x1b34):
target=0xc07b) at gdkselection-win32.c:1292
at gdkevents-win32.c:3498
wparam=8, lparam=0) at gdkevents-win32.c:232
message=773, wparam=8, lparam=0)
at gdkevents-win32.c:263
C:\Windows\syswow64\user32.dll
C:\Users\rugoosse\AppData\Local\virt-viewer\bin\libpangocairo-1.0-0.dll
wparam=0, lparam=-1687549457)
at gdkevents-win32.c:248
C:\Users\rugoosse\AppData\Local\virt-viewer\bin\libpangocairo-1.0-0.dll
https://bugzilla.gnome.org/show_bug.cgi?id=728745
Get monitor on which the most of the window is located (nearest monitor if
window is not on screen), get its work area (area not occupied by taskbar or
any other bars) and use that for maxsize.
Previous default of 30000 meant that windows maximized onto full screen,
even covering the area where taskbar is.
https://bugzilla.gnome.org/show_bug.cgi?id=726592