This adds a "release" destructor for the gtk_surface1 interface which
signals to the server that a surface has been destroyed on the client
side, which the current "destroy" does not do.
Ideally the protocol would have specified a destroy request marked as
destructor to handle this automatically, however this is no longer
possible due to the destroy method being implicitly generated in the
absence of an explicit request in the protocol. Adding a destroy request
marked as destructor now would generate a new destroy method that
unconditionally would send the request to the server, which would break
clients running on servers not supporting that request.
Some GTK based applications such as Qemu UI create and manage
EGLSurfaces associated with the relevant GdkSurfaces. In order to create
an EGLSurface, there needs to be a way to pass the native window
object to eglCreateWindowSurface(). While running in an X environment,
the native window object can be obtained by calling
gdk_x11_surface_get_xid(). Likewise, the native window object can be
obtained by calling gdk_wayland_surface_get_wl_egl_window() while
running in a Wayland environment. Therefore, this API needs to be
exposed to apps.
Signed-off-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
When being fullscreen, and wanting to unfullscreen but not caring about
whether to go unmaximized or maximized (as this information is lost), if
the GdkToplevelLayout represents the full intended state, we won't be
able to do the right thing.
To avoid this issue, make the GdkToplevelLayout API intend based, where
if one e.g. doesn't call gdk_toplevel_set_maximized() with anything, the
backend will not attempt to change the maximized state.
This means we can also remove the old 'initially_maximized' and
'initially_fullscreen' fields from the private GtkWindow struct, as we
only deal with intents now.
It was used by all surfaces to track 'is-mapped', but still part of the
GdkToplevelState, and is now replaced with a separate boolean in the
GdkSurface structure.
It also caused issues when a widget was unmapped, and due to that
unmapped a popover which hid its corresponding surface. When this
surface was hidden, it emitted a state change event, which would then go
back into GTK and queue a resize on popover widget, which would travel
back down to the widget that was originally unmapped, causing confusino
when doing future allocations.
To summarize, one should not hide widgets during allocation, and to
avoid this, make this new is-mapped boolean asynchronous when hiding a
surface, meaning the notification event for the changed mapped state
will be emitted in an idle callback. This avoids the above described
reentry issue.
We only called xdg_toplevel.(un)set_maximize() if the toplevel layout
changed, but this misses the case when the compositor had changed the
maximized state. Change it to call the xdg_toplevel request if either
the local layout changed, or if the layout differs from the current
state.
This fixes an issue where one couldn't unmaximize a window by double
clicking the titlebar that, had previously been maximized e.g. using a
keyboard binding.
Do the same for fullscreen.
If compute_size() returns TRUE, the layout will not be propagated to
GTK. This will be used by the X11 backend to queue asynchronous resizes
that shouldn't yet allocate in GTK.
Not doing this means the next time the same surface is shown, if the
shadow size wasn't changed, it wouldn't be sent to the compositor, which
then would result in compositor deriving its own window geometry which
would include the shadow margin.
This fixes an issue where the file chooser dialog would grow each time
it opened.
This removes the gdk_surface_set_shadow_width() function and related
vfuncs. The point here is that the shadow width and surface size can now
be communicated to GDK atomically, meaning it's possible to avoid
intermediate stages where the surface size includes the shadow, but
without the shadow width set, or the other way around.
GTK4 doesn't support arbitrary constraints when resizing a window (e.g.
steps, or aspect ratio), so we don't need to care about the result from
compute-size when doing interactive resizing.
By moving popup layout emission to the layout phase, the current
GdkPopup::poup-layout-changed signal has no value on its own as it'd be
ignored by GtkPopover.
Make the Wayland backend communicate the popup layout changes via the
common signal; but leave the rest intact until other backends catch up.
Put them in a anonymous struct, and separate the toplevel specific ones
into another anonymous struct inside the first one. Later popup related
fields will be added.
GdkSurface's are initialized to have the size 1x1, as otherwise we'd
receive an X11 error, would a corresponding X11 window be created.
This confuses the "saved size" mechanisms in the Wayland backend, as
treats 0 as uninitialized, and not 1.
Fix this simply not saving size that if it's smaller or equal than 1.
Concentrate state application to the start of a frame; this is to avoid
having GTK going back and forth between different state if so would
happen between two frames.
Queue it, and then wait for it to actually take effect, i.e. be
confirmed via a configure event from the compositor, before setting the
actual GdkSurface::state value.
The plan is to concencrate size computations as part of the frame clock
dispatch, meaning we shouldn't do it synchronously in the present()
function.
Still, in Wayland, and maybe elsewhere, it is done in the present()
function, e.g. when no state change was made, but this will eventually
be changed.
Mapping a surface under Wayland is an asynchronous process, where one
creates a surface and commits an initial state without having drawn
anything, then waiting for a configuration, which then is acknowledged
and content is painted and committed. Not until having received this
configuration is a surface actually mapped, so wait with setting the
mappedness until this.
Use the set_minimized method of the xdg_toplevel
interface to implement minimization as well as possible.
It is not possible, since there is no corresponding
state that we could use to update our surface state,
but in practice, it works well enough.
Fixes: #2688
The 'has_uncommitted_ack_configure' state was added to make sure we're
responding to 'xdg_surface.configure' events with
'xdg_surface.ack_configure' requests, as is necessary according to spec.
What we didn't do was to clear this state when hiding, meaning that if
we hid the surface after a configure event, but before the frame
finished and we processed the 'has_uncommitted_ack_configure', we'd try
to acknowledge the surface configuration after having destroyed the
surface.
Closes: #3262
The GdkWayland API takes generic GDK types and performs a run time
check, which means we need to properly annotate the actual expected
type in order to have methods recognised as such.
When using the saved size because the compositor
told us to, we were forgetting to readd the margins.
The visible symptom of this was the window getting
smaller every time we went to tiled state and back.
Don't remember the surface size when we are in tiled
state either. This matches the 'fixed_size' condition
in gdk_wayland_surface_configure_toplevel.
This change fixes an issue where moving a window first
to tiled, then to maximized state and back would lead
to the unmaximized window having the tiled dimensions.
We should not emit configure events before we are realized - size
changes at this point are not relevant.
This gets rid of a mysterious emission of GdkSurface::size-changed
with a size of 52x52, that is happening when GtkWindow sets the
shadow_width before the window is mapped.
Most of the surface api we have in the Wayland backend
only makes sense for toplevels, so reshuffle things to
take a GdkToplevel instead of a GdkSurface.
Update all callers and the docs.
We must wl_surface.commit after xdg_surface.ack_configure to make it
have an effect. We failed to do so when a configure event didn't result
in new updates, so make sure we fall back on an simple
wl_surface.commit if there was no new actual frame painted.
Closes: #2910
In order to make the cairo renderer/context behave more similar to how
the OpenGL and Vulkan renderer/context behaves, request a frame callback
and commit in the end frame vfunc.
This means the end frame vfunc in cairo does
* attach buffer
* request frame callback
* sync surface state
* commit
Where as e.g. the OpenGL version of the same flow does
* attach buffer
* request frame callback
* sync surface state
* eglSwapBuffers()
where eglSwapBuffers() indirectly calls wl_surface_commit().