If a subclass (say a child of GtkButton) overrides the non-baseline
size request methods we need to call these, rather than the new
get_height_and_baseline_for_width method.
In order to handle this we make the default for this method to be
NULL, and instead check at runtime which method to call. If any
non-baseline vfunc has changed in a class but the baseline one
hasn't, then we can't use the baseline one.
This modifies the size machinery in order to allow baseline support.
We add a new widget vfunc get_preferred_height_and_baseline_for_width
which queries the normal height_for_width (or non-for-width if width
is -1) and additionally returns optional (-1 means "no baseline")
baselines for the minimal and natural heights.
We also add a new gtk_widget_size_allocate_with_baseline() which
baseline-aware containers can use to allocate children with a specific
baseline, either one inherited from the parent, or one introduced due
to requested baseline alignment in the container
itself. size_allocate_with_baseline() works just like a normal size
allocation, except the baseline gets recorded so that the child can
access it via gtk_widget_get_allocated_baseline() when it aligns
itself.
There are also adjust_baseline_request/allocation similar to the
allocation adjustment, and we extend the size request cache to also
store the baselines.
Setting this means baseline aware containers should align the widget
according to the baseline. For other containers this behaves like
FILL.
In order to not suprise old code with a new enum value we always
return _FILL for _BASELINE unless you specifically request it via
gtk_widget_get_valign_with_baseline().
This commit implements the needed machinery for GtkWidget
to build it's composite content from GtkBuilder XML and
adds the following API:
o gtk_widget_init_template()
An api to be called in instance initializers of any
GtkWidget subclass that uses template XML to build it's components.
o gtk_widget_class_set_template()
API to associate GtkBuilder XML to a given GtkWidget subclass
o gtk_widget_class_automate_child()
API to declare an object built by GtkBuilder to be associated
with an instance structure offset and automatically set.
o gtk_widget_get_automated_child()
API for bindings to fetch a child declared to be automated by
gtk_widget_class_automate_child(), for the case where bindings
do not generate GObjects under the hood and cannot use structure
offsets to resolve composite object pointers.
o gtk_widget_class_declare_callback[s]()
Declare static functions to be used in signal callbacks from
a given class's template XML
o gtk_widget_class_set_connect_func()
API for bindings to override the signal connection machinery
for a given GtkWidget derived class.
Deprecate gtk_widget_push_composite_child, gtk_widget_pop_composite_child,
gtk_widget_set_composite_name, gtk_widget_get_composite_name.
This API is just bloat and was never useful, this patch deprecates
it and removes all internal calls to the composite child APIs
Some functions in gtkstyle.h were overlooked when we added the
GDK_DEPRECATED macros.
Also add IGNORE_DEPRECATIONS to the few remaining callers of those
functions.
If the style changes before we're realized we will delay the
style-updated signal until realize. However, we then lose
the changes bitmap. This means that gtk_widget_real_style_updated()
must treat a NULL change as "everything changed" and queue a resize.
Both of them started to make use of round(), a C99 function. So, include
fallback-c89.c to provide a fallback implementation for round() for
compilers that don't have round()
https://bugzilla.gnome.org/show_bug.cgi?id=694339
The last change fixed the windowed widget case but broke
opacity group handling for windowed child widgets. This fixes
up the code by making sure we norender_children in when there
is an opacity group.
This also cleans up the comments about how this works to something
that is hopefully more understandable.
Add an API to start or stop continually updating the frame clock.
This is a slight convenience for applcations and avoids the problem
of getting one more frame run after an animation stops, but the
primary motivation for this is because it looks like we might have
to use timeBeginPeriod()/timeEndPeriod() on Windows to get reasonably
accurate timing, and for that we'll need to know if there is an
animation running.
https://bugzilla.gnome.org/show_bug.cgi?id=693934
We clear GtkTickCallbackInfo on creation to ensure all fields start
as 0. Before we sometimes ended up with destroyed being 1
so the tick was never called.
We need to disconnect the frame clock when we unrealize (at which
point the old clock is still alive) not in destroy(). Since there
is no common unrealize for containers, trigger this from GtkWidget.
Add a very simple GtkWidget function for an "tick" callback, which
is connected to the ::update signal of GdkFrameClock.
Remove:
- GtkTimeline. The consensus is that it is too complex.
- GdkPaintClockTarget. In the rare cases where tick callbacks
aren't sufficient, it's possible to track the
paint clock with ::realize/::unrealize/::hierarchy-changed.
GtkTimeline is kept using ::update directly to allow using a GtkTimeline
with a paint clock but no widget.
Switch GtkStyleContext to using GdkFrameClock. To do this, add a new
UPDATE phase to GdkFrameClock.
Add a GdkFrameClockTarget interface with a single set_clock() method,
and use this to deal with the fact that GtkWidget only has a frame
clock when realized.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
Instead of having gdk_frame_clock_request_frame() have
gdk_frame_clock_request_phase() where we can say what phase we need.
This allows us to know if we get a frame-request during layout whether
it's just a request for drawing from the layout, or whether another
layout phase is needed.
https://bugzilla.gnome.org/show_bug.cgi?id=685460
This adds a way to get the gtk_widget_set_opacity liike behaviour
of retargeting GdkWindows and exposing every child in ::draw, without
actually having an alpha. This is needed if you're doing more complex things
such as cross fading of widgets.
We do this as a hack by using opacity values that round to 255 yet not
really 1.0 in order to avoid having some magical API call for this
mainly internal call.
https://bugzilla.gnome.org/show_bug.cgi?id=687842
This adds gtk_widget_get/set_opacity, as well as a GtkWidget.opacity
property. Additionally it deprectates gtk_window_get/set_opacity and
removes the GtkWindow.opacity property (in preference for the new
identical inherited property from GtkWidget, which should be ABI/API
compat).
The implementation is using the new gdk_window_set_opacity child
window support for windowed widgets, and cairo_push/pop_group()
bracketing in gtk_widget_draw() for non-window widgets.
https://bugzilla.gnome.org/show_bug.cgi?id=687842
This replaces the previously hardcoded calls to gdk_window_set_user_data,
and also lets us track which windows are a part of a widget. Old code
should continue working as is, but new features that require the
windows may not work perfectly.
We need this for the transparent widget support to work, as we need
to specially mark the windows of child widgets.
https://bugzilla.gnome.org/show_bug.cgi?id=687842
This is a quickfix to keep things working.
It turns out GtkWindow assumes it can do sizing operations while not
being visible, or while in the process of show()ing/hide()ing itself.
And commit b495ce54 broke these operations.
Figuring this properly requires some more thinking and restructuring on
my part, so for now we relax the requirement of visiblility enough for
these things to start working again.
GtkWidget::visible is required for the widget to:
- have a preferred size other than 0/0
- have a size allocated
- return other values than { -1, -1, 1, 1 } from get_allocation()
This is an experimental patch aiming to make concepts and behaviors
inside GTK more concreate. GtkWidget::visible is now essentially what
CSS does for "display: none".
Note that if you want the effect of CSS's "visibility: hidden", you'll
have to use a GtkNotebook with an empty page as the concept of reserving
space but not drawing anything isn't supported natively in GTK.
Previously, with STATE_FLAGS_REPLACE we would unset _all_ the state
flags on children, not just the ones that do propagate. This caused the
RTL/LTR flags to get lost.
Now that Pango tracks changes to the context automatically there is
no need to do it manually in e.g. style-updated or direction-changed,
in fact the only case we have to care about is when we re-create
the PangoContext due to a screen change, so we only have to clear
the layouts in GtkLabel in screen-changed.
This means we're not clearing all the layouts whenever the state changes,
which happens to every widget when the window is unfocused, which helps
performance a lot.
https://bugzilla.gnome.org/show_bug.cgi?id=340066